塞曼效应实验报告
- 格式:doc
- 大小:656.00 KB
- 文档页数:6
塞曼效应实验报告塞曼效应实验报告引言:塞曼效应是物理学中的一个重要现象,它揭示了原子和分子在磁场中的行为。
本实验旨在通过观察和分析塞曼效应,深入了解原子和分子的磁性质,并探索其在科学研究和应用领域的潜在价值。
实验装置:本实验所使用的装置主要包括:磁场产生装置、光源、光栅、光电探测器等。
其中,磁场产生装置通过电流在线圈中产生磁场,光源发出一束光线,经过光栅分解成多条光谱线,最后由光电探测器接收并转化为电信号。
实验步骤:1. 首先,将磁场产生装置放置在实验台上,并通过电源调节线圈中的电流,使得磁场强度达到所需的数值。
2. 将光源对准光栅,确保光线垂直入射,并调节光源的亮度,使得光线足够明亮。
3. 调整光栅的角度,使得光线经过光栅后分解成多条光谱线。
4. 将光电探测器放置在光谱线的路径上,并连接到示波器上,以观察电信号的变化。
5. 在无磁场的情况下,记录下光电探测器接收到的电信号的强度,并作为基准值。
6. 开启磁场产生装置,调节电流,使得磁场强度逐渐增大。
观察并记录下光电探测器接收到的电信号的变化情况。
实验结果与分析:在实验中,我们观察到了明显的塞曼效应。
当磁场强度逐渐增大时,光电探测器接收到的电信号发生了明显的变化。
这是因为原子和分子在磁场中会发生能级的分裂,导致光谱线的位置发生变化。
通过对实验数据的分析,我们可以得出以下结论:1. 塞曼效应的大小与磁场强度成正比。
当磁场强度增大时,塞曼效应的程度也随之增加。
这与塞曼效应的理论预测相符。
2. 塞曼效应的方向与磁场方向有关。
根据实验结果,我们可以确定光谱线的分裂方向与磁场方向垂直。
这是因为原子和分子在磁场中会受到洛伦兹力的作用,使得能级分裂成多个子能级。
3. 塞曼效应的大小与原子或分子的性质有关。
不同的原子或分子在磁场中会产生不同程度的塞曼效应。
这是由于不同原子或分子的磁矩不同,从而导致其在磁场中的行为差异。
实验应用:塞曼效应在科学研究和应用领域具有广泛的应用价值。
塞曼效应实验的报告完整版 .doc
报告标题:塞曼效应实验
I.实验目的
本实验旨在通过模拟和观察塞曼效应,以加深对其机理的理解。
II.实验原理
塞曼效应是一种电磁学效应,能够在一个可逆的非线性系统中产生特殊的振荡行为,并可以在实验中得到观察。
该效应的本质是由于振子实体和振子系统之间存在耦合、反馈所致。
III.实验装置
本实验采用塞曼效应实验装置,由振子、激励电路、检测电路及检测仪组成。
IV.实验步骤
1. 用激励电路给振子施以外力,使振子振荡起来,检测电路会检测振子的振幅和频率,并将数据显示在检测仪上;
2. 逐渐增大激励电路的电流,观察振子振幅和频率的变化;
3. 逐渐减小激励电路的电流,观察振子振幅和频率的变化;
4. 重复上述步骤,观察塞曼效应的变化。
V.实验结果
随着激励电路的电流的增加,振子的振幅和频率也会随之增大,当电流达到一定程度时,振子的振幅和频率开始急剧减小,甚至几乎停止振动,然后再慢慢回升,这正是塞曼效应的表现。
VI.实验总结
本实验通过模拟和观察塞曼效应,加深了对其机理的理解。
实验结果表明,在激励电路的电流达到一定程度时,振子的振幅和频率开始急剧减小,甚至几乎停止振动,然后再慢慢回升,这正是塞曼效应的表现。
1、前言和实验目的1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。
2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。
3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。
2、实验原理处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。
下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。
总磁矩为J μ 的原子体系,在外磁场为B 中具有的附加能为:E ∆= -J μ*B由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。
则我们有:E ∆= -z μB =B g m B J J μ其中z μ为J μ在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ=em ehπ4称为玻尔磁子,J g 为朗德因子,其值为 J g =)1(2)1()1()1(1++++-++J J S S L L J J由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。
当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=∆j m 。
磁场作用下能级之间的跃迁发出的谱线频率变为:)()(1122'E E E E hv ∆+-∆+==h ν+(1122g m g m -)B μB分裂的谱线与原谱线的频率差ν∆为:ν∆='ν-ν=h B g m g m B /)(1122μ-、 λ∆=cνλ∆2=2λ (1122g m g m -)B μB /hc =2λ (1122g m g m -)L ~式中L ~=hc B B μ=ecm eB π4≈B 467.0称为洛仑兹单位(裂距单位)。
图 汞绿线的塞曼效应及谱线强度分布 由图可见,上下能级在外磁场中分别分裂为三个和五个子能级。
在能级图上画出了选择规则允许的九种跃迁。
在能级图下方画出了与各跃迁相应的谱线在频谱上的位置,它们的波数从左到右增加,并且是等距的。
三、实验装置1. J 为光源,本实验用笔型汞灯作为光源。
2. N,S 为电磁铁的磁极,用配套稳流源供电。
电流与磁场的关系可用高斯计进行测量。
3. 0L 、1L 为会聚透镜,使通过标准具的光强增强。
4. P 为偏振片,在垂直于磁场方向观察用以鉴别σ成分和π成分;在沿着磁场方向观察时,结合1/4波片的使用,用以鉴别左旋或右旋圆偏振光。
5. F-P 为法布里-伯罗标准具。
6. 3L 和4L 分别为显微镜的物镜和目镜,在沿磁场方向观察时用它观察干涉图样。
四、实验内容1、参照使用说明书,调节好直读式塞曼效应实验仪。
(1) 调节各光学元件与光源(汞灯)等高,共轴(注意纵向塞曼效应中光源高度)。
(2) 调节标准具和显微镜的位置,使视场内照明均匀,并使干涉圆环清晰可见。
(3) 标准具的调整。
调节标准具的三个螺丝,使得产生的干涉圆环清晰明亮,并使得圆环与目镜划线间无视差(这步骤调节好后,不必再乱调)。
2、 横向塞曼分裂垂直磁场方向观察(横效应)。
调节电流由零至1.5A ,观察塞曼分裂情况,这时,会看到原来的一条谱线将分裂为9条,然后,放上偏振片(横向观察时,不用1/4波片)调节慢轴方向0,45,90,将会发现,有时,一些谱线消失,有时,一些消失的谱线又将重新出现,即出现π成分和σ成分。
3、用特斯拉计测量磁感应强度值。
4、干涉圆环直径测量和计算裂距∆λ及e/m :)(42212,2,kk a k b k D D D D dB c m e --=-π。
南昌大学物理实验报告学生姓名: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:塞曼效应一、实验目的1.观察塞曼效应现象,把实验结果与理论结果进行比较。
2.学习观测塞曼效应的实验方法。
3.计算电子核质比。
二、实验仪器WPZ —Ⅲ型塞曼效应实验仪三、实验原理塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产生分裂。
垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。
按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ∆,由于原子的磁矩J μ与总角动量J P 的关系为 2J J egP mμ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个原子态的角动量密切相关。
因此,c o sc o s 2J J eE B g P B mμαα∆=-=-(2) 其中α是磁矩与外加磁场的夹角。
又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上,c o s,,1,,2J hP M M J J J απ-==--(3)南昌大学物理实验报告学生姓名: 刘惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。
设:4B hemμπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+∆=+(4)由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量耦合方式其表达式和数值完全不同。
在L S -耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、S ,它们的关系为(1),222L L e e hP L L m m μπ==+(5)(1),2S S e e hP S S m m μπ==+(6)设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系:2222222222c o s c o s (c o s 2c o s )2(2)222(1)222J L LJ S SJL LJ S SJ J L S J L S J J J L S JJ J eP P mP P P P P P e m P P P P P e P P m e gP mμμαμααα=+=++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1)J J L L S S g J J +-+++=++(8)由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在南昌大学物理实验报告学生姓名: 刘惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:外磁场作用下将会分裂为(2J +1)个能级,相邻两能级间隔为B g B μ。
南昌大学物理实验报告学生姓名: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:塞曼效应一、实验目的1.观察塞曼效应现象,把实验结果与理论结果进行比较。
2.学习观测塞曼效应的实验方法。
3.计算电子核质比。
二、实验仪器WPZ —Ⅲ型塞曼效应实验仪三、实验原理塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产生分裂。
垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。
按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ∆,由于原子的磁矩J μ与总角动量J P 的关系为 2J J egP mμ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个原子态的角动量密切相关。
因此,cos cos 2J J eE B g P B mμαα∆=-=-(2) 其中α是磁矩与外加磁场的夹角。
又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上, cos ,,1,,2J hP MM J J J απ-==--(3)南昌大学物理实验报告学生姓名: 刘惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。
设:4B hemμπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+∆=+(4)由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量耦合方式其表达式和数值完全不同。
在L S -耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、S ,它们的关系为(1),222L L e e hP L L m m μπ==+(5)(1),2S S e e hP S S m m μπ==+(6)设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系:2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJL LJ S SJ J L S J L S J J J L S JJ J eP P mP P P P P P e m P P P P P e P P m e gP mμμαμααα=+=++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1)J J L L S S g J J +-+++=++(8)由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在南昌大学物理实验报告学生姓名: 刘惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:外磁场作用下将会分裂为(2J +1)个能级,相邻两能级间隔为B g B μ。
塞曼效应一、实验目的1、研究塞曼分裂谱的特征2、学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。
二、实验原理对于多电子原子,角动量之间的相互作用有LS耦合模型和JJ耦合某型。
对于LS耦合,电子之间的轨道与轨道角动量的耦合作用及电子间自旋与自旋角动量的耦合作用强,而每个电子的轨道与自旋角动量耦合作用弱。
原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。
总磁矩在磁场中受到力矩的作用而绕磁场方向旋进,可以证明旋进所引起的附加能量为二E 二Mg」B B ( 1)其中M为磁量子数,卩B为玻尔磁子,B为磁感应强度,g是朗德因子。
朗德因子g表征原子的总磁矩和总角动量的关系,定义为g =1 . J(J T)-L(L 1) S(S 1)- 2J(J 1)其中L为总轨道角动量量子数,S为总自旋角动量量子数,J为总角动量量子数。
磁量子数M只能取J, J-1,J-2,…,-J,共(2J+1)个值,也即AE有(2J+1 )个可能值。
这就是说,无磁场时的一个能级,在外磁场的作用下将分裂成(2J+1)个能级。
由式(1)还可以看到,分裂的能级是等间隔的,且能级间隔正比于外磁场B以及朗德因子g。
能级E1和E2之间的跃迁产生频率为v的光,其中hv = E2 - E1在磁场中,若上、下能级都发生分裂,新谱线的频率v '满足hv'=(E2址2)-匕.迟)=库2 -巳)(汨2 - EJ = hv (M2g2 -皿鸟广皐即分裂后谱线与原谱线的频率差为* 4B B:v =v - v' = (M 2g2 - Mj)二(3)h代入玻尔磁子% =空,得到4血e:v = (M 2g 2 -M ⑼) B4rm等式两边同除以c ,可将式(4)表示为波数差的形式e.■:二-(M 2g 2 - M i g i )4兀meeB 4 二 me其中L 称为洛伦兹单位,且 L =0.467B 塞曼跃迁的选择定则为:M =0,_1当AM =0,为n 成分,是振动方向平行于磁场的线偏振光,只在垂直于磁 场的方向上才能观察到,平行于磁场的方向上观察不到,但当J = 0时,M 2 =0 到M i = 0的跃迁被禁止;当1,为c 成分,垂直于磁场观察时为振动垂直于磁场的线偏振光, 沿磁场正向观察时,M = 1为右旋圆偏振光,厶M 二_1为左旋圆偏振光。
实验报告塞曼效应题目:实验报告-萨曼效应一、引言塞曼效应是指原子核或原子自旋在外磁场中的能级分裂现象。
其原理是:当原子核或原子自旋进入外磁场时,它的能级将会发生分裂,分裂的程度与外磁场的强弱有关。
这种效应的发现对研究原子核、原子结构以及核磁共振等领域产生了重要影响。
本实验就是要通过测量并分析原子核在外磁场中的分裂现象,来探究塞曼效应的基本原理。
二、实验目的1. 观察并分析原子核在外磁场中的能级分裂现象;2. 确定原子核能级的分裂规律;3. 探究外磁场强度对能级分裂的影响。
三、实验仪器与方法1. 仪器:萨曼效应实验装置、数字照相机、计算机等;2. 方法:a) 将所需的原子核放置在实验装置中,使其位于外磁场中;b) 调整外磁场的强度,保持稳定;c) 使用数字照相机拍摄原子核的能级分裂图像;d) 将图像导入计算机,利用图像处理软件进行分析。
四、实验结果与数据处理1. 实验现象:根据测量结果,所有原子核的能级在外磁场中均发生了分裂现象;2. 数据处理:通过对分裂图像的测量和分析,得到了原子核能级分裂的数量和间距等数据;3. 数据结果:经过实验,我们发现能级分裂的数量与外磁场的强度成正比,而能级分裂的间距与外磁场的强度成反比。
五、实验讨论1. 本实验结论与理论预期基本一致,说明塞曼效应的存在是客观存在的现象;2. 外磁场的强度可以影响原子核能级的分裂,这与塞曼效应的基本原理相符;3. 在实验过程中可能存在的误差源包括外磁场非均匀性、原子核数目的变化、图像处理软件误差等。
六、实验总结本实验通过观察和分析原子核在外磁场中的能级分裂现象,验证了塞曼效应的存在,并进一步研究了外磁场强度对能级分裂的影响。
实验结果与预期一致,进一步加深了对塞曼效应的理解。
然而,实验中也发现了一些潜在的误差源,需要进一步的研究和改进。
总体而言,本实验取得了较好的结果,对深入研究原子核与原子结构等领域具有一定的意义。
七、参考文献1. 塞曼效应的基本原理与应用,物理学报;2. 原子核与原子结构的基本原理,化学与物理杂志。
塞曼效应实验一、 实验目的1、理解塞曼效应的相关理论,观察汞546.1nm 谱线在磁场中分裂的情况,加深对原子结构的认识。
2、掌握法布里—珀罗(F P -)标准具的干涉原理及其调整方法。
3、测量汞谱线在磁场中分裂的裂距,并计算出电子荷质比e/m 的值。
二、 实验仪器电磁铁、笔形汞灯、聚光透镜、法布里-珀罗标准具、偏振片、滤光片、读数显微镜、高斯计三、 实验原理1、法布里—珀罗标准具(1)法布里—珀罗标准具的原理及性能构成:F-P 标准具由两块平面玻璃板中间夹一个间隔圈组成。
平面玻璃内表面有高反射膜,间隔圈精加工成一定厚度使两玻璃板平行。
原理:单色光在F-P 标准具中产生干涉,光程差2cos l nd θ∆= 。
所有的平行光束都在透镜焦平面上形成干涉条纹,形成干涉极大亮条纹条件2cos d k θλ=性能:不同的K 对应不同的θ。
如果采用扩展光源照明,F P -标准具产生等倾干涉,花纹是一组同心圆环。
(2)法布里—珀罗标准具的调节调节的目的就是使两个内表面平行,通过旋紧或者旋松调节,直到移动过程中无冒环或吸坏的现象就可以观察。
2、原理解释加入外磁场后,系统总能量增加朗德因子与J 、S 、 L 有关,一个J 对应着M=J,J-1,...,-J,所以磁场中每个能12341'2'3'4'图6.1级分裂为2J+1个子能级。
相邻能级间隔为4B ehgB g B mμπ= E 2跃迁到E 1,产生频率为ν的光谱线21h E E ν=-在外磁场作用下,上下两能级各获得附加能量2E ∆,1E ∆,因此,每个能级各分裂)12(2+J 个和)1(21+J 个子能级。
用F P -标准具求波数差,根据图6.4几何关系可得22cos 18D fθ=-将上式带入式( 6.2)可得222[1]8D d k f λ-=对同一波长λ的相邻第k 和第1k -级两个圆环,其直径的平方差为222(1),,4k k f D Ddλλλ--=直径的平方差是一个与干涉级次k 无关的常量。
一、实验目的1. 理解塞曼效应的原理和现象;2. 通过实验观察塞曼效应,验证其存在;3. 学习光栅摄谱仪的使用方法;4. 掌握数据处理和误差分析的方法。
二、实验原理塞曼效应是指在外加磁场作用下,原子或分子的光谱线发生分裂的现象。
塞曼效应的发现对研究原子结构和电子角动量有重要意义。
本实验采用光栅摄谱仪观察汞原子谱线的分裂情况,以此对外加磁感应强度进行估测。
根据量子力学理论,原子中的电子具有轨道角动量L和自旋角动量S,两者耦合形成总角动量J。
原子总磁矩与总角动量不共线,在外加磁场作用下,总磁矩与磁场有相互作用,导致能级发生分裂。
三、实验仪器与材料1. 光栅摄谱仪;2. 阿贝比长仪;3. 汞原子光源;4. 电磁铁装置;5. 望远镜;6. 测微目镜;7. 数据采集卡;8. 计算机。
四、实验步骤1. 将汞原子光源、电磁铁装置和光栅摄谱仪连接好;2. 调节光栅摄谱仪,使汞原子光源发出的光通过光栅后成像于望远镜;3. 将电磁铁装置通电,产生外加磁场;4. 观察并记录汞原子谱线的分裂情况;5. 关闭电磁铁装置,重复实验步骤,观察无外加磁场时的谱线情况;6. 对比两组数据,分析塞曼效应的存在;7. 使用阿贝比长仪测量光栅常数;8. 根据光栅摄谱仪的成像原理和能级分裂公式,计算外加磁感应强度。
五、实验结果与分析1. 实验现象:在外加磁场作用下,汞原子谱线发生分裂,形成若干条偏振的谱线;2. 数据处理:根据光栅摄谱仪的成像原理和能级分裂公式,计算外加磁感应强度;3. 误差分析:分析实验过程中可能存在的误差来源,如光栅常数测量误差、光栅角度测量误差等;4. 结果验证:将实验结果与理论值进行对比,验证塞曼效应的存在。
六、实验总结1. 本实验成功观察到了塞曼效应,验证了其存在;2. 通过实验,掌握了光栅摄谱仪的使用方法;3. 学会了数据处理和误差分析的方法;4. 对原子结构和电子角动量的研究有了更深入的了解。
七、实验拓展1. 研究不同磁场强度下塞曼效应的变化规律;2. 观察其他元素原子的塞曼效应;3. 研究塞曼效应在激光技术、天体物理等领域的应用。