常用逻辑用语单元教学设计(关键老师)
- 格式:ppt
- 大小:4.38 MB
- 文档页数:43
《第一章集合与常用逻辑用语》大单元整体教学设计一、内容分析与整合(一)教学内容分析《第一章集合与常用逻辑用语》是高中数学学习的起点,为学生后续学习函数、数列、不等式等数学内容提供了重要的逻辑基础。
本章内容主要分为五个部分:集合的概念、集合间的基本关系、集合的基本运算、充分条件与必要条件、以及全称量词与存在量词。
这些内容不仅在数学内部逻辑上紧密相连,而且在实际问题解决中也具有广泛的应用价值。
集合是现代数学的基本概念之一,它是描述事物群体及其相互关系的重要工具。
通过学习集合的概念,学生能够理解集合的确定性、互异性、无序性,并掌握集合的表示方法(如列举法、描述法等)。
集合的学习有助于学生形成分类讨论的数学思想,为后续学习打下坚实基础。
集合间的基本关系主要包括子集、真子集、相等关系等。
这些关系揭示了集合之间的层次结构和相互联系,是学习集合运算和逻辑推理的基础。
学生需要掌握判断集合间关系的方法,并能根据具体问题灵活应用。
集合的基本运算包括并集、交集、补集等。
这些运算是集合论中的重要内容,也是解决实际问题中常用的数学工具。
学生需要掌握集合运算的定义、性质及运算法则,并能够进行复杂的集合运算。
充分条件与必要条件是逻辑推理中的基本概念,它们描述了条件与结论之间的逻辑关系。
通过学习充分条件与必要条件,学生能够理解命题之间的逻辑关系,掌握推理的基本方法,提高逻辑思维能力。
全称量词与存在量词是数学语言中的重要组成部分,它们用于描述具有普遍性或特殊性的数学命题。
学生需要理解全称命题与特称命题的区别,掌握全称量词与存在量词的含义及用法,并能够运用量词进行逻辑推理和命题证明。
(二)单元内容分析本单元内容不仅涵盖了集合论和逻辑推理的基础知识,更在数学学科中占据着举足轻重的地位。
集合论,作为现代数学大厦的基石之一,为我们提供了一个描述和研究数学对象及其相互关系的强大框架。
它使我们能够更清晰地理解和表达数学中的基本概念,为深入学习更复杂的数学知识打下坚实的基础。
常用逻辑用语一、教学目标:1. 让学生理解并掌握常用的逻辑用语,提高学生的逻辑思维能力。
2. 培养学生运用逻辑用语进行有效沟通和表达的能力。
3. 引导学生运用逻辑思维解决实际问题。
二、教学内容:1. 概念:介绍常用的逻辑用语,如“如果…………”、“只有……才……”、“只要……就……”、“不仅……还……”、“要么……要么……”。
2. 用法:讲解这些逻辑用语的用法和表达方式。
3. 练习:通过例句和练习,让学生学会正确运用这些逻辑用语。
三、教学重点与难点:1. 重点:掌握常用逻辑用语的概念和用法。
2. 难点:灵活运用逻辑用语进行表达和论证。
四、教学方法:1. 讲授法:讲解逻辑用语的概念和用法。
2. 示例法:通过例句展示逻辑用语的运用。
3. 练习法:让学生通过练习,巩固所学内容。
4. 讨论法:引导学生运用逻辑用语解决实际问题,进行小组讨论。
五、教学过程:1. 导入:引导学生回顾已学过的逻辑知识,为新课的学习做好铺垫。
2. 讲解:讲解本节课要学习的常用逻辑用语,如“如果…………”、“只有……才……”、“只要……就……”、“不仅……还……”、“要么……要么……”。
3. 示例:给出例句,让学生理解并模仿运用这些逻辑用语。
4. 练习:设计练习题,让学生运用所学逻辑用语进行表达和论证。
5. 讨论:布置讨论题目,让学生分组讨论,运用逻辑用语解决实际问题。
6. 总结:对本节课所学内容进行总结,强调重点和难点。
7. 作业布置:布置作业,让学生巩固所学内容。
六、教学评估:1. 课堂参与度:观察学生在课堂上的积极参与情况,以及对逻辑用语的理解和运用能力。
2. 练习完成情况:检查学生完成练习的情况,评估学生对逻辑用语的掌握程度。
3. 讨论表现:评估学生在小组讨论中的表现,包括逻辑思维能力和团队合作能力。
七、教学反思:1. 教师反思:教师在课后对自己的教学进行反思,思考教学方法是否适合学生,是否需要调整教学策略。
2. 学生反馈:收集学生的反馈意见,了解学生对逻辑用语的学习效果和困难所在。
常用逻辑用语教案一、教案概述本教案旨在帮助学生掌握常用的逻辑用语,提高他们的逻辑思维和表达能力。
通过学习逻辑用语,学生可以更准确地表达自己的观点,加强论证的逻辑性,并且能够更好地理解他人的观点和论证过程。
本教案适用于初中或高中的逻辑课程,预计学时为2课时。
二、教学目标1. 理解逻辑用语的定义和作用;2. 掌握常用的逻辑用语,包括因果关系、比较关系、转折关系等;3. 能够正确运用逻辑用语进行论证和辩论。
三、教学重点1. 理解逻辑用语的定义和作用;2. 掌握常用的逻辑用语;3. 运用逻辑用语进行论证和辩论。
四、教学内容与步骤1. 引入(5分钟)通过提问或举例的方式,引导学生思考逻辑用语的作用和重要性。
例如:“你们在日常生活中有没有遇到过需要用逻辑推理的情况?逻辑用语对于我们的思维和表达有什么帮助?”2. 理论讲解(15分钟)介绍逻辑用语的定义和分类。
逻辑用语是指用来表达逻辑关系的词语或短语,可以帮助我们更准确地表达观点、论证和解释。
常见的逻辑用语包括因果关系、比较关系、转折关系等。
通过示意图或实例,讲解每种逻辑用语的具体含义和用法。
3. 练习与讨论(20分钟)让学生分组进行练习和讨论。
每个小组从给定的话题中选择一个观点,并使用逻辑用语进行论证。
例如,给定话题为“手机对青少年的影响”,小组成员可以选择支持或反对这一观点,并使用逻辑用语进行论证。
4. 总结归纳(5分钟)让学生总结归纳刚才学习的逻辑用语,并提醒他们在日常生活中多加运用。
可以让学生将逻辑用语整理成表格或笔记,以便复习和记忆。
五、教学延伸1. 给学生提供更多的练习题,让他们熟练掌握逻辑用语的运用。
2. 鼓励学生在写作和演讲中多使用逻辑用语,提高他们的表达能力和逻辑思维能力。
3. 引导学生阅读一些逻辑推理方面的文章或书籍,扩展他们的知识面和思维方式。
六、教学评估1. 教师观察学生在练习和讨论中的表现,评估他们对逻辑用语的理解和运用能力。
2. 学生完成课后作业,检查他们对逻辑用语的掌握程度。
高中数学《常用逻辑用语》教案一、教学目标1. 让学生理解并掌握常用的逻辑用语,如且、或、非、逆、逆否等。
2. 培养学生运用逻辑用语进行判断和推理的能力。
3. 让学生能够识别和分析实际问题中的逻辑关系,提高解决问题的能力。
二、教学内容1. 常用的逻辑用语:且、或、非、逆、逆否等。
2. 逻辑运算的规律:分配律、结合律、De Morgan 定律等。
3. 逻辑判断:充分必要条件、充要条件、逆否命题等。
三、教学方法1. 采用讲授法,讲解逻辑用语的定义和运用。
2. 利用案例分析法,分析实际问题中的逻辑关系。
3. 采用小组讨论法,让学生合作探讨逻辑运算的规律。
四、教学准备1. PPT课件:包含逻辑用语的定义、例题和练习题。
2. 案例材料:涉及实际问题中的逻辑关系。
3. 练习题:包括选择题、填空题和解答题。
五、教学过程1. 导入:通过一个实际问题引入逻辑用语的学习,激发学生的兴趣。
2. 新课讲解:讲解常用的逻辑用语,如且、或、非、逆、逆否等,并通过例题演示其运用。
3. 逻辑运算规律:介绍分配律、结合律、De Morgan 定律等,并通过练习题巩固。
4. 逻辑判断:讲解充分必要条件、充要条件、逆否命题等,并通过例题演示其运用。
5. 案例分析:分析实际问题中的逻辑关系,让学生运用所学知识解决问题。
6. 小组讨论:让学生合作探讨逻辑运算的规律,培养学生的合作能力。
8. 课后作业:布置练习题,巩固所学知识。
9. 课后反思:教师反思教学效果,针对学生的掌握情况调整教学策略。
10. 教学评价:对学生的学习情况进行评价,包括逻辑用语的掌握和运用能力。
六、教学评价1. 评价方式:采用课堂练习、课后作业和小测验等方式进行评价。
2. 评价内容:评价学生对常用逻辑用语的理解和运用能力,以及逻辑运算规律的掌握情况。
3. 评价标准:根据学生的答案准确性、解题思路清晰程度以及运用逻辑用语的恰当性进行评分。
七、课后作业1. 练习题:包括选择题、填空题和解答题,涵盖本节课所学的常用逻辑用语和逻辑运算规律。
常用逻辑用语教学设计一、前言逻辑用语是我们日常生活中十分常用的一种表达方式,对于学生来说学会应用逻辑用语不仅可以帮助他们更清晰准确的表达自己的意思,同时也有助于提高他们的逻辑思维能力。
因此,教师在进行语文教学时应引导学生熟练掌握并灵活运用逻辑用语。
二、教学内容1.逻辑用语简介逻辑用语是表达思想,思维和推理过程中必不可少的一种表达方式,包括因果关系,递进关系,对比关系等。
逻辑用语的正确应用可以帮助我们更清晰且准确地表述自己的想法,更好地表达自己的立场和意见。
2.逻辑用语分类(1)因果关系。
表示某种情况的发生是由于另一种情况的存在或发生,包括“因为、由于、所以、因此、故此、导致、致使、以致于”等。
例:由于天气太热了,我决定不去出门了。
(2)递进关系。
表示某种情况或事物在程度上的递增,表达层次关系,包括“不但,而且,除此之外,加之,再有”等。
例:这个音乐会不仅节目设计得很好,而且演奏者也非常出色。
(3)对比关系。
表示事物之间在某方面的差异,包括“和,与其,相反,但是”等。
例:我和姐姐不一样,她喜欢音乐,而我喜欢画画。
(4)条件关系。
表示某一种情形是因为条件的满足而发生,包括“如果,只要,除非,假如”等。
例:如果你不想去,就不去,别勉强自己。
(5)举例说明。
用具体的实例来证明论述所提出的观点的可靠性,例如“比如,例如,就像,譬如”等。
例:我们应该像猫那样机智灵活,比如当被人家问起问题时,你可以选择不回答或者回答有趣的答案等。
三、教学过程设计1.导入通过引述一些生活场景或故事片段,让学生进入逻辑用语的世界并引发他们的兴趣。
2.知识点介绍通过举例和课堂讲解的形式,详细讲解逻辑用语分类及其使用方法。
3.课堂练习让学生进行个人或小组练习,通过填空,改错或写短文等多种形式,让学生熟悉并灵活运用逻辑用语。
4.扩展通过“设计一个场景”或“写一篇小短文”等任务,让学生进行综合实践,从而促进他们在真实场景中运用逻辑用语的能力。
常用逻辑用语教案一、教学目标1. 让学生理解并掌握常用的逻辑用语,如:并且、或者、如果……、只有……才等。
2. 培养学生运用逻辑用语进行思考和表达的能力。
3. 提高学生分析问题和解决问题的能力。
二、教学内容1. 常用的逻辑用语及其含义2. 逻辑用语在生活中的应用3. 逻辑用语在数学和科学中的应用三、教学重点与难点1. 重点:理解和掌握常用的逻辑用语。
2. 难点:逻辑用语在实际问题中的应用。
四、教学方法1. 讲授法:讲解逻辑用语的含义和用法。
2. 案例分析法:分析生活中和数学、科学中的实际案例,引导学生运用逻辑用语解决问题。
3. 小组讨论法:分组讨论,培养学生合作学习和思考的能力。
五、教学准备1. PPT课件:展示逻辑用语的定义、例子及应用。
2. 教学案例:提供生活中、数学和科学中的实际案例。
3. 练习题:巩固学生对逻辑用语的理解和应用。
1. 导入:通过一个简单的逻辑谜题引起学生对逻辑用语的兴趣,如“小明是个学生,小红也是个学生,请问小明和小红至少有一个不是学生吗?”2. 新课导入:讲解常用的逻辑用语,如“并且”、“或者”、“如果……”、“只有……才”等,并通过示例让学生理解其含义。
3. 案例分析:分析生活中和数学、科学中的实际案例,让学生运用逻辑用语解决问题,如“如果今天下雨,我就不去公园散步。
”4. 小组讨论:学生分组讨论,分享各自对逻辑用语的理解和应用,如“小明喜欢吃苹果,小红不喜欢吃苹果,请问小明和小红喜欢吃同一个水果吗?”5. 练习巩固:让学生做一些练习题,巩固对逻辑用语的理解和应用。
七、课堂互动1. 提问:在讲解逻辑用语的过程中,教师可以随时提问学生,检查他们对逻辑用语的理解程度。
2. 回答:学生可以积极回答问题,展示自己对逻辑用语的掌握情况。
3. 讨论:在小组讨论环节,学生可以与组员交流自己的观点,共同探讨逻辑用语的应用。
八、课堂练习1. 练习题:教师可以布置一些练习题,让学生在课后巩固所学内容。
人教版高中选修(B版)2-1第一章常用逻辑用语教学设计一、教学目标1.知识目标1.掌握常用逻辑用语2.理解逻辑关系的内涵,并能够辨析因果关系、条件关系、假设关系和比较关系2.能力目标1.能够在阅读、写作和口语表达中使用逻辑用语2.能够分析和解决日常生活中的问题3.情感目标1.培养学生思辨问题的兴趣和习惯2.提高学生的逻辑思维能力和判断能力二、教学重点1.常用逻辑用语的掌握2.逻辑关系的分析和辨析三、教学难点1.逻辑关系的分析和辨析2.适当运用逻辑用语四、教学方法1.讲授法2.分组讨论法3.情境体验法五、教学过程1.导入(5分钟)任课教师介绍逻辑关系的重要性,以及逻辑用语在日常生活中的应用场景2.学习和讨论(40分钟)1.学生听取教师讲授,理解常用逻辑用语和逻辑关系的内涵2.教师分组布置小组讨论任务,让学生选择一个逻辑关系,分析并归纳其特点,并列举样例3.小组讨论结束后,学生逐一向全班汇报所研究的逻辑关系及其样例3.情境体验(20分钟)1.教师通过故事、图片等情境体验方式,让学生在实践中体会逻辑关系2.教师提供一些情境,让学生根据情境中发生的事情,判断哪些是因果关系、条件关系、假设关系和比较关系,并解释原因4.练习(25分钟)1.教师出示一篇短文,让学生在短文中找出逻辑关系,并概括文章大意2.学生自主练习,在练习中加深对逻辑用语和逻辑关系的理解和运用3.教师在练习过程中及时纠正和指导学生5.总结(10分钟)教师对本节课的教学内容进行总结,并表扬表现优异的学生六、教学评价1.课堂表现学生是否认真听讲、积极参与讨论和练习,是否能运用所学知识解决问题2.作业表现学生是否按时完成课堂作业,作业质量是否符合要求3.考试表现学生是否能够在考试中准确运用所学知识,答题是否规范、易懂七、教学资源准备1.教材人教版高中选修(B版)2-1第一章教材2.课件PPT课件,包括教学目标、教学重难点、课程设计等3.教学案例情境体验中需要的图片、故事等教学案例。
常用逻辑用语教案一、教学目标1. 让学生理解并掌握常用的逻辑用语,提高学生的逻辑思维能力。
2. 培养学生运用逻辑用语进行有效沟通和表达的能力。
3. 引导学生运用逻辑思维解决实际问题,培养学生的创新能力和实践能力。
二、教学内容1. 概念:什么是逻辑用语?2. 常用逻辑用语:(1)且(并且、、并列):表示两个或多个事物存在或发生。
(2)或(或者、要么、选择):表示两个或多个事物中至少有一个存在或发生。
(3)非(不是、并非、否定):表示事物的相反或否定。
(4)如果……(因果关系):表示一种条件与结果的关系。
(5)只有……才(必要条件):表示一种必要条件与结果的关系。
(6)不等式:表示两个事物之间的比较关系。
三、教学重点与难点1. 重点:让学生掌握并运用常用的逻辑用语。
2. 难点:让学生理解逻辑用语的含义及运用场景。
四、教学方法1. 案例分析法:通过分析具体案例,让学生了解逻辑用语的应用。
2. 小组讨论法:分组讨论,培养学生合作学习的能力。
3. 实践演练法:设计相关练习题,让学生在实际操作中掌握逻辑用语。
五、教学过程1. 导入:通过一个谜语,引发学生对逻辑用语的兴趣。
2. 讲解:介绍常用逻辑用语的定义和用法。
3. 案例分析:分析具体案例,让学生理解逻辑用语的实际应用。
4. 小组讨论:分组讨论,让学生运用逻辑用语进行分析。
5. 实践演练:设计相关练习题,让学生进行实际操作。
6. 总结:对本节课的内容进行总结,强调逻辑用语的重要性。
7. 作业布置:布置课后练习题,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对逻辑用语的理解程度。
2. 练习反馈:收集学生的练习成果,评估学生对逻辑用语的掌握情况。
3. 小组讨论观察:观察学生在小组讨论中的表现,了解学生的合作能力和逻辑思维能力。
七、教学拓展1. 逻辑游戏:设计一些逻辑游戏,让学生在游戏中运用逻辑用语,提高学生的逻辑思维能力。
2. 逻辑竞赛:组织学生参加逻辑竞赛,激发学生的学习兴趣,提高学生的逻辑思维能力。
§1.1 .1 命题、四种命题【学情分析】:命题、四种命题是逻辑学的基本知识,数学学科包含了大量的命题,了解命题的基本知识,认识命题的相互关系,对于掌握具体的数学知识很有帮助。
本节首先从熟悉的例子出发,引入命题、真命题和假命题的概念,引导学生能挖掘命题中的条件和结论,从而由条件和结论的关系引入四种命题。
【教学目标】:(1)知识目标:理解命题的概念;能判断命题的真假;能把命题写成若P则q的形式;能写出一个命题的另外三个命题。
(2)过程与方法目标:利用学生身边熟悉的事物引入命题和四种命题,让学生经历命题的概念和四种命题形成及运用过程,领会分析、总结的方法。
(3)情感与能力目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过学生的举例,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力。
【教学重点】:判断命题的真假, 一个命题的另外三个命题。
【教学难点】:把命题写成若P则q的形式, 一个命题的另外三个命题。
【教学过程设计】:练习与测试:1.下列语句不是命题的是( )A .2是奇数。
B .他是学生。
C .你学过高等数学吗?D .明天不会下雨。
2.下列语句中是命题的是( )A .语文和数学B .0sin 451= C .221x x +- D .集合与元素3.命题“内错角相等,则两直线平行”的否命题为( )A .两直线平行,内错角相等B .两直线不平行,则内错角不相等C .内错角不相等,则两直线不平行D .内错角不相等,则两直线平行 4.命题“若a b >,则1ab>”的逆否命题为( ) A .若1a b>,则a b > B .若a ≤b ,则b a≤1C .若a b >,则b a <D .若ba≤1,则a ≤b5.命题“正数a 的平方不等于0”是命题“若a 不是正数,则它的平方等于0”的( )A .逆命题B .否命题C .逆否命题D .否定命题 6命题”02≤x ”是____________(真, 假)命题7.命题”若1x =,则220x x +-=”的逆命题是_________(真, 假)命题; 8命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是_ _______________________________________________9.写出“若x 2+y 2=0,则x =0且y =0”的逆否命题: ;10.命题“不等式x 2+x -6>0的解x <-3或x >2”的逆否命题是 11.把下列命题写成“若p 则q ”的形式,并判断其真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)能被6整除的数既能被3整除也能被2整除; (4)弦的垂直平分线经过圆心,并平分弦所对的弧.12.写出命题“若a 和b 都是偶数,则a+b 是偶数”的否命题和逆否命题. 参考答案:1. C 2.B 3.C 4.D 5.B 6.真 ;7.假 8.逆否命题::圆的切线到圆心的距离等于圆的半径 9.逆否命题: 若x ≠0或y ≠0,则x 2+y 2≠0; 10.若x 23≤-≥x 且,则x 2+x-60≤11.(1)原命题可以写成:若一个数是实数,则它的平方是非负数.这个命题是真命题.(2)原命题可以写成:若两个三角形等底等高,则这两个三角形是全等三角形.这个命题是假命题.(3)原命题可以写成:若一个数能被6整除,则它既能被3整除也能被2整除.这个命题是真命题.(4)原命题可以写成:若一条直线是弦的垂直平分线,则这条直线经过圆心且平分弦所对的弧.这个命题是真命题.12.否命题为:若a和b不都是偶数,则a+b不是偶数;逆否命题为:若a+b不是偶数,则a和b不都是偶数§1.1.2 四种命题间的相互关系【学情分析】:四种命题的关系是命题这一节的核心内容,由原命题写出其他三种形式且引导学生探究四种命题相互间的内在的联系,从而引导学生探究出互为逆否命题的真假性一致.利用互为逆否命题的等价性,通过“正难则反”培养自己的逆向思维能力.这也是反证明法证明问题的理论依据.【教学目标】:(1)知识目标:理解四种命题之间的相互关系,能由原命题写出其他三种形式;理解一个命题的真假与其他三个命题真假间的关系;初步掌握反证法的概念及反证法证题的基本步骤。