2010年清华大学自主招生试题
- 格式:docx
- 大小:8.03 KB
- 文档页数:2
O x O xO x则该多面体的体积为______________A. 32个;B. 30个;C.28个;D.26个7、给定平面向量(1,1),那么,平面向量(231-,231+)是将向量(1,1)经过________. A .顺时针旋转60°所得;B .顺时针旋转120°所得;C .逆时针旋转60°所得;D .逆时针旋转120°所得;8、在直角坐标系Oxy 中已知点A 1(1,0),A 2(1/2,3/2),A 4(−1,0),A 5(−1/2,−3/2)和A6(1/2, −3/2).问在向量−−→−ji A A (i,j=1,2,3,4,5,6,i≠j)中,不同向量的个数有_____.A.9个;B.15个;C.18个;D.30个 9、对函数f:[0,1]→[0,1],定义f 1(x)=f(x),……,f n (x) =f(f n−1(x)),n=1,2,3,…….满足f n (x)=x的点x ∈[0,1]称为f 的一个n−周期点.现设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=121,22,210,2)(x x x x x f 问f 的n−周期点的个数是___________.A.2n 个;B.2n 2个;C.2n 个;D.2(2n −1)个.10、已知复数z 1=1+3i ,z 2=−3+3i ,则复数z 1z 2的幅角__________. A.13π/12;B.11π/12;C.−π/4;D.−7π/12.11、设复数βαβαcos sin ,sin cos i w i z +=+=满足z w =3/2,则sin(β−α)=______. A.±3/2;B.3/2,−1/2;C. ±1/2;D.1/2,−3/2.12、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1和C 2分别是以y=±k 1(x−1)+1和y=±k 2(x−1)+1为渐近线且通过原点的双曲线.则C 1和C 2的离心率之比e 1/e ·等于_______.A.222111k k ++; B.212211k k ++ C.1 D.k 1/k 213、参数方程0,)cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 所表示的函数y=f(x)是____________.A .图像关于原点对称;B .图像关于直线x=π对称;C .周期为2aπ的周期函数D .周期为2π的周期函数.14、将同时满足不等式x−ky−2≤0,2x+3y−6≥0,x+6y−10≤0 (k>0)的点(x,y)组成集合D 称为可行域,将函数(y+1)/x 称为目标函数,所谓规划问题就是求解可行域中的点(x,y)使目标函数达到在可行域上的最小值.如果这个规划问题有无穷多个解(x,y),则k 的取值为_____.A.k≥1;B.k≤2C.k=2;D.k=1.15、某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量w 是该班同学某一门课程的考试成绩.则下列选项中正确的是________.A. y 是x 的函数;B. z 是y 的函数;C. w 是z 的函数;D. w 是x 的函数.16、对于原命题“单调函数不是周期函数”,下列陈述正确的是________. A. 逆命题为“周期函数不是单调函数”; B. 否命题为“单调函数是周期函数”; C. 逆否命题为“周期函数是单调函数”; D. 以上三者都不正确17、设集合A={(x,y)|log a x+log a y>0},B={(x,y)|y+x<a}.如果A∩B=∅,则a 的取值范围是_______A .∅;B .a>0,a≠1;C .0<a≤2, a≠1D .1<a≤218、设计和X 是实数集R 的子集,如果点x 0∈R 满足:对任意a>0,都存在x ∈X 使得0<|x−x 0|<a ,则称x 0为集合X 的聚点.用Z 表示整数集,则在下列集合(1){n/(n+1)|n ∈Z, n≥0}, (2) R\{0}, (3){1/n|n ∈Z, n≠0}, (4)整数集Z 中,以0为聚点的集合有_____.A .(2), (3);B .(1), (4);C .(1), (3);D .(1), (2), (4)19、已知点A(−2,0),B(1,0),C(0,1),如果直线kx y =将三角形△ABC 分割为两个部分,则当k=______时,这两个部分得面积之积最大?A .23-B .43-C .34-D .32- 20、已知x x x x f 2cos 3cos sin )(+=,定义域⎥⎦⎤⎢⎣⎡=ππ127,121)(f D ,则=-)(1x f_____A .π12123arccos 21+⎪⎪⎭⎫ ⎝⎛-xB .π6123arccos 21-⎪⎪⎭⎫ ⎝⎛-x C .π12123arcsin 21+⎪⎪⎭⎫ ⎝⎛--x D .π6123arcsin 21-⎪⎪⎭⎫ ⎝⎛-x 21、设1l ,2l 是两条异面直线,则直线l 和1l ,2l 都垂直的必要不充分条件是______ A .l 是过点11l P ∈和点22l P ∈的直线,这里21P P 等于直线1l 和2l 间的距离 B .l 上的每一点到1l 和2l 的距离都相等 C .垂直于l 的平面平行于1l 和2l D .存在与1l 和2l 都相交的直线与l 平行22、设ABC−A’B’C’是正三棱柱,底面边长和高都为1,P 是侧面ABB ’A’的中心,则P到侧面ACC’A’的对角线的距离是_____A .21 B .43 C .814 D .82323、在一个球面上画一组三个互不相交的圆,成为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,则称这两个三圆组有相同的位置关系,否则就称有不同的位置关系.那么,球面上具有不同的位置关系的三圆组有______A .2种B .3种C .4种D .5种24、设非零向量()()()321321321,,,,,,,,c c c c b b b b a a a a ===为共面向量,),,(31x x x x x = 是未知向量,则满足0,0,0=⋅=⋅=⋅x c x b x a的向量x 的个数为_____A .1个B .无穷多个C .0个D .不能确定 25、在Oxy 坐标平面上给定点)1,2(),3,2(),2,1(C B A ,矩阵⎪⎪⎭⎫⎝⎛-112k 将向量,,分别变换成向量',',',如果它们的终点',','C B A 连线构成直角三角形,斜边为''C B ,则k 的取值为______A .2±B .2C .0D .0,−2 26、设集合A,B,C,D 是全集X 的子集,A∩B≠∅,A∩C≠∅.则下列选项中正确的是______. A.如果B D ⊂或C D ⊂,则D∩A≠∅;B.如果A D ⊂,则C x D∩B≠∅,C x D∩C≠∅;C.如果A D ⊃,则C x D∩B=∅,C x D∩C=∅;D.上述各项都不正确.27、已知数列{}n a 满足21=a 且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则∑==nk k a 1______A .221-+n n B .22)1(1+-+n n C .)1(22-+n n n D .n n n 22)1(+-28、复平面上圆周2211=+--iz z 的圆心是_______ A .3+i B .3−i C .1+i D .1−i29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足|OP|∙|OP *|=r 2,则称P 、P *关于圆周C 对称.那么,双曲线22x y -=1上的点P(x,y)关于单位圆周C':x 2+y 2=1的对称点P *所满足的方程是(A)2244x y x y -=+ (B)()22222x y x y -=+ (C)()22442x y x y -=+(D)()222222x y x y-=+30、经过坐标变换⎩⎨⎧+-=+=θθθθcos sin 'sin cos 'y x y y x x 将二次曲线06532322=-+-y xy x 转化为形如1''2222=±by a x 的标准方程,求θ的取值并判断二次曲线的类型_______A .)(6Z k k ∈+=ππθ,为椭圆 B .)(62Z k k ∈+=ππθ,为椭圆C .)(6Z k k ∈-=ππθ,为双曲线D .)(62Z k k ∈-=ππθ,为双曲线31、设k, m, n 是整数,不定方程mx+ny=k 有整数解的必要条件是____________ A. m,n 都整除k ; B. m,n 的最大公因子整除k ; C. m,n,k 两两互素; D. m,n,k 除1外没有其它共因子2010年五校合作自主选拔通用基础测试 数学试题 适用高校:清华大学、上海交通大学等五校 一、选择题1.设复数2()1a i w i+=+,其中a 为实数,若w 的实部为2,则w 的虚部为( ) (A)32- (B)12- (C)12 (D)322.设向量,a b ,满足||||1,==⋅=a b a b m ,则||+a tb ()t R ∈的最小值为( ) (A)2(C)13. 无试题4. 无试题5.在ABC ∆中,三边长,,a b c ,满足3a c b +=,则tan tan 22A C的值为( ) (A)15 (B)14 (C)12 (D)236.如图,ABC ∆的两条高线,AD BE 交于H ,其外接圆圆心为O ,过O 作OF 垂直BC 于F ,OH 与AF 相交于G ,则OFG ∆与GAH ∆面积之比为( )(A)1:4 (B)1:3 (C)2:5 (D)1:2O H G FEDCBA7.设()e (0)axf x a =>.过点(,0)P a 且平行于y 轴的直线与曲线:()C y f x =的交点为Q ,曲线C 过点Q 的切线交x 轴于点R ,则PQR ∆的面积的最小值是( )(A)1 (C)e2(D)2e 48.设双曲线2212:(2,0)4x y C k a k a -=>>,椭圆2222:14x y C a +=.若2C 的短轴长与1C 的实轴长的比值等于2C 的离心率,则1C 在2C 的一条准线上截得线段的长为( )(A) (B)2 (C) (D)49.欲将正六边形的各边和各条对角线都染为n 种颜色之一,使得以正六边形的任何3个顶点作为顶点的三角形有3种不同颜色的边,并且不同的三角形使用不同的3色组合,则n 的最小值为( )(A)6 (B)7 (C)8 (D)910.设定点A B C D 、、、是以O 点为中心的正四面体的顶点,用σ表示空间以直线OA 为轴满足条件()B C σ=的旋转,用τ表示空间关于OCD 所在平面的镜面反射,设l 为过AB 中点与CD 中点的直线,用ω表示空间以l 为轴的180°旋转.设στ表示变换的复合,先作τ,再作σ.则ω可以表示为( )(A)στστσ (B)στστστ (C)τστστ (D)στσστσ 二、解答题11.在ABC ∆中,已知22sin cos 212A BC ++=,外接圆半径2R =. (Ⅰ)求角C 的大小;(Ⅱ)求ABC ∆面积的最大值.12.设A B C D 、、、为抛物线24x y =上不同的四点,,A D 关于该抛物线的对称轴对称,BC 平行于该抛物线在点D 处的切线l .设D 到直线AB ,直线AC 的距离分别为12,d d ,已知12d d +=.(Ⅰ)判断ABC ∆是锐角三角形、直角三角形、钝角三角形中的哪一种三角形,并说明理由;(Ⅱ)若ABC ∆的面积为240,求点A 的坐标及直线BC 的方程.O(Ⅱ)一般地,设正n 棱锥的体积V 为定值,试给出不依赖于n 的一个充分必要条件,使得正n 棱锥的表面积取得最小值.14.假定亲本总体中三种基因型式:,,AA Aa aa 的比例为:2:u v w (0,0,0,21)u v w u v w >>>++=且数量充分多,参与交配的亲本是该总体中随机的两个.(Ⅰ)求子一代中,三种基因型式的比例;(Ⅱ)子二代的三种基因型式的比例与子一代的三种基因型式的比例相同吗?并说明理由.15.设函数()1x m f x x +=+,且存在函数()1(,0)2s t at b t a ϕ==+>≠,满足2121()t s f t s-+=. (Ⅰ)证明:存在函数()(0),t s cs d s ψ==+>满足2121()s t f s t +-=; (Ⅱ)设113,(),1,2,.n n x x f x n +===证明:1123n n x --≤.2010年名牌大学自主招生考试试题(3)适用高校:清华大学、上海交通大学等五校(样题)一、选择题(每题5分,共25分)1.函数y=32cos sin cos x x x +-的最大值为 (A)2827 (B)3227 (C)43 (D)40272.已知a 、b 、c 、d 是实数,az bcz dω+=+, 且当Imz>0时,In ω>0.则 (A)ad+bc>0; (B)ad+bc <0; (C)ad−bc >0; (D)ad−bc<0.3.甲、乙、丙、丁等七人排成一排,若要求甲在中间,乙丙相邻,且丁不在两端,则不同的排法共有( )(A)24种; (B)48种; (C)96种; (D)120种4.己知F 为抛物线y 2=2px 的焦点,过点F 的直线l 与该抛物线交于A 、B 两点,l 1、l 2分别是该抛物线在A 、B 两点处的切线,l 1、l 2相交于点C ,设|AF|=a ,|BF|=b ,则|CF|=(C)2a b+;5.设θ是三次多项式f(x)=x 3−3x +10的一个根,且α=222θθ+-,若h(x)是一个有理系数的二次多项式,满足条件()h αθ=.则h(0)= (A)−2; (B)2; (C)12-; (D)12二、解答题(本大题共55分)1.(本题15分)己知f(x)是定义在R 上的奇函数,且当x <0时,f(x)单调递增,f(−1)=0.设函数()2sin cos 2x x m x m ϕ=+-,集合M=()|0,,02m x x πϕ⎧⎫⎡⎤∈<⎨⎬⎢⎥⎣⎦⎩⎭对任意的,N=()|0,,[]02m x f x πϕ⎧⎫⎡⎤∈<⎨⎬⎢⎥⎣⎦⎩⎭对任意的,求MN.2.(本题20分)甲、乙、丙、丁等4人相互传球,第一次由甲将球传出,每次传球时,传球者将球等可能地传给另外3人中的任何1人.(l)经过2次传球后,球在甲乙两人手中的概率各是多少?(2)经过n 次传球后,球在甲手中的概率记为p n (n=1,2,…) ,试求1n P +与n P 的关系式,并求n P 的表达式及lim n n P →∞3.(本题20分)设p 、q 是一元二次方程x 2+2ax−1=0(a>0)的两个根.其中p >0,令y 1=p−q,yn+1=2n y −2,n=1,2,…,证明:11212111lim ......n n y y y y y y →∞⎛⎫+++⎪⎝⎭=p. 2010年北京大学、香港大学、北京航空航天大学三校联合自主招生考试试题(数学部分)1.(仅文科做)02απ<<,求证:sin tan ααα<<.(25分) 2.AB 为边长为1的正五边形边上的点.证明:AB(25分)3.AB 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分)4.向量OA 与OB 已知夹角,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ 在0t 时取得最小值,问当0105t <<时,夹角的取值范围.(25分)5.(仅理科做)存不存在02x π<<,使得sin ,cos ,tan ,cot x x x x 为等差数列.(25分)。
1.(2007清华)对于集合2M R ⊆(表示二维点集),称M 为开集,当且仅当0,0P M r ∀∈∃>,使得{}2P R PP r M ∈<⊆⎰。
判断集合{}(,)4250x y x y +->⎰与集合{}(,)0,0x y x y ≥>⎰是否为开集,并证明你的结论。
2,(2009北大)已知,cos cos 21x R a x b x ∀∈+≥-恒成立,求max ()a b +3,(2009清华)已知,,0x y z >,a 、b 、c 是x 、y 、z 的一个排列。
求证:3a b c x y z ++≥。
4,(2006清华)已知a ,b 为非负数,44M a b =+,a+b=1,求M 的最值。
5,(2008北大)实数(1,2,i i a i b i ==满足123a a a b b b ++=++,122313122313a a a a a a bb b b bb ++=++,123123min(,,)min(,,)a a a b b b ≤。
求证:12312m a x (,,)m a x (,,)a a a b b b ≤。
6,(2009清华)试求出一个整系数多项式110()n n n n f x a x a x a --=+++…,使得()0f x =有一根为7,(2009清华)x>0,y>0,x+y=1,n 为正整数,求证:222112n n n xy -+≥8,(2007北大) 已知22()5319653196f x x x x x =-++-+,求f(1)+f(2)+…+f(50)。
9,(2006清华)设正三角形1T 的边长为a ,1n T +是n T 的中点三角形,n A 为n T 除去1n T +后剩下三个三角形内切圆面积之和,求1lim n k n k A →∞=∑。
10,(2008北大)数列{}1n n a ∞=定义如下:1234561,2,3,a a a a a a ======……(1) 给定自然数n ,求使l a n =的L 的范围;(2) 令221m m l l b a ==∑,求3limm m b m →∞。
2010年清华自主招生语文试题(有答案)一、现代文阅读(甲)(16分)阅读下面的文章,完成第1~7题。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
科学与人文科学研究表明,与左半脑密切相关的逻辑思维同与右半脑密切相关的形象思维很有差异,与逻辑思维密切相关的科技活动同与形象思维密切相关的人文活动也很有差异。
然而,这种差异,正好相互补充,相互支持,不同而和,浑成一体。
人为地将科技教育与人文教育割裂,文理分离,学理工的不知人文,学人文的不知理工,就是所学的专业,内容也很窄狭。
这势必严重地妨碍、制约、损害乃至扼杀人的本性、灵性、创造性的发展,势必导致培养出梁思成先生1948年所讲的“半个人”,也就是“非全人”。
表面看来,科学是求真,解决对客观世界及其规律的认识问题。
它要回答的是:是什么?为什么?回答得越符合客观世界及其规律就越真,越科学。
科学技术活动主要同逻辑思维紧密联系,思维极为致密、严格,步步为营,不能越雷池半步。
而人文是求善,解决精神世界的认识问题。
它要回答的是:应该是什么?应该如何做?回答得越有利于人民就越善。
人文活动主要同形象思维紧密联系,思维极为开放、奔放,规矩虚位,妙想天开。
但是,科学与人文又是密切相关,不可分割的。
科学与人文都有着明确而强烈的追求。
一个追求真,一个追求善,追求者都在为所追求的美好而献身,一生无悔。
诺贝尔奖获得者、DNA双螺旋结构的发现者克里克自传的题目就是“疯狂的追求”,曹雪芹在《红楼梦》开始就写道:“满纸荒唐言,一把辛酸泪;都云作者痴,谁解其中味?“一切献身于自己所追求的崇高事业的人,都是将一生与事业融为一体,如同苏轼赞扬一位画竹者时所写:“其身与竹化,无穷出清新。
”这是一个人所具有的最崇高的素质。
何况,真与善不可分割,真、善与美往往也是浑然一体的,求真、务善、完美。
其中也包涵着“新”,发现、发明、创造、创新。
《老子》讲得何等深刻:“不失其所者久,死而不亡者寿。
2010年五校合作自主选拔高校特色测试(清华大学)试题高级综合(理科)注意事项1. 本试卷包括四个部分,第1-4题为第一部分,第5-8题为第二部分,第9题为第三部分,第10题为第四部分。
四个部分的原始分均为100分。
2. 本试卷题目数量较多,难度较大。
考生可以根据自己的特点选择其中部分题目做答,其中第一、第二部分至多选择6题。
3. 考生应当在答题卡上做答,在试卷制作答无效。
回答第一、第二部分试题是应当用2B 铅笔将选答题目的题号填涂在答题卡相应位置;未填涂题号的答案不能评阅,题号填涂错误的不给分。
第三、第四部分试题直接在答题卡指定位置做答。
4. 四个部分的成绩将分别评阅并折算为标准分。
最终成绩将根据四个部分的标准分情况决定。
某一个或者几个部分成绩特别突出,或者整体表现较为突出的,成绩可评定为A 。
第一部分1.(25分)计算?70sin 50sin 10sin 444=︒+︒+︒2.(25分)现有一段长度为n 的木棍,希望将其锯成尽可能多的小段,要求每一小段的长度都是整数,并且任何一个时刻,当前最长的一段的长度都要严格小于当前最短的一段的长度的两倍。
例如:当n =6时最多只能锯成两段:6=3+3,但n =7时最多可以锯成3段:7=3+4,然后4可以在锯成2+2。
问:n =30时最多能够锯成多少段?3.(25分)请设计一种方案,对1维实数轴上的每一个点进行染色,使得任意距离为1、2或者5的两个点都不同色,要求所使用的颜色数目尽可能少。
4.(25分)12个人围坐在一个圆桌旁参加一个游戏,主持人给每个人发一顶帽子,帽子的颜色包括红、黄、蓝、紫。
每一个人都可以看到所有其他11个人头上帽子的颜色,这12个人可以事先约定好一种策略,但是当游戏开始后就不能再进行交流。
他们的目标是使12个人同时回答正确的机会最大。
假定主持人给每个人发的帽子的颜色是完全随机的,试给出一种策略,并分析再次策略下所有人都猜对的概率。
第二部分5.(35分)一个质量为m 的质点,初始时刻静止,从光滑的半球面顶点开始下滑,半球固定,其半径为R .求:(1)小球到达地面时距离初始位置的水平距离;(2)对地面的冲量.(假设小球落地时没有弹起来)6.(20分)直立的汽缸被活塞封闭有1mol 气体,活塞上装有中物,活塞及重物的总质量为m ,活塞面积A ,重力加速度g ,活塞与汽缸间摩擦可忽略,但活塞可以传导热量.初始时活塞位置固定,气体温度与环境平衡,气体体积为V o .活塞被放松后将振动起来,最后活塞静止于具有较大体积的新的平衡位置.假设环境压强P o ,环境温度为T o .试问:(1)若气体是理想气体,活塞从运动达到平衡过程,气体向环境吸热多少?(2)实际气体中分子间平均是吸引力,若气缸内气体是实际气体,其它量都与理想气体时相同,则上述过程气体向环境吸热比理想气体情形多还是少?7.(30分)有个半球壳均匀带电Q ,球壳在空间直角坐标系o-xyz 中方程为: []0,,2222R x R z y x -∈=++.求:(1)半球中心O (0,0,0)点的电势;(2)半球直径面上S (0,y ,0)点的电势(y >R );(3)半球对称轴上P ’(x ,0,0)点的电势.假设另一对称点P (-x ,0,0)点电势U p 为已知(x >R ).8.(15分)有一圆柱形玻璃柱,一光束从圆柱底面入射.为了简单我们只考虑圆柱轴线在入射面(光线与入射点发现构成的平面)上的情形.无论入射角多大,光束进入玻璃柱后都不能从侧面射出.求玻璃的折射率应满足什么条件?这其实就是光纤通讯的基本原理.现在我们减小圆柱形玻璃柱的直径是其小于1微米,以上讨论还有效吗?为什么?请给予简短讨论.第三部分9.太湖是中国第三大淡水湖,是苏锡常地区重要的饮用水水源地。
2008年清华大学考题1.求()x e f x x=的单调区间及极值.2.设正三角形1T 边长为a ,1n T +是n T 的中点三角形,n A 为n T 除去1n T +后剩下三个三角形内切圆面积之和.求1lim nk n k A →∞=∑.3.已知某音响设备由五个部件组成,A 电视机,B 影碟机,C 线路,D 左声道和E 右声道,其中每个部件工作的概率如下图所示.能听到声音,当且仅当A 与B 中有一工作,C 工作,D 与E 中有一工作;且若D 和E 同时工作则有立体声效果.求:(1)能听到立体声效果的概率;(2)听不到声音的概率.4.(1)求三直线60x y+=,1 2y x=,0y=所围成三角形上的整点个数;(2)求方程组21260y xy xx y<⎧⎪⎪>⎨⎪+=⎪⎩的整数解个数.5.已知(1,1)A--,△ABC是正三角形,且B、C在双曲线1(0)xy x=>一支上.(1)求证B 、C 关于直线y x =对称;(2)求△ABC 的周长.6.对于集合2M R ⊆,称M 为开集,当且仅当0P M ∀∈,0r ∃>,使得20{}P R PP r M ∈<⊆.判断集合{(,)4250}x y x y +->与{(,)0,0}x y x y ≥>是否为开集,并证明你的结论.2009年清华大学自主招生数学试题第一天(共11题,艺术生做1-7,10-11,其他考生1-9题)1.求公差是8、由三个质数组成的数列。
2.证明:一个2n+1项的整数数列,它们全部相等的充分必要条件是满足条件p ,条件p 为任意取出2n 个数,都存在一种划分方法,使得两堆数每堆含有n 个数,并且这两堆数的和相等。
3.四面体ABCD,AB=CD,AC=BD,AD=BC 。
(1)求证:这个四面体的四个面都是锐角三角形。
(2)设底面为BCD ,设另外三个面与面BCD 所形成的二面角为α,β,γ。
2010清华大学自主招生考试试题第一二部分(略)第三部分如下白骨一堆粉丝李国文中国文学,一直有大众化和小众化的分野。
唐代的白居易,则是最能代表中国文学大众化的典型诗人。
白居易,生于公元772年(唐代宗大历七年),终于公元846年(唐武宗会昌六年),活了74岁。
经历顺宗、宪宗、穆宗、敬宗、文宗、武宗六朝。
无论当时,无论后世,谈及这位诗人,离不开以下三点:一,他在诗坛领袖群伦,推动潮流的地位;二,他在朝野引起轰动,遐迩知名的程度;三,作为诗人,他在当时中国人之大多数心目中的无与伦比的尊崇,非同凡响的声望,他的粉丝,可以说是举国上下,遍地皆是,大江南北,无处不在,这也许是最值得大书而特书的中国文学的“白居易现象”。
他的朋友元稹为他的诗集《白氏长庆集》序中,这样写道:“二十年间,禁省、观寺、邮候、墙壁之上无不书,王公、妾妇、马走之口无不道。
缮写模勒,炫卖于市井中,或持之以交酒茗者,处处皆是。
”明人胡震享的《唐音癸签》一书中引《丰年录》:“开成中,物价至贱,村路卖鱼肉者,俗人买以胡绡半尺,士大夫买以乐天诗。
”白居易的一首诗,竟可以换来一条胖头鱼,一方五花肉,我估计当代诗人的作品,怕难以卖出这样的高价来。
所以,我一直认为,白居易大众化的文学追求,和白居易诗歌的大众化现象,是特别应该加以研究的对象。
因为与之相对的文学小众化,文人的小圈子化,贵族化,雅痞化,老爷化,使得文学脱节于现实,疏隔于生活,陌生于人民,淡漠于民众,再这样下去,不但换不来鱼,换不来肉,被人唾弃,视作敝屣的日子,也就不远了。
为什么要研究,因为在唐朝,中国文人的作品,其传播的范围,速度,方法,手段,都是极其有限的。
然而,白居易能够在这有限的空间里,创造出来无限的局面,在中国文学史上,是少有的被他同时代广大公众所追捧,千载以来被更广大公众所认可的成功者。
“自长安抵江西三四千里,凡乡校、佛寺、通旅、行舟之中,往往有题仆诗者;士庶、僧徒、孀妇、处女之口,每每有咏仆诗者。
2010年北大自主招生考试部分试题及重要资料语文(1)基础知识基本是区别形似字(2)材料历史长河向前淌岸上睡着一只羊河里飘着一条狼狼要拿羊当口粮羊要认狼当爹娘羊要救狼,狼要吃羊不知是那羊救狼还是狼吃羊1)找出材料中所有押韵的字,并用其中任意四个字写一个单句。
2)找出材料中所有的动词,并用笔画最少的两个字,写一句能在校园中张贴的标语。
(3) 翻译成现代文法者,天下之度量,而人主之准绳也。
县法者,法不法也;设赏者,赏当赏也。
法定之后,中程者赏,缺绳者诛。
尊贵者不轻其罚,而卑贱者不重其刑,犯法者虽贤必诛,中度者虽不肖必无罪,是故公道通而私道塞矣。
古之置有司也,所以禁民,使不得自恣也;其立君也,所以有司,使无专行也;法籍礼仪者,所以禁君,使无擅断也。
人莫得自恣,则道胜;道胜而理达矣,故反于无为。
(3)阅读:刹那永恒(4)作文:林庚被学生誉为:建安风骨盛唐气象少年精神布衣情怀从四个短语中任选一个为题,写一篇散文。
数学(1)0<x<1,求证:x/2 <arctanx<x(2)在正五边形上有两个点A、B,每条过均为1,求证AB最大距离不大于[(5的开方)+1]/2(3)抛物线Y=1-x.x上有AB两点在Y轴两侧求过A、B点的切线与x轴围成的三角形的最小面积。
(4)AB为y=1-x^2上在y轴两侧的点,求过AB的切线与x轴围成面积的最小值。
(25分)(5)向量OA与OB已知夹角,|OA|=1,|OB|=2,OP=tOA,OQ=(1-t)OB,|PQ|在t0是取得最小值,问当0<t0<1/5时,夹角的取值范围。
(6)存不存在0<x<π/2,使得sinx,cosx,tanx,cotx为等差数列。
英语(1)20道单选题(2)三篇阅读,每篇五道题(3)一篇信息还原阅读: 文章有几个空和一些可选择的词往里填;(4)四句英译汉: 有关哥本哈根会议,与时事联系紧密;(5)四句汉译英: 与其诅咒黑暗,不如点亮蜡烛。
2006-2010 年清华大学自主招生面试题【2010 年面试题】2010 年清华大学在沪自主招生暨保送生冬令营面试在华东师范大学第二附属中学举行,共有180 多位沪上高三生参加。
上午9 时30 分左右,第一批面试学生走出考场。
来自七宝中学的高三学生朱易说,感到有些意外的是个人面试题:老子和孔子有一天打架,你会帮助谁?一根火柴在不能折断的前提下,如何摆成一个三角形?“这些题都非常有意思,我当时灵机一动,说将火柴放在墙角,不就构成了一个三角形吗?” 小朱说,但是他感觉面试官明显不满足一个答案,继续追问还有别的方法吗,小朱并没有想出好的办法,“我想,这样的题目主要是考查学生思维的广度和宽度。
1,如何看待高考加分政策?2,《阿凡达》很火,欧美大片、日本动漫也很受欢迎。
如何在这种环境下发展中国文化?3,用一个成语形容你眼中的哥本哈根气候会议。
4,用关键词概括2009 年中国现状。
5,中国是否已步入高房价时代,你的观点是?6,一根火柴在不能折断的前提下,如何摆成一个三角形?7,就张磊向耶鲁大学捐款8888888 美元发表观点。
8,第一次和第二次世界大战期间,有什么重大的化学发明?9,为什么要把清华大学作为第一志愿填报?10.老子和孔子有一天打架,你会帮助谁?远程面试题目:1,谈古论今:任选中国古代和当代人物各一位作对比阐释。
2,为什么要上大学,是否每个人都应该上大学?3,假设你是清华校长,说说明年怎么举办清华百年校庆?2009 年面试题】部分面试题:•你如何看待我国四万亿救市计划?•如果你采访温总理,你将如何提问?要求:所提问题不能太大众化。
•如何看待情怀的含义。
•怎样做一名精英。
•你认为当大法官应具备怎样的素质?•谈谈对陈水扁家族弊案的看法。
•如何看待中学生早恋问题。
•神七发射最关键的两项技术是什么?•改革开放三十年所带来的启示和对后三十年的畅想•根据给出的数学概率中“标准分”的概念和计算公式解题。
•将区间(0,1)三等分,将中间段去掉,剩下的首尾两段重新拼接。
北大清华自主招生面试考题(完整版)北大清华自主招生面试考题(完整版)梧桐夜雨1.马克思在《资本论》中论述机器夺走了工人的饭碗时写道:“蒸汽机一开始就是人力的对头”。
请谈谈你的看法。
2.近期房产税、车船税、“馒头税”等均引发社会热议,请谈谈你对纳税与公民权利关系的理解。
3.哈佛大学图书馆墙上写有这样一句话:“请享受无法回避的痛苦”,谈谈你的理解。
4.假如用一种植物比喻中国人的国民性,你会选择什么?为什么?5.有人说:“智慧比体力更重要,成功的关键在于如何使用智慧”,请谈谈你的看法。
6.现在很多家长在高中阶段就把孩子送到国外学习,谈谈你的看法。
7.国家最近规定,中央和省级机构录用公务员,一般情况下都须具有两年以上基层工作经历,不再招收应届毕业生,你对此有何评论。
8.“穷则独善其身,达则兼济天下”,在今天是否还适用?9.目前一些人富裕了但并没感到幸福,谈谈你的看法。
10.有人认为“三纲”(君臣、父子、夫妻)无益,“五常”(仁义礼智信)可取。
试述你的观点。
11.近来续写《红楼梦》又成为社会热点话题。
你认为后人可以续写、仿写、改写经典名著吗?12.古人云“诗画同源”,“诗是无形画,画是有形诗”。
请谈谈你的见解。
13.请从世界历史和国际政治的角度,分析“只有永远的利益,没有永远的朋友”这句话的含义。
14.今年是辛亥革命100周年,海峡两岸将共同举行隆重庆典。
你认为大陆和台湾看待辛亥革命的角度和意义会有什么不同?15.网络带来丰富的信息,但也存在着许多虚假报道和伪装成民意的倾向性意见,你认为政府如何才能从网络上获取真实的社情民意?16.日本政府最近称,由于中国的GDP已经超过日本,所以要大幅削减对华援助,你如何看待此事?17.在鲁迅的小说《祝福》中,“我”作为一个现代知识分子,为什么不告诉祥林嫂“人死后是没有灵魂的”?18.牛顿第一定律可以被实验验证吗?19.“火”被古人当成一种物质元素,今天我们如何认识“火”?20.诗曰:“我看青山多妩媚,料青山看我应如是”,说说你的理解。
2010 年清华大学自主招生试题
语文:
语文题量很大,包括两篇现代文阅读、古诗词鉴赏、古文翻译、古文断句等。
两篇现代文阅读,一篇为“科学与人文”摘自杨叔子《融则利而育全人》一书,所选段落涉及DNA 知识、《红楼梦》、《老子》、《大学》等诸多内容。
另一篇是俄国作家蒲宁的文章《山口》。
此外有一篇古代诗文阅读《寻陆鸿渐不遇》。
两篇文言文阅读,断句,以及将《论语泰伯》、《世说新语汰侈》部分段落译为现代汉语。
作文是材料作文,有五十分,题目为“网瘾”。
卫生部日前发出通知称:“电击治疗网瘾”技术的安全性尚不确切,暂不宜应用于临床。
《中国青年报》:在过去三年里,已有近3000 名网瘾少年在某网瘾戒治中心接受过电击治疗。
《亚太经济时报》:从电击疗法寿终正寝推及其他对青少年的教育方法,问题的根本在于教育已到了革故鼎新的时刻。
《东方早报》:当孩子网络成瘾后,学校除了把孩子当作“差生”、“问题生”推给家长之外,并没有针对这些孩子开展相应的教育。
《新民晚报》:治疗网瘾已成为迫切需要解决的时代课题,有效的治疗手段,一定会带来巨大的利润。
新浪网:一旦网瘾确实能被电击治愈,那么如烟瘾、酒瘾等好多棘手问题都将成为科学实验室的目标。
请联系社会实际,选择一个角度进行探讨,发表你的见解。
写一篇不少于800 字的论述文。
文科综合特色测试
有关国庆阅兵的军事知识,还考了经济学、心理学知识、蝴蝶效应、东盟自由贸易区、有关澳门回归的《七子之歌》等,此外,还有《哈姆雷特》、《双城记》等英文原著的经典语句以及国际组织的英文缩写等。
其中写作题还出自一位境外学者之手,要求考生以梁漱溟的一段话,结合自己的实际生活,撰写短文阐述中国人是权利本位还是责任本位。
另外考察了“猪肉价格下降的原因”、“三农问题含义”等与农村考生联系密切的知识点。
选择出维吾尔族的特征:题干部分涉及藏族建筑(碉房),维吾尔族的地方舞蹈(十二木卡姆),维吾尔族的日常饮食(馕)和维吾尔族的历史(回鹘)等。
作文题调考察权利和义务的均等精神,题目是给出著名学者梁漱溟的一段话:“西方人讲自由、平等、
权利,动不动就是有我的自由权,个人的权利放在第一位,借此分庭对抗。
但中国不是这样,注重的是义务,而不是权
利……”要求考生根据这个观点撰写短文。
理科综合特色测试
2007 年夏初太湖发生严重的水华事件,导致无锡市供水危机,引起世人关注。
据此引出数学、物理、化学三门科目的5 道计算题。
其中一道数学题是:根据给出的太湖水位、水面面积、平均水深等数据,在假定太湖水体是一个规则的球缺的前提下,计算湖水最深处是多少米、总蓄水量多少;另一道化学题是:水体富营养化的主要营养元素是氮、磷,要求写出元素在水体中可能参与的生物化学反应过程。
清华大学自主招生面试题:
如果老子和孔子打架,你会帮谁?
用一个成语来形容你眼中的哥本哈根气候会议。
用关键词概括2009 年中国的现状。
中国是否已步入高房价时代,你的观点是什么?学历史与报读清华经管有什么关系?一根火柴在不能折断的前提下,如何摆成一个三角形?汪洋上,只有一艘船,你只能带5 个人走,你带谁?用成语形容一个企业家、一个政治家、一个思想家。
发表观点:张磊向耶鲁大学捐款8888888 美元。
发表观点:武广高速铁路通车时速达世界第一。
为什么要把清华大学作为第一志愿填报?。