概率论与数理统计(茆诗松)第二版课后第三章习题参考解答
- 格式:pdf
- 大小:594.86 KB
- 文档页数:62
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
茆诗松《概率论与数理统计教程》课后习题本书是详解研究生入学考试指定考研参考书目为茆诗松《概率论与数理统计教程》的配套题库,每章包括以下四部分:第一部分为考研真题及详解。
本部分按教材章节从历年考研真题中挑选具有代表性的部分,并对其进行了详细的解答。
所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。
第二部分为课后习题及详解。
本部分对茆诗松编写的《概率论与数理统计教程》(第2版)教材每一章的课后习题进行了详细的分析和解答,并对个别知识点进行了扩展。
课后习题答案经过多次修改,质量上乘,特别适合应试作答和临考冲刺。
第三部分为章节题库及详解。
本部分严格按照茆诗松编写的《概率论与数理统计教程》(第2版)教材内容进行编写,每一章都精心挑选经典常见考题,并予以详细解答。
熟练掌握本书考题的解答,有助于学员理解和掌握有关概念、原理,并提高解题能力。
第四部分为模拟试题及详解。
参照茆诗松编写的《概率论与数理统计教程》(第2版)教材,根据历年考研真题的命题规律及热门考点精心编写了两套考前模拟试题,并提供详尽的解答。
通过模拟试题的练习,学员既可以用来检测学习该考试科目的效果,又可以用来评估对自己的应试能力。
本书提供电子书及打印版,方便对照复习。
目录第一部分考研真题第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第二部分课后习题第1章随机事件与概率第2章随机变量及其分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第三部分章节题库第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第四部分模拟试题茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(一)茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(二)。
概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。
第三章 多维随机变量及其分布习题3.11. 100件商品中有50件一等品、30件二等品、20件三等品.从中任取5件,以X 、Y 分别表示取出的5件中一等品、二等品的件数,在以下情况下求 (X , Y ) 的联合分布列. (1)不放回抽取;(2)有放回抽取. 解:(1)(X , Y )服从多维超几何分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P −==⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===5,,0;5,4,3,2,1,0,51005203050},{L ,故 (X , Y ) 的联合分布列为0281.0500000918.00612.040001132.01562.00495.03000661.01416.00927.00185.0200182.00539.00549.00227.00032.010019.00073.00102.00066.00019.00002.00543210X Y(2)(X , Y )服从多项分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P j i j i −==×××−−⋅⋅===−−5,,0;5,4,3,2,1,0,2.03.05.0)!5(!!!5},{5L ,故 (X , Y ) 的联合分布列为03125.05000009375.00625.040001125.015.005.03000675.0135.009.002.02002025.0054.0054.0024.0004.0100243.00081.00108.00072.00024.000032.00543210X Y2. 盒子里装有3个黑球、2个红球、2个白球,从中任取4个,以X 表示取到黑球的个数,以Y 表示取到红球的个数,试求P {X = Y }.解:35935335647222347221213}2,2{}1,1{}{=+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===+====Y X P Y X P Y X P .3. 口袋中有5个白球、8个黑球,从中不放回地一个接一个取出3个.如果第i 次取出的是白球,则令X i = 1,否则令X i = 0,i = 1, 2, 3.求:(1)(X 1, X 2, X 3)的联合分布列; (2)(X 1, X 2)的联合分布列. 解:(1)14328116127138)}0,0,0(),,{(321=⋅⋅==X X X P ,42970115127138)}1,0,0(),,{(321=⋅⋅==X X X P , 42970117125138)}0,1,0(),,{(321=⋅⋅==X X X P ,42970117128135)}0,0,1(),,{(321=⋅⋅==X X X P ,42940114125138)}1,1,0(),,{(321=⋅⋅==X X X P ,42940114128135)}1,0,1(),,{(321=⋅⋅==X X X P ,42940118124135)}0,1,1(),,{(321=⋅⋅==X X X P ,1435113124135)}1,1,1(),,{(321=⋅⋅==X X X P ;(2)3914127138)}0,0(),{(21=⋅==X X P ,3910125138)}1,0(),{(21=⋅==X X P ,3910128135)}0,1(),{(21=⋅==X X P ,395124135)}1,1(),{(21=⋅==X X P .39/539/10139/1039/1401012X X4. 设随机变量X i , i =1, 2的分布列如下,且满足P {X 1X 2 = 0} = 1,试求P {X 1 = X 2}.25.05.025.0101P X i −解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = −1} = P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = −1} = P {X 1 = 1, X 2 = 1} = 0,分布列为故P {X 1 = X 2} = P {X 1 = −1, X 2 = −1} + P {X 1 = 0, X 2 = 0} + P {X 1 = 1, X 2 = 1} = 0. 5. 设随机变量 (X , Y ) 的联合密度函数为⎩⎨⎧<<<<−−=.,0,42,20),6(),(其他y x y x k y x p试求(1)常数k ;(2)P {X < 1, Y < 3}; (3)P {X < 1.5}; (4)P {X + Y ≤ 4}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得6)6(2242⎜⎜⎝⎛−−⋅=−−∫∫∫xy y k dx dy y x k dx故81=k ; (2)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<<1032210322681)6(81}3,1{y xy y dx dy y x dx Y X P 832278127811210=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=∫x x dx x ; (3)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<5.104225.10422681)6(81}5.1{y xy y dx dy y x dx X P 3227)6(81)26(815.1025.10=−=−=∫x x dx x ; (4)∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<+204222422681)6(81}4{xxy xy y dx dy y x dx Y X P326268124681203222=⎟⎟⎠⎞⎜⎜⎝⎛+−=⎟⎟⎠⎞⎜⎜⎝⎛+−=∫x x x dx x x . 6. 设随机变量(X , Y )的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()43(其他y x k y x p y x 试求(1)常数k ;(2)(X , Y ) 的联合分布函数F (x , y ); (3)P {0 < X ≤ 1, 0 < Y ≤ 2}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得e 0)43(⎢⎣⎡⋅=∞+∞+∞++−∫∫∫k dx dy k dx y x 故k = 12;(2)当x ≤ 0或y ≤ 0时,F (x , y ) = P (∅) = 0,当x > 0且y > 0时,∫∫∫∫−−+−+−−=−⋅==xy u x y v u x y v u du du dv du y x F 0430)43(0)43()e 1(e 3]e 3[e 12),()e 1)(e 1()e 1(e 43043y x xy u −−−−−−=−−=故(X , Y )的联合分布函数为⎩⎨⎧>>−−=−−.,0,0,0),e 1)(e 1(),(43其他y x y x F y x (3)P {0 < X ≤ 1, 0 < Y ≤ 2} = P {X ≤ 1, Y ≤ 2} = F (1, 2) = (1 − e −3) (1 − e −8).7. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,4),(其他y x xy y x p 试求(1)P {0 < X < 0.5, 0.25 < Y < 1}; (2)P {X = Y }; (3)P {X < Y };(4)(X , Y ) 的联合分布函数.解:(1)∫∫∫⋅==<<<<5.00125.025.00125.024}125.0,5.00{xy dx xydy dx Y X P641516158155.0025.00===∫x xdx ; (2)P {X = Y } = 0;(3)∫∫∫∫−=⋅==<1311211)22(24}{dx x x xy dx xydy dx Y X P xx21211042=⎟⎠⎞⎜⎝⎛−=x x ;(4)当x < 0或y < 0时,F (x , y ) = P (∅) = 0,当0 ≤ x < 1且0 ≤ y < 1时,220220202224},{),(y x y u du uy uv du uvdv du y Y x X P y x F x x x y x y ===⋅==≤≤=∫∫∫∫;当0 ≤ x < 1且y ≥ 1时,2020010210224},{),(x u udu uv du uvdv du y Y x X P y x F x xx x ===⋅==≤≤=∫∫∫∫;当x ≥ 1且0 ≤ y < 1时,210221210210224},{),(y y u du uy uv du uvdv du y Y x X P y x F y y ===⋅==≤≤=∫∫∫∫;当x ≥ 1且y ≥ 1时,F (x , y ) = P (Ω) = 1, 故(X , Y ) 的联合分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥<≤≥≥<≤<≤<≤<<=.1,1,1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或 8. 设二维随机变量(X , Y ) 在边长为2,中心为(0, 0) 的正方形区域内服从均匀分布,试求P {X 22 解:设D 表示该正方形区域,面积S D = 4,G 表示单位圆区域,面积S G = π,故4π}1{22==≤+D G S S Y X P .9. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,),(2其他x y x k y x p (1)试求常数k ;(2)求P {X > 0.5}和P {Y < 0.5}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得1632)(10321021122==⎟⎟⎠⎞⎜⎜⎝⎛−=−=⋅=∫∫∫∫k x x k dx x x k y k dx kdy dx xx xx, 故k = 6;(2)∫∫∫∫−=⋅==>15.0215.015.0)66(66}5.0{22dx x x ydx dy dx X P x xxx5.0)23(15.032=−=x x ;∫∫∫∫−=⋅==<5.005.005.00)66(66}5.0{dy y y xdy dx dy Y P y yyy432)34(5.00223−=−=y y . 10.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<−=.,0,10),1(6),(其他y x y y x p (1)求P {X > 0.5, Y > 0.5};(2)求P {X < 0.5}和P {Y < 0.5}; (3)求P {X + Y < 1}.解:(1)81)1()1(3])1(3[)1(6}5.0,5.0{15.0315.0215.01215.01=−−=−=−−⋅=−=>>∫∫∫∫x dx x y dx dy y dx Y X P xx; (2)∫∫∫−−⋅=−=<5.00125.001])1(3[)1(6}5.0{x x y dx dy y dx X P 87)1()1(35.0035.002=−−=−=∫x dx x ; ∫∫∫−−⋅=−=<5.005.025.005.0])1(3[)1(6}5.0{xxy dx dy y dx Y P21)1(43)1(3435.0035.002=⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+−=∫x x dx x ; (3)∫∫∫−−−−⋅=−=<+5.00125.001])1(3[)1(6}1{x xxxy dx dy y dx Y X P43])1([])1(33[5.00335.0022=−−−=−+−=∫x x dx x x .11.设随机变量Y 服从参数为λ = 1的指数分布,定义随机变量X k 如下:2,1.,1,,0=⎩⎨⎧>≤=k k Y k Y X k .求X 1和X 2的联合分布列.解:因Y 的密度函数为⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y且X 1和X 2的全部可能取值为0, 1,则1101021e 1e e }1{}2,1{}0,0{−−−−=−==≤=≤≤===∫yy dy Y P Y Y P X X P ,P {X 1 = 0, X 2 = 1} = P {Y ≤ 1, Y > 2} = P (∅) = 0,21212121e e e e }21{}2,1{}0,1{−−−−−=−==≤<=≤>===∫yy dy Y P Y Y P X X P ,22221e e e }2{}2,1{}1,1{−+∞−+∞−=−==>=>>===∫yy dy Y P Y Y P X X P ,故X 1和X 2的联合分布列为221112e e e 1e 1010−−−−−−X X12.设二维随机变量(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧<<<<+=.,0,20,10,3),(2其他y x xy x y x p 求P {X + Y ≥ 1}.解:∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛+⋅=⎟⎠⎞⎜⎝⎛+=≥+1021221021263}1{x x xy y x dx dy xy x dx Y X P 72652459441653421104321032=⎟⎠⎞⎜⎝⎛++=⎟⎠⎞⎜⎝⎛++=∫x x x dx x x x . 13.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<=−.,0,0,e ),(其他y x y x p y 试求P {X + Y ≤ 1}. 解:∫∫∫∫−−−−−−+−=−⋅==≤+5.0015.0015.001)e e ()e (e }1{dx dx dy dx Y X P x x x xy x xy5.015.001e 2e 1)e e (−−−−−+=−−=x x .14.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,20,10,2/1),(其他y x y x p求X 与Y 中至少有一个小于0.5的概率.解:85831431211}5.0,5.0{1}5.0},{min{15.015.025.0=−=−=−=≥≥−=<∫∫∫dx dy dx Y X P Y X P .15.从(0,1)中随机地取两个数,求其积不小于3/16,且其和不大于1的概率. 解:设X 、Y 分别表示“从(0,1)中随机地取到的两个数”,则(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,1),(其他y x y x p故所求概率为∫∫∫⎟⎠⎞⎜⎝⎛−−==≤+≥−4341434111631631}1,163{dx x x dy dx Y X XY P x x3ln 16341ln 1632143412−=⎟⎠⎞⎜⎝⎛−−=x x x .习题3.21. 设二维离散随机变量(X , Y ) 的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求X 与Y 各自的边际分布列. 解:因X 的全部可能值为−1, 0, 1,且12512131}1{=+=−=X P , 61}0{==X P , 125}1{==X P , 故X 的边际分布列为12561125101PX − 因Y 的全部可能值为0, 1, 2,且12712561}0{=+==X P , 31}1{==X P , 121}2{==X P , 故Y 的边际分布列为12131127210PY2. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧>>−−−=−−−−−.,0,0,0,e e e 1),(},max{122121其他y x y x F y x y x y x λλλλλ 试求X 与Y 各自的边际分布函数.解:当x ≤ 0时,F (x , y ) = 0,有F X (x ) = F (x , + ∞) = 0,当x > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121y y y x F y x y x y x λλλλλ 有 x y x y x y x y X x F x F 1122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=∞+=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(1x x x F x X λ 当y ≤ 0时,F (x , y ) = 0,有F Y ( y ) = F (+ ∞, y ) = 0,当y > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121x x y x F y x y x y x λλλλλ 有 y y x y x y x x Y y F y F 2122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=+∞=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(2y y y F y Y λ 3. 试求以下二维均匀分布的边际分布:⎪⎩⎪⎨⎧≤+=.,0,1,π1),(22其他y x y x p解:当x < −1或x > 1时,p X (x ) = 0,当−1 ≤ x ≤ 1时,2111π2π1),()(22x dy dy y x p x p x x X −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他x x x p X当y < −1或y > 1时,p Y ( y ) = 0,当−1 ≤ y ≤ 1时,2111π2π1),()(22y dx dx y x p y p y y Y −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他y y y p Y4. 设平面区域D 由曲线y = 1/ x 及直线y = 0,x = 1,x = e 2所围成,二维随机变量(X , Y ) 在区域D 上服从均匀分布,试求X 的边际密度函数.解:因平面区域D 的面积为2ln 122e 1e 1===∫x dx xS D , 则(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 当x < 1或x > e 2时,p X (x ) = 0,当1 ≤ x ≤ e 2时,xdy dy y x p x p x X 2121),()(10===∫∫∞+∞−, 故⎪⎩⎪⎨⎧≤≤=.,0,e 1,21)(2其他x x x p X5. 求以下给出的(X , Y ) 的联合密度函数的边际密度函数p x (x ) 和p y ( y ):(1)⎩⎨⎧<<=−.,0;0,e ),(1其他y x y x p y (2)⎪⎩⎪⎨⎧−<<+=.,0;10),(45),(222其他x y y x y x p(3)⎪⎩⎪⎨⎧<<<=.,0;10,1),(3其他x y x y x p解:(1)当x ≤ 0时,p X (x ) = 0,当x > 0时,x xyxy X dy dy y x p x p −+∞−+∞−+∞∞−=−===∫∫e e e ),()(1,故⎩⎨⎧≤>=−.0,0;0,e )(x x x p x X 当y ≤ 0时,p Y ( y ) = 0, 当y > 0时,y yy Y y dx dx y x p y p −−+∞∞−===∫∫e e ),()(01,故⎩⎨⎧≤>=−.0,0;0,e )(y y y y p y Y (2)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 1时,)1(85)21(45)(45),()(41022102222x y y x dy y x dy y x p x p x x X −=+=+==−−+∞∞−∫∫, 故⎪⎩⎪⎨⎧<<−−=.,0;11),1(85)(4其他x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y y xy x dx y x dx y x p y p y y yyY −+=+=+==−−−−−−+∞∞−∫∫1)21(65)31(45)(45),()(113112, 故⎪⎩⎪⎨⎧<<−+=.,0;10,1)21(65)(其他y y y y p Y (3)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,111),()(03=⋅===∫∫+∞∞−xx dy x dy y x p x p xX , 故⎩⎨⎧<<=.,0;10,1)(其他x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,y y x dx xdx y x p y p y y Y ln ln 1ln ln 1),()(1−=−====∫∫+∞∞−, 故⎩⎨⎧<<−=.,0;10,ln )(其他y y y p Y6. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,6),(2其他x y x y x p试求边际密度函数p x (x ) 和p y ( y ). 解:当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,)(66),()(22x x dy dy y x p x p xxX −===∫∫+∞∞−,故⎩⎨⎧<<−=.,0,10),(6)(2其他x x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)(66),()(y y dx dx y x p y p yyY −===∫∫+∞∞−,故⎪⎩⎪⎨⎧<<−=.,0,10),(6)(其他y y y y p Y7. 试验证:以下给出的两个不同的联合密度函数,它们有相同的边际密度函数.⎩⎨⎧≤≤≤≤+=.,0,10,10,),(其他y x y x y x p ⎩⎨⎧≤≤≤≤++=.,0,10,10),5.0)(5.0(),(其他y x y x y x g 证:当x < 0或x > 1时,p X (x ) = 0,当0 ≤ x ≤ 1时,5.0)21()(),()(1021+=+=+==∫∫+∞∞−x y xy dy y x dy y x p x p X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x p X当y < 0或y > 1时,p Y ( y ) = 0, 当0 ≤ y ≤ 1时,5.0)21()(),()(10210+=+=+==∫∫+∞∞−y xy x dx y x dx y x p y p Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y p Y并且当x < 0或x > 1时,g X (x ) = 0,当0 ≤ x ≤ 1时,5.0)5.0(21)5.0()5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−x y x dy y x dy y x g x g X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x g X 当y < 0或y > 1时,g Y ( y ) = 0,当0 ≤ y ≤ 1时,5.0)5.0()5.0(21)5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−y y x dx y x dx y x g y g Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y g Y故它们有相同的边际密度函数.8. 设随机变量X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,试求P {X = Y }.解:因X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,则(X , Y ) 的联合概率分布21212141411214141111ji p p X Y ⋅⋅−− 故P {X = Y } = P {X = −1, Y = −1} + P {X = 1, Y = 1} = 1/2.9. 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 和Y 分别表示甲和乙的命中次数,试求P {X ≤ Y }. 解:因X 的全部可能取值为0, 1, 2,且P {X = 0} = 0.8 2 = 0.64,32.08.02.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,P {X = 2} = 0.2 2= 0.04, 又因Y 的全部可能取值为0, 1, 2,且P {Y = 0} = 0.5 2 = 0.25,5.05.05.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==Y P ,P {Y = 2} = 0.5 2= 0.25,则(X , Y ) 的联合概率分布25.05.025.004.001.002.001.0232.008.016.008.0164.016.032.016.00210ji p p X Y ⋅⋅故P {X ≤ Y } = 1 − P {X > Y } = 1 − P {X = 1, Y = 0} − P {X = 2, Y = 0} − P {X = 2, Y = 1} = 0.89. 10.设随机变量X 和Y 相互独立,其联合分布列为3/19/19/121321b x c a x y y y X Y试求联合分布列中的a , b , c .解:因c a p ++=⋅911,9431912+=++=⋅b b p ,911+=⋅a p ,b p +=⋅912,c p +=⋅313, 根据独立性,知81495919422222++=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅b b b b p p b p , 可得0814942=+−b b ,即0922=⎟⎠⎞⎜⎝⎛−b , 故92=b ; 再根据独立性,知⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅91969194911221a a b p p p ,可得6191=+a ,故181=a ; 由正则性,知1953191912131=+++=+++++=∑∑==c b a b c a p i j ij ,可得94=++c b a ,故6118394==−−=b ac . 11.设X 和Y 是两个相互独立的随机变量,X ~ U (0, 1),Y ~ Exp (1).试求(1)X 与Y 的联合密度函数;(2)P {Y ≤ X };(3)P {X + Y ≤ 1}.解:(1)因X 与Y 相互独立,且边际密度函数分别为⎩⎨⎧<<=.,0,10,1)(其他x x p X ⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y故X 与Y 的联合密度函数为⎩⎨⎧≥<<==−.,0,0,10,e )()(),(其他y x y p x p y x p y Y X (2)1111101e 1e 1)e ()e 1()e (e }{−−−−−−=−+=+=−=−⋅==≤∫∫∫∫x x x y xy x dx dx dy dx X Y P ;(3)11110110101010e )e ()e 1()e (e }1{−−−−−−−=−=−=−⋅==≤+∫∫∫∫x x x y xy x dx dx dy dx Y X P .12.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,2033),()(x xdy dy y x p x p xX ===∫∫+∞∞−,故⎩⎨⎧<<=.,0,10,3)(2其他x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)1(23233),()(2121y x xdx dx y x p y p yyY −====∫∫+∞∞−, 故⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他y y y p Y (2)因⎪⎩⎪⎨⎧<<<<−=.,0,10,10),1(29)()(22其他y x y x y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.13.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<=.,0,10,||,1),(其他y y x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 0时,x dy dy y x p x p xX +===∫∫−+∞∞−11),()(1,当0 ≤ x < 1时,x dy dy y x p x p xX −===∫∫+∞∞−11),()(1,故⎪⎩⎪⎨⎧<≤−<<−+=.,0,10,1,01,1)(其他x x x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y dx dx y x p y p yyY 21),()(===∫∫−+∞∞−,故⎩⎨⎧<<=.,0,10,2)(其他y y y p Y(2)因⎪⎩⎪⎨⎧<<<≤−<<<<−+=.,0,10,10),1(2,10,01),1(2)()(其他y x x y y x x y y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.14.设二维随机变量(X , Y ) 的联合密度函数如下,试问X 与Y 是否相互独立?(1)⎩⎨⎧>>=+−.,0;0,0,e ),()(其他y x x y x p y x (2)+∞<<∞−++=y x y x y x p ,,)1)(1(π1),(222;(3)⎩⎨⎧<<<=.,0;10,2),(其他y x y x p (4)⎩⎨⎧<+<<<<<=.,0;10,10,10,24),(其他y x y x xy y x p(5)⎩⎨⎧<<<<−=.,0;10,10),1(12),(其他y x x xy y x p(6)⎪⎩⎪⎨⎧<<=.,0;1,421),(22其他y x y x y x p解:(1)因x e − (x + y ) = x e −x ⋅ e −y 可分离变量,x > 0, y > 0是广义矩形区域,故X 与Y 相互独立;(2)因)1π(1)1π(1)1)(1(π122222y x y x +⋅+=++可分离变量,−∞ < x , y < +∞是广义矩形区域, 故X 与Y 相互独立;(3)因0 < x < y < 1不是矩形区域,故X 与Y 不独立;(4)因0 < x < 1, 0 < y < 1, 0 < x + y < 1不是矩形区域,故X 与Y 不独立;(5)因12xy (1 − x ) = 12x (1 − x ) ⋅ y 可分离变量,0 < x < 1, 0 < y < 1是矩形区域,故X 与Y 相互独立; (6)因x 2 < y < 1不是矩形区域,故X 与Y 不独立.15.在长为a 的线段的中点的两边随机地各取一点,求两点间的距离小于a / 3的概率.解:设X 和Y 分别表示这两个点与线段中点的距离,有X 和Y 相互独立且都服从[0, a / 2]的均匀分布,则(X , Y ) 的联合密度函数为 ⎪⎩⎪⎨⎧<<<<=.,0,20,20,4),(2其他a y a x a y x pa a故所求概率为922321}3{22=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛×==<+a a S S aY X P DG . 16.设二维随机变量(X , Y ) 服从区域D = {(x , y ): a ≤ x ≤ b , c ≤ y ≤ d }上的均匀分布,试证X 与Y 相互独立. 证:因(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧≤≤≤≤−−=.,0;,,))((1),(其他d y c b x a c d a b y x p当x < a 或x > b 时,p X (x ) = 0,当a ≤ x ≤ b 时,a b dy c d a b dy y x p x p d c X −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他b x a a b x p X当y < c 或y > d 时,p Y ( y ) = 0,当c ≤ y ≤ d 时,cd dx c d a b dx y x p y p baY −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他d y c c d y p Y因p x (x ) p y ( y ) = p (x , y ), 故X 与Y 相互独立.17.设X 1, X 2, …, X n 是独立同分布的正值随机变量.证明n k n k X X X X E n k ≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .证:因X 1, X 2, …, X n 是独立同分布的正值随机变量,则由对称性知),,2,1(1n i X X X niL L =++同分布,且满足101<++<niX X X L ,可得⎟⎟⎠⎞⎜⎜⎝⎛++n i X X X E L 1存在,且⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++n nn n X X X E X X X E X X X E L L L L 11211, 因11111211=⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛++++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++n n n n n n X X X X E X X X E X X X E X X X E L L L L L L , 则n X X X E X X X E X X X E n n n n 111211=⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++L L L L , 故n k n k XX X X E n k≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .习题3.31. 设二维随机变量(X , Y ) 的联合分布列为09.007.004.0222.011.007.0120.015.005.00321X Y 试分布求U = max{X , Y } 和V = min{X , Y } 的分布列.解:因P {U = 1} = P {X = 0, Y = 1} + P {X = 1, Y = 1} = 0.05 + 0.07 = 0.12;P {U = 2} = P {X = 0, Y = 2} + P {X = 1, Y = 2} + P {X = 2, Y = 2} + P {X = 2, Y = 1}= 0.15 + 0.11 + 0.07 + 0.04 = 0.37;P {U = 3} = P {X = 0, Y = 3} + P {X = 1, Y = 3} + P {X = 2, Y = 3} = 0.20 + 0.22 + 0.09 = 0.51; 故U 的分布列为51.037.012.0321P U因P {V = 0} = P {X = 0, Y = 1} + P {X = 0, Y = 2} + P {X = 0, Y = 3} = 0.05 + 0.15 + 0.20 = 0.40; P {V = 1} = P {X = 1, Y = 1} + P {X = 1, Y = 2} + P {X = 1, Y = 3} + P {X = 2, Y = 1}= 0.07 + 0.11 + 0.22 + 0.04 = 0.44;P {V = 2} = P {X = 2, Y = 2} + P {X = 2, Y = 3} = 0.07 + 0.09 = 0.16; 故V 的分布列为16.044.040.0210P V2. 设X 和Y 是相互独立的随机变量,且X ~ Exp (λ ),Y ~ Exp (µ ).如果定义随机变量Z 如下⎩⎨⎧>≤=.,0,,1Y X Y X Z 当当 求Z 的分布列.解:因(X , Y ) 的联合密度函数为⎩⎨⎧>>==+−.,0,0,0,e )()(),()(其他y x y p x p y x p y x Y X µλλµ 则∫∫∫+∞+∞+−+∞+∞+−−⋅==≤==0)(0)(e )(e }{}1{xy x xy x dx dy dx Y X P Z P µλµλλλµµλλµλλλµλµλ+=+−==+∞+−+∞+−∫0)(0)(e e xx dx ,µλµ+==−==}1{1}0{Z P Z P ,故Z 的分布列为µλλµλµ++PZ 13. 设随机变量X 和Y 的分布列分别为4/12/14/1101P X − 2/12/110P Y已知P {XY = 0} = 1,试求Z = max{X , Y }的分布列.解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = 1} = 0,可得 (X , Y ) 的联合分布列为因{Z P {Z P 故Z 4.(1)X (2)X 解:(1)(X , 因P {Z = 0} = P {X = 0, Y = 0} = 0.25;P {Z = 1} = 1 − P {Z = 0} = 0.75; 故Z 的分布列为75.025.010P Z(2)因P {Z = k } = P {X = k , Y ≤ k } + P {X < k , Y = k } = P {X = k } P {Y ≤ k } + P {X < k } P {Y = k }p p p p p p p p k k i i kj j k 1111111)1()1()1()1(−−=−=−−−⋅−+−⋅−=∑∑p p p p p p p p p p k k k k 111)1()1(1)1(1)1(1)1(1)1(−−−−⋅−−−−+−−−−⋅−= = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ]故Z = max{X , Y }的概率函数为p z (k ) = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ],k = 1, 2, ….5. 设X 和Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P , 试求P {max{X , Y } ≥ 0}.解:设A 表示事件“X ≥ 0”,B 表示事件“Y ≥ 0”,有73)(=AB P ,74)()(==B P A P , 故75737474)()()()(}0},{max{=−+=−+==≥AB P B P A P B A P Y X P U .6. 设X 与Y 的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()(其他y x y x p y x 试求以下随机变量的密度函数(1)Z = (X + Y )/2;(2)Z = Y − X .解:方法一:分布函数法(1)作曲线簇z yx =+2,得z 的分段点为0,当z ≤ 0时,F Z (z ) = 0,当z > 0时,∫∫∫−+−−+−−⋅==z x z y x zx z y x Z dx dy dx z F 2020)(2020)(]e [e )(z z x z z x z z x dx 2202202e )12(1)e e ()e e (−−−−−+−=−−=+−=∫,因分布函数F Z (z ) 连续,有Z = (X + Y )/2为连续随机变量, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=′=−.0,0,0,e 4)()(2z z z z F z p z Z Z (2)作曲线簇y − x = z ,得z 的分段点为0,当z ≤ 0时,∫∫∫∫+∞−−+−+∞−++−+∞−++−−=−⋅==zx z x zz x y x zzx y x Z dx dy dx z F e []e [e )()2(0)(0)(z z z zx z x e 21e e 21e e 21)2(=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=+∞−−+−,当z > 0时,∫∫∫∫+∞−+−+∞++−+∞++−+−=−⋅==0)2(0)(0)(]e e []e [e )(dx dx dy dx z F x z x z x y x zx y x Zz z x z x −−+∞−+−−=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=e 2111e 21e e 210)2(,因分布函数F Z (z )连续,有Z = Y − X 为连续随机变量,故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=′=−.0,e 21,0,e 21)()(z z z F z p zzZ Z 方法二:增补变量法 (1)函数2yx z +=对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎪⎩⎪⎨⎧=+=,,2y v y x z 有反函数⎩⎨⎧=−=,,2v y v z x 且21012=−=′′′′=vz vzy y x x J , 则∫∫+∞∞−+∞∞−−=⋅−=dv v v z p dv v v z p z p Z ),2(22),2()(,作曲线簇z yx =+2,得z 的分段点为0, 当z ≤ 0时,p Z (z ) = 0,当z > 0时,z z z Z z dv z p 2202e 4e 2)(−−==∫, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=−.0,0,0,e 4)(2z z z z p z Z(2)函数z = y − x 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v x y z 有反函数⎩⎨⎧=−=,,v y z v x 且11011−=−=′′′′=v z vzy y x x J , 则∫+∞∞−−=dv v z v p z p Z ),()(,作曲线簇y − x = z ,得z 的分段点为0, 当z ≤ 0时,zz v z v Z dv z p e 21e 21e )(0202=−==+∞+−+∞+−∫, 当z > 0时,z zzv z z v Z dv z p −+∞+−+∞+−=−==∫e 21e 21e )(22, 故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=−.0,e 21,0,e 21)(z z z p zzZ 7. 设X 与Y 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求Z = X − Y 的密度函数.解:方法一:分布函数法作曲线簇x − y = z ,得z 的分段点为0, 1, 当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,31203102102123233333)(z z z x x xzdx dx x xdy dx xdy dx z F z z zz z xzx z x Z −=+=+=+=∫∫∫∫∫∫−,当z ≥ 1时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X − Y 为连续随机变量, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=′=.,0,10),1(23)()(2其他z z z F z p Z Z方法二:增补变量法函数z = x − y 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v y x z 有反函数⎩⎨⎧=+=,,v y v z x 且11011==′′′′=vz vzy y x x J , 则∫+∞∞−+=dv v v z p z p Z ),()(,作曲线簇x − y = z ,得z 的分段点为0, 1,当z ≤ 0或z ≥ 1时,p Z (z ) = 0, 当0 < z < 1时,)1(23)(23)(3)(210210z v z dv v z z p z z Z −=+=+=−−∫, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他z z z p Z 8. 某种商品一周的需要量是一个随机变量,其密度函数为⎩⎨⎧≤>=−.0,0,0,e )(1t t t t p t设各周的需要量是相互独立的,试求(1)两周需要量的密度函数p 2 (x );(2)三周需要量的密度函数p 3 (x ). 解:方法一:根据独立伽玛变量之和仍为伽玛变量设T i 表示“该种商品第i 周的需要量”,因T i 的密度函数为⎪⎩⎪⎨⎧≤>Γ=−−.0,0,0,e )2(1)(121t t t t p t可知T i 服从伽玛分布Ga (2, 1),(1)两周需要量为T 1 + T 2,因T 1与T 2相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2服从伽玛分布Ga (4, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 61.0,0,0,e )4(1)(3142x x x x x x x p x x (2)三周需要量为T 1 + T 2 + T 3,因T 1, T 2, T 3相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2 + T 3服从伽玛分布Ga (6, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 1201.0,0,0,e )6(1)(5163x x x x x x x p xx 方法二:分布函数法(1)两周需要量为X 2 = T 1 + T 2,作曲线簇t 1 + t 2 = x ,得x 的分段点为0,当x ≤ 0时,F 2 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=xt x t t t xt x t t t t dt dt t t dt x F 02110221121221121)e e (e e e )( ∫−−+−−=xt x dt t t xt t 0111121]e e )[(1xt t x t t x t t 0121213111e e e 212131⎥⎦⎤⎢⎣⎡−−⎟⎠⎞⎜⎝⎛−−=−−−11)1(e e e 212131233−−−−⎟⎠⎞⎜⎝⎛−−=−−−x x x x x x xxx x x x x x −−−−−−−−=e 61e 21e e 132, 因分布函数F 2 (x )连续,有X 2 = T 1 + T 2为连续随机变量, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 61)()(322x x x x F x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,F 3 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=x x x t t x x x x t x t x dx dt t x dx x F 003322003332232332232)e e (e 61e e 61)(∫−−+−−=x x x dx x x x x x 0232323242]e e )[(6`12 xx x x x x x x x x x x x 0222324242522222e 6e 6e 3e e 41415161⎥⎦⎤⎢⎣⎡−−−−⎟⎠⎞⎜⎝⎛−−=−−−−− )1(e e e 21e 61e 4141516123455−−−−−−⎟⎠⎞⎜⎝⎛−−=−−−−−x x x x x x x x x x x xx x x x x x x x x x −−−−−−−−−−−−=e 1201e 241e 61e 21e e 15432, 因分布函数F 3 (x ) 连续,有X 3 = T 1 + T 2 + T 3为连续随机变量, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 1201)()(533x x x x F x p x 方法三:卷积公式(增补变量法)(1)两周需要量为X 2 = T 1 + T 2,卷积公式∫+∞∞−−=2222)()()(21dt t p t x p x p T T ,作曲线簇t 1 + t 2 = x ,得x 的分段点为0, 当x ≤ 0时,p 2 (x ) = 0, 当x > 0时,xxx xxxt t x x t x t dt t xt dt t t x x p −−−−−−=⎟⎠⎞⎜⎝⎛−=−=⋅−=∫∫e 61e3121e )(e e )()(30322202222022)(2222, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 61)(32x x x x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,卷积公式∫+∞∞−−=3333)()()(32dt t p t x p x p T X ,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,p 3 (x ) = 0,21当x > 0时,∫∫−−−−−+−=−=x x xt t x dt t xt t x t x dt t t x x p 03433323233033)(333e )33(61e e )(61)(33 x xx x t x t x t x t −−=⎟⎠⎞⎜⎝⎛−+−=e 1201e 51432161505343233323, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 1201)(53x x x x p x9. 设随机变量X 与Y 相互独立,试在以下情况下求Z = X + Y 的密度函数:(1)X ~ U (0, 1),Y ~ U (0, 1); (2)X ~ U (0, 1),Y ~ Exp (1). 解:方法一:分布函数法(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,2020002121)(1)(z x zx dx x z dy dx z F zz zxz Z =⎟⎠⎞⎜⎝⎛−=−==∫∫∫−,当1 ≤ z < 2时,1121110110110)(211)(111)(−−−−−−−−−=−+=+=∫∫∫∫∫∫z z z z xz z Zx z z dx x z dx dy dx dy dx z F121221)1(21122−−=+−−−=z z z z , 当z ≥ 2时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=′=.,0,21,2,10,)()(其他z z z z z F z p Z Z(2)作曲线簇x + y = z ,得z 的分段点为0, 1,当z < 0时,F Z (z ) = 0, 当0 ≤ z < 1时,z z x z zx z zx z y z xz y Z z x dx dx dy dx z F −+−+−−−−−+−=−=−=−⋅==∫∫∫∫e 1)e ()e 1()e (e )(0000,当z ≥ 1时,z z x z x z x z y xz y Z x dx dx dy dx z F −−+−+−−−−−+−=−=−=−⋅==∫∫∫∫e e 1)e ()e 1()e (e )(111110,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≥−<≤−=′=−−.0,0,1,e )1(e ,10,e 1)()(z z z z F z p z z Z Z方法二:卷积公式(增补变量法) 卷积公式∫+∞∞−−=dy y p y z p z p Y X Z )()()(,(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,2。
第三章 多维随机变量及其分布习题3.11. 100件商品中有50件一等品、30件二等品、20件三等品.从中任取5件,以X 、Y 分别表示取出的5件中一等品、二等品的件数,在以下情况下求 (X , Y ) 的联合分布列. (1)不放回抽取;(2)有放回抽取. 解:(1)(X , Y )服从多维超几何分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P −==⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===5,,0;5,4,3,2,1,0,51005203050},{L ,故 (X , Y ) 的联合分布列为0281.0500000918.00612.040001132.01562.00495.03000661.01416.00927.00185.0200182.00539.00549.00227.00032.010019.00073.00102.00066.00019.00002.00543210X Y(2)(X , Y )服从多项分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P j i j i −==×××−−⋅⋅===−−5,,0;5,4,3,2,1,0,2.03.05.0)!5(!!!5},{5L ,故 (X , Y ) 的联合分布列为03125.05000009375.00625.040001125.015.005.03000675.0135.009.002.02002025.0054.0054.0024.0004.0100243.00081.00108.00072.00024.000032.00543210X Y2. 盒子里装有3个黑球、2个红球、2个白球,从中任取4个,以X 表示取到黑球的个数,以Y 表示取到红球的个数,试求P {X = Y }.解:35935335647222347221213}2,2{}1,1{}{=+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===+====Y X P Y X P Y X P .3. 口袋中有5个白球、8个黑球,从中不放回地一个接一个取出3个.如果第i 次取出的是白球,则令X i = 1,否则令X i = 0,i = 1, 2, 3.求:(1)(X 1, X 2, X 3)的联合分布列; (2)(X 1, X 2)的联合分布列. 解:(1)14328116127138)}0,0,0(),,{(321=⋅⋅==X X X P ,42970115127138)}1,0,0(),,{(321=⋅⋅==X X X P , 42970117125138)}0,1,0(),,{(321=⋅⋅==X X X P ,42970117128135)}0,0,1(),,{(321=⋅⋅==X X X P ,42940114125138)}1,1,0(),,{(321=⋅⋅==X X X P ,42940114128135)}1,0,1(),,{(321=⋅⋅==X X X P ,42940118124135)}0,1,1(),,{(321=⋅⋅==X X X P ,1435113124135)}1,1,1(),,{(321=⋅⋅==X X X P ;(2)3914127138)}0,0(),{(21=⋅==X X P ,3910125138)}1,0(),{(21=⋅==X X P ,3910128135)}0,1(),{(21=⋅==X X P ,395124135)}1,1(),{(21=⋅==X X P .39/539/10139/1039/1401012X X4. 设随机变量X i , i =1, 2的分布列如下,且满足P {X 1X 2 = 0} = 1,试求P {X 1 = X 2}.25.05.025.0101P X i −解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = −1} = P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = −1} = P {X 1 = 1, X 2 = 1} = 0,分布列为故P {X 1 = X 2} = P {X 1 = −1, X 2 = −1} + P {X 1 = 0, X 2 = 0} + P {X 1 = 1, X 2 = 1} = 0. 5. 设随机变量 (X , Y ) 的联合密度函数为⎩⎨⎧<<<<−−=.,0,42,20),6(),(其他y x y x k y x p试求(1)常数k ;(2)P {X < 1, Y < 3}; (3)P {X < 1.5}; (4)P {X + Y ≤ 4}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得6)6(2242⎜⎜⎝⎛−−⋅=−−∫∫∫xy y k dx dy y x k dx故81=k ; (2)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<<1032210322681)6(81}3,1{y xy y dx dy y x dx Y X P 832278127811210=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=∫x x dx x ; (3)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<5.104225.10422681)6(81}5.1{y xy y dx dy y x dx X P 3227)6(81)26(815.1025.10=−=−=∫x x dx x ; (4)∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<+204222422681)6(81}4{xxy xy y dx dy y x dx Y X P326268124681203222=⎟⎟⎠⎞⎜⎜⎝⎛+−=⎟⎟⎠⎞⎜⎜⎝⎛+−=∫x x x dx x x . 6. 设随机变量(X , Y )的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()43(其他y x k y x p y x 试求(1)常数k ;(2)(X , Y ) 的联合分布函数F (x , y ); (3)P {0 < X ≤ 1, 0 < Y ≤ 2}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得e 0)43(⎢⎣⎡⋅=∞+∞+∞++−∫∫∫k dx dy k dx y x 故k = 12;(2)当x ≤ 0或y ≤ 0时,F (x , y ) = P (∅) = 0,当x > 0且y > 0时,∫∫∫∫−−+−+−−=−⋅==xy u x y v u x y v u du du dv du y x F 0430)43(0)43()e 1(e 3]e 3[e 12),()e 1)(e 1()e 1(e 43043y x xy u −−−−−−=−−=故(X , Y )的联合分布函数为⎩⎨⎧>>−−=−−.,0,0,0),e 1)(e 1(),(43其他y x y x F y x (3)P {0 < X ≤ 1, 0 < Y ≤ 2} = P {X ≤ 1, Y ≤ 2} = F (1, 2) = (1 − e −3) (1 − e −8).7. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,4),(其他y x xy y x p 试求(1)P {0 < X < 0.5, 0.25 < Y < 1}; (2)P {X = Y }; (3)P {X < Y };(4)(X , Y ) 的联合分布函数.解:(1)∫∫∫⋅==<<<<5.00125.025.00125.024}125.0,5.00{xy dx xydy dx Y X P641516158155.0025.00===∫x xdx ; (2)P {X = Y } = 0;(3)∫∫∫∫−=⋅==<1311211)22(24}{dx x x xy dx xydy dx Y X P xx21211042=⎟⎠⎞⎜⎝⎛−=x x ;(4)当x < 0或y < 0时,F (x , y ) = P (∅) = 0,当0 ≤ x < 1且0 ≤ y < 1时,220220202224},{),(y x y u du uy uv du uvdv du y Y x X P y x F x x x y x y ===⋅==≤≤=∫∫∫∫;当0 ≤ x < 1且y ≥ 1时,2020010210224},{),(x u udu uv du uvdv du y Y x X P y x F x xx x ===⋅==≤≤=∫∫∫∫;当x ≥ 1且0 ≤ y < 1时,210221210210224},{),(y y u du uy uv du uvdv du y Y x X P y x F y y ===⋅==≤≤=∫∫∫∫;当x ≥ 1且y ≥ 1时,F (x , y ) = P (Ω) = 1, 故(X , Y ) 的联合分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥<≤≥≥<≤<≤<≤<<=.1,1,1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或 8. 设二维随机变量(X , Y ) 在边长为2,中心为(0, 0) 的正方形区域内服从均匀分布,试求P {X 22 解:设D 表示该正方形区域,面积S D = 4,G 表示单位圆区域,面积S G = π,故4π}1{22==≤+D G S S Y X P .9. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,),(2其他x y x k y x p (1)试求常数k ;(2)求P {X > 0.5}和P {Y < 0.5}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得1632)(10321021122==⎟⎟⎠⎞⎜⎜⎝⎛−=−=⋅=∫∫∫∫k x x k dx x x k y k dx kdy dx xx xx, 故k = 6;(2)∫∫∫∫−=⋅==>15.0215.015.0)66(66}5.0{22dx x x ydx dy dx X P x xxx5.0)23(15.032=−=x x ;∫∫∫∫−=⋅==<5.005.005.00)66(66}5.0{dy y y xdy dx dy Y P y yyy432)34(5.00223−=−=y y . 10.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<−=.,0,10),1(6),(其他y x y y x p (1)求P {X > 0.5, Y > 0.5};(2)求P {X < 0.5}和P {Y < 0.5}; (3)求P {X + Y < 1}.解:(1)81)1()1(3])1(3[)1(6}5.0,5.0{15.0315.0215.01215.01=−−=−=−−⋅=−=>>∫∫∫∫x dx x y dx dy y dx Y X P xx; (2)∫∫∫−−⋅=−=<5.00125.001])1(3[)1(6}5.0{x x y dx dy y dx X P 87)1()1(35.0035.002=−−=−=∫x dx x ; ∫∫∫−−⋅=−=<5.005.025.005.0])1(3[)1(6}5.0{xxy dx dy y dx Y P21)1(43)1(3435.0035.002=⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+−=∫x x dx x ; (3)∫∫∫−−−−⋅=−=<+5.00125.001])1(3[)1(6}1{x xxxy dx dy y dx Y X P43])1([])1(33[5.00335.0022=−−−=−+−=∫x x dx x x .11.设随机变量Y 服从参数为λ = 1的指数分布,定义随机变量X k 如下:2,1.,1,,0=⎩⎨⎧>≤=k k Y k Y X k .求X 1和X 2的联合分布列.解:因Y 的密度函数为⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y且X 1和X 2的全部可能取值为0, 1,则1101021e 1e e }1{}2,1{}0,0{−−−−=−==≤=≤≤===∫yy dy Y P Y Y P X X P ,P {X 1 = 0, X 2 = 1} = P {Y ≤ 1, Y > 2} = P (∅) = 0,21212121e e e e }21{}2,1{}0,1{−−−−−=−==≤<=≤>===∫yy dy Y P Y Y P X X P ,22221e e e }2{}2,1{}1,1{−+∞−+∞−=−==>=>>===∫yy dy Y P Y Y P X X P ,故X 1和X 2的联合分布列为221112e e e 1e 1010−−−−−−X X12.设二维随机变量(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧<<<<+=.,0,20,10,3),(2其他y x xy x y x p 求P {X + Y ≥ 1}.解:∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛+⋅=⎟⎠⎞⎜⎝⎛+=≥+1021221021263}1{x x xy y x dx dy xy x dx Y X P 72652459441653421104321032=⎟⎠⎞⎜⎝⎛++=⎟⎠⎞⎜⎝⎛++=∫x x x dx x x x . 13.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<=−.,0,0,e ),(其他y x y x p y 试求P {X + Y ≤ 1}. 解:∫∫∫∫−−−−−−+−=−⋅==≤+5.0015.0015.001)e e ()e (e }1{dx dx dy dx Y X P x x x xy x xy5.015.001e 2e 1)e e (−−−−−+=−−=x x .14.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,20,10,2/1),(其他y x y x p求X 与Y 中至少有一个小于0.5的概率.解:85831431211}5.0,5.0{1}5.0},{min{15.015.025.0=−=−=−=≥≥−=<∫∫∫dx dy dx Y X P Y X P .15.从(0,1)中随机地取两个数,求其积不小于3/16,且其和不大于1的概率. 解:设X 、Y 分别表示“从(0,1)中随机地取到的两个数”,则(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,1),(其他y x y x p故所求概率为∫∫∫⎟⎠⎞⎜⎝⎛−−==≤+≥−4341434111631631}1,163{dx x x dy dx Y X XY P x x3ln 16341ln 1632143412−=⎟⎠⎞⎜⎝⎛−−=x x x .习题3.21. 设二维离散随机变量(X , Y ) 的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求X 与Y 各自的边际分布列. 解:因X 的全部可能值为−1, 0, 1,且12512131}1{=+=−=X P , 61}0{==X P , 125}1{==X P , 故X 的边际分布列为12561125101PX − 因Y 的全部可能值为0, 1, 2,且12712561}0{=+==X P , 31}1{==X P , 121}2{==X P , 故Y 的边际分布列为12131127210PY2. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧>>−−−=−−−−−.,0,0,0,e e e 1),(},max{122121其他y x y x F y x y x y x λλλλλ 试求X 与Y 各自的边际分布函数.解:当x ≤ 0时,F (x , y ) = 0,有F X (x ) = F (x , + ∞) = 0,当x > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121y y y x F y x y x y x λλλλλ 有 x y x y x y x y X x F x F 1122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=∞+=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(1x x x F x X λ 当y ≤ 0时,F (x , y ) = 0,有F Y ( y ) = F (+ ∞, y ) = 0,当y > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121x x y x F y x y x y x λλλλλ 有 y y x y x y x x Y y F y F 2122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=+∞=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(2y y y F y Y λ 3. 试求以下二维均匀分布的边际分布:⎪⎩⎪⎨⎧≤+=.,0,1,π1),(22其他y x y x p解:当x < −1或x > 1时,p X (x ) = 0,当−1 ≤ x ≤ 1时,2111π2π1),()(22x dy dy y x p x p x x X −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他x x x p X当y < −1或y > 1时,p Y ( y ) = 0,当−1 ≤ y ≤ 1时,2111π2π1),()(22y dx dx y x p y p y y Y −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他y y y p Y4. 设平面区域D 由曲线y = 1/ x 及直线y = 0,x = 1,x = e 2所围成,二维随机变量(X , Y ) 在区域D 上服从均匀分布,试求X 的边际密度函数.解:因平面区域D 的面积为2ln 122e 1e 1===∫x dx xS D , 则(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 当x < 1或x > e 2时,p X (x ) = 0,当1 ≤ x ≤ e 2时,xdy dy y x p x p x X 2121),()(10===∫∫∞+∞−, 故⎪⎩⎪⎨⎧≤≤=.,0,e 1,21)(2其他x x x p X5. 求以下给出的(X , Y ) 的联合密度函数的边际密度函数p x (x ) 和p y ( y ):(1)⎩⎨⎧<<=−.,0;0,e ),(1其他y x y x p y (2)⎪⎩⎪⎨⎧−<<+=.,0;10),(45),(222其他x y y x y x p(3)⎪⎩⎪⎨⎧<<<=.,0;10,1),(3其他x y x y x p解:(1)当x ≤ 0时,p X (x ) = 0,当x > 0时,x xyxy X dy dy y x p x p −+∞−+∞−+∞∞−=−===∫∫e e e ),()(1,故⎩⎨⎧≤>=−.0,0;0,e )(x x x p x X 当y ≤ 0时,p Y ( y ) = 0, 当y > 0时,y yy Y y dx dx y x p y p −−+∞∞−===∫∫e e ),()(01,故⎩⎨⎧≤>=−.0,0;0,e )(y y y y p y Y (2)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 1时,)1(85)21(45)(45),()(41022102222x y y x dy y x dy y x p x p x x X −=+=+==−−+∞∞−∫∫, 故⎪⎩⎪⎨⎧<<−−=.,0;11),1(85)(4其他x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y y xy x dx y x dx y x p y p y y yyY −+=+=+==−−−−−−+∞∞−∫∫1)21(65)31(45)(45),()(113112, 故⎪⎩⎪⎨⎧<<−+=.,0;10,1)21(65)(其他y y y y p Y (3)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,111),()(03=⋅===∫∫+∞∞−xx dy x dy y x p x p xX , 故⎩⎨⎧<<=.,0;10,1)(其他x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,y y x dx xdx y x p y p y y Y ln ln 1ln ln 1),()(1−=−====∫∫+∞∞−, 故⎩⎨⎧<<−=.,0;10,ln )(其他y y y p Y6. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,6),(2其他x y x y x p试求边际密度函数p x (x ) 和p y ( y ). 解:当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,)(66),()(22x x dy dy y x p x p xxX −===∫∫+∞∞−,故⎩⎨⎧<<−=.,0,10),(6)(2其他x x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)(66),()(y y dx dx y x p y p yyY −===∫∫+∞∞−,故⎪⎩⎪⎨⎧<<−=.,0,10),(6)(其他y y y y p Y7. 试验证:以下给出的两个不同的联合密度函数,它们有相同的边际密度函数.⎩⎨⎧≤≤≤≤+=.,0,10,10,),(其他y x y x y x p ⎩⎨⎧≤≤≤≤++=.,0,10,10),5.0)(5.0(),(其他y x y x y x g 证:当x < 0或x > 1时,p X (x ) = 0,当0 ≤ x ≤ 1时,5.0)21()(),()(1021+=+=+==∫∫+∞∞−x y xy dy y x dy y x p x p X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x p X当y < 0或y > 1时,p Y ( y ) = 0, 当0 ≤ y ≤ 1时,5.0)21()(),()(10210+=+=+==∫∫+∞∞−y xy x dx y x dx y x p y p Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y p Y并且当x < 0或x > 1时,g X (x ) = 0,当0 ≤ x ≤ 1时,5.0)5.0(21)5.0()5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−x y x dy y x dy y x g x g X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x g X 当y < 0或y > 1时,g Y ( y ) = 0,当0 ≤ y ≤ 1时,5.0)5.0()5.0(21)5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−y y x dx y x dx y x g y g Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y g Y故它们有相同的边际密度函数.8. 设随机变量X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,试求P {X = Y }.解:因X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,则(X , Y ) 的联合概率分布21212141411214141111ji p p X Y ⋅⋅−− 故P {X = Y } = P {X = −1, Y = −1} + P {X = 1, Y = 1} = 1/2.9. 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 和Y 分别表示甲和乙的命中次数,试求P {X ≤ Y }. 解:因X 的全部可能取值为0, 1, 2,且P {X = 0} = 0.8 2 = 0.64,32.08.02.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,P {X = 2} = 0.2 2= 0.04, 又因Y 的全部可能取值为0, 1, 2,且P {Y = 0} = 0.5 2 = 0.25,5.05.05.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==Y P ,P {Y = 2} = 0.5 2= 0.25,则(X , Y ) 的联合概率分布25.05.025.004.001.002.001.0232.008.016.008.0164.016.032.016.00210ji p p X Y ⋅⋅故P {X ≤ Y } = 1 − P {X > Y } = 1 − P {X = 1, Y = 0} − P {X = 2, Y = 0} − P {X = 2, Y = 1} = 0.89. 10.设随机变量X 和Y 相互独立,其联合分布列为3/19/19/121321b x c a x y y y X Y试求联合分布列中的a , b , c .解:因c a p ++=⋅911,9431912+=++=⋅b b p ,911+=⋅a p ,b p +=⋅912,c p +=⋅313, 根据独立性,知81495919422222++=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅b b b b p p b p , 可得0814942=+−b b ,即0922=⎟⎠⎞⎜⎝⎛−b , 故92=b ; 再根据独立性,知⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅91969194911221a a b p p p ,可得6191=+a ,故181=a ; 由正则性,知1953191912131=+++=+++++=∑∑==c b a b c a p i j ij ,可得94=++c b a ,故6118394==−−=b ac . 11.设X 和Y 是两个相互独立的随机变量,X ~ U (0, 1),Y ~ Exp (1).试求(1)X 与Y 的联合密度函数;(2)P {Y ≤ X };(3)P {X + Y ≤ 1}.解:(1)因X 与Y 相互独立,且边际密度函数分别为⎩⎨⎧<<=.,0,10,1)(其他x x p X ⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y故X 与Y 的联合密度函数为⎩⎨⎧≥<<==−.,0,0,10,e )()(),(其他y x y p x p y x p y Y X (2)1111101e 1e 1)e ()e 1()e (e }{−−−−−−=−+=+=−=−⋅==≤∫∫∫∫x x x y xy x dx dx dy dx X Y P ;(3)11110110101010e )e ()e 1()e (e }1{−−−−−−−=−=−=−⋅==≤+∫∫∫∫x x x y xy x dx dx dy dx Y X P .12.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,2033),()(x xdy dy y x p x p xX ===∫∫+∞∞−,故⎩⎨⎧<<=.,0,10,3)(2其他x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)1(23233),()(2121y x xdx dx y x p y p yyY −====∫∫+∞∞−, 故⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他y y y p Y (2)因⎪⎩⎪⎨⎧<<<<−=.,0,10,10),1(29)()(22其他y x y x y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.13.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<=.,0,10,||,1),(其他y y x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 0时,x dy dy y x p x p xX +===∫∫−+∞∞−11),()(1,当0 ≤ x < 1时,x dy dy y x p x p xX −===∫∫+∞∞−11),()(1,故⎪⎩⎪⎨⎧<≤−<<−+=.,0,10,1,01,1)(其他x x x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y dx dx y x p y p yyY 21),()(===∫∫−+∞∞−,故⎩⎨⎧<<=.,0,10,2)(其他y y y p Y(2)因⎪⎩⎪⎨⎧<<<≤−<<<<−+=.,0,10,10),1(2,10,01),1(2)()(其他y x x y y x x y y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.14.设二维随机变量(X , Y ) 的联合密度函数如下,试问X 与Y 是否相互独立?(1)⎩⎨⎧>>=+−.,0;0,0,e ),()(其他y x x y x p y x (2)+∞<<∞−++=y x y x y x p ,,)1)(1(π1),(222;(3)⎩⎨⎧<<<=.,0;10,2),(其他y x y x p (4)⎩⎨⎧<+<<<<<=.,0;10,10,10,24),(其他y x y x xy y x p(5)⎩⎨⎧<<<<−=.,0;10,10),1(12),(其他y x x xy y x p(6)⎪⎩⎪⎨⎧<<=.,0;1,421),(22其他y x y x y x p解:(1)因x e − (x + y ) = x e −x ⋅ e −y 可分离变量,x > 0, y > 0是广义矩形区域,故X 与Y 相互独立;(2)因)1π(1)1π(1)1)(1(π122222y x y x +⋅+=++可分离变量,−∞ < x , y < +∞是广义矩形区域, 故X 与Y 相互独立;(3)因0 < x < y < 1不是矩形区域,故X 与Y 不独立;(4)因0 < x < 1, 0 < y < 1, 0 < x + y < 1不是矩形区域,故X 与Y 不独立;(5)因12xy (1 − x ) = 12x (1 − x ) ⋅ y 可分离变量,0 < x < 1, 0 < y < 1是矩形区域,故X 与Y 相互独立; (6)因x 2 < y < 1不是矩形区域,故X 与Y 不独立.15.在长为a 的线段的中点的两边随机地各取一点,求两点间的距离小于a / 3的概率.解:设X 和Y 分别表示这两个点与线段中点的距离,有X 和Y 相互独立且都服从[0, a / 2]的均匀分布,则(X , Y ) 的联合密度函数为 ⎪⎩⎪⎨⎧<<<<=.,0,20,20,4),(2其他a y a x a y x pa a故所求概率为922321}3{22=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛×==<+a a S S aY X P DG . 16.设二维随机变量(X , Y ) 服从区域D = {(x , y ): a ≤ x ≤ b , c ≤ y ≤ d }上的均匀分布,试证X 与Y 相互独立. 证:因(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧≤≤≤≤−−=.,0;,,))((1),(其他d y c b x a c d a b y x p当x < a 或x > b 时,p X (x ) = 0,当a ≤ x ≤ b 时,a b dy c d a b dy y x p x p d c X −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他b x a a b x p X当y < c 或y > d 时,p Y ( y ) = 0,当c ≤ y ≤ d 时,cd dx c d a b dx y x p y p baY −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他d y c c d y p Y因p x (x ) p y ( y ) = p (x , y ), 故X 与Y 相互独立.17.设X 1, X 2, …, X n 是独立同分布的正值随机变量.证明n k n k X X X X E n k ≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .证:因X 1, X 2, …, X n 是独立同分布的正值随机变量,则由对称性知),,2,1(1n i X X X niL L =++同分布,且满足101<++<niX X X L ,可得⎟⎟⎠⎞⎜⎜⎝⎛++n i X X X E L 1存在,且⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++n nn n X X X E X X X E X X X E L L L L 11211, 因11111211=⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛++++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++n n n n n n X X X X E X X X E X X X E X X X E L L L L L L , 则n X X X E X X X E X X X E n n n n 111211=⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++L L L L , 故n k n k XX X X E n k≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .习题3.31. 设二维随机变量(X , Y ) 的联合分布列为09.007.004.0222.011.007.0120.015.005.00321X Y 试分布求U = max{X , Y } 和V = min{X , Y } 的分布列.解:因P {U = 1} = P {X = 0, Y = 1} + P {X = 1, Y = 1} = 0.05 + 0.07 = 0.12;P {U = 2} = P {X = 0, Y = 2} + P {X = 1, Y = 2} + P {X = 2, Y = 2} + P {X = 2, Y = 1}= 0.15 + 0.11 + 0.07 + 0.04 = 0.37;P {U = 3} = P {X = 0, Y = 3} + P {X = 1, Y = 3} + P {X = 2, Y = 3} = 0.20 + 0.22 + 0.09 = 0.51; 故U 的分布列为51.037.012.0321P U因P {V = 0} = P {X = 0, Y = 1} + P {X = 0, Y = 2} + P {X = 0, Y = 3} = 0.05 + 0.15 + 0.20 = 0.40; P {V = 1} = P {X = 1, Y = 1} + P {X = 1, Y = 2} + P {X = 1, Y = 3} + P {X = 2, Y = 1}= 0.07 + 0.11 + 0.22 + 0.04 = 0.44;P {V = 2} = P {X = 2, Y = 2} + P {X = 2, Y = 3} = 0.07 + 0.09 = 0.16; 故V 的分布列为16.044.040.0210P V2. 设X 和Y 是相互独立的随机变量,且X ~ Exp (λ ),Y ~ Exp (µ ).如果定义随机变量Z 如下⎩⎨⎧>≤=.,0,,1Y X Y X Z 当当 求Z 的分布列.解:因(X , Y ) 的联合密度函数为⎩⎨⎧>>==+−.,0,0,0,e )()(),()(其他y x y p x p y x p y x Y X µλλµ 则∫∫∫+∞+∞+−+∞+∞+−−⋅==≤==0)(0)(e )(e }{}1{xy x xy x dx dy dx Y X P Z P µλµλλλµµλλµλλλµλµλ+=+−==+∞+−+∞+−∫0)(0)(e e xx dx ,µλµ+==−==}1{1}0{Z P Z P ,故Z 的分布列为µλλµλµ++PZ 13. 设随机变量X 和Y 的分布列分别为4/12/14/1101P X − 2/12/110P Y已知P {XY = 0} = 1,试求Z = max{X , Y }的分布列.解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = 1} = 0,可得 (X , Y ) 的联合分布列为因{Z P {Z P 故Z 4.(1)X (2)X 解:(1)(X , 因P {Z = 0} = P {X = 0, Y = 0} = 0.25;P {Z = 1} = 1 − P {Z = 0} = 0.75; 故Z 的分布列为75.025.010P Z(2)因P {Z = k } = P {X = k , Y ≤ k } + P {X < k , Y = k } = P {X = k } P {Y ≤ k } + P {X < k } P {Y = k }p p p p p p p p k k i i kj j k 1111111)1()1()1()1(−−=−=−−−⋅−+−⋅−=∑∑p p p p p p p p p p k k k k 111)1()1(1)1(1)1(1)1(1)1(−−−−⋅−−−−+−−−−⋅−= = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ]故Z = max{X , Y }的概率函数为p z (k ) = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ],k = 1, 2, ….5. 设X 和Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P , 试求P {max{X , Y } ≥ 0}.解:设A 表示事件“X ≥ 0”,B 表示事件“Y ≥ 0”,有73)(=AB P ,74)()(==B P A P , 故75737474)()()()(}0},{max{=−+=−+==≥AB P B P A P B A P Y X P U .6. 设X 与Y 的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()(其他y x y x p y x 试求以下随机变量的密度函数(1)Z = (X + Y )/2;(2)Z = Y − X .解:方法一:分布函数法(1)作曲线簇z yx =+2,得z 的分段点为0,当z ≤ 0时,F Z (z ) = 0,当z > 0时,∫∫∫−+−−+−−⋅==z x z y x zx z y x Z dx dy dx z F 2020)(2020)(]e [e )(z z x z z x z z x dx 2202202e )12(1)e e ()e e (−−−−−+−=−−=+−=∫,因分布函数F Z (z ) 连续,有Z = (X + Y )/2为连续随机变量, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=′=−.0,0,0,e 4)()(2z z z z F z p z Z Z (2)作曲线簇y − x = z ,得z 的分段点为0,当z ≤ 0时,∫∫∫∫+∞−−+−+∞−++−+∞−++−−=−⋅==zx z x zz x y x zzx y x Z dx dy dx z F e []e [e )()2(0)(0)(z z z zx z x e 21e e 21e e 21)2(=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=+∞−−+−,当z > 0时,∫∫∫∫+∞−+−+∞++−+∞++−+−=−⋅==0)2(0)(0)(]e e []e [e )(dx dx dy dx z F x z x z x y x zx y x Zz z x z x −−+∞−+−−=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=e 2111e 21e e 210)2(,因分布函数F Z (z )连续,有Z = Y − X 为连续随机变量,故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=′=−.0,e 21,0,e 21)()(z z z F z p zzZ Z 方法二:增补变量法 (1)函数2yx z +=对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎪⎩⎪⎨⎧=+=,,2y v y x z 有反函数⎩⎨⎧=−=,,2v y v z x 且21012=−=′′′′=vz vzy y x x J , 则∫∫+∞∞−+∞∞−−=⋅−=dv v v z p dv v v z p z p Z ),2(22),2()(,作曲线簇z yx =+2,得z 的分段点为0, 当z ≤ 0时,p Z (z ) = 0,当z > 0时,z z z Z z dv z p 2202e 4e 2)(−−==∫, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=−.0,0,0,e 4)(2z z z z p z Z(2)函数z = y − x 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v x y z 有反函数⎩⎨⎧=−=,,v y z v x 且11011−=−=′′′′=v z vzy y x x J , 则∫+∞∞−−=dv v z v p z p Z ),()(,作曲线簇y − x = z ,得z 的分段点为0, 当z ≤ 0时,zz v z v Z dv z p e 21e 21e )(0202=−==+∞+−+∞+−∫, 当z > 0时,z zzv z z v Z dv z p −+∞+−+∞+−=−==∫e 21e 21e )(22, 故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=−.0,e 21,0,e 21)(z z z p zzZ 7. 设X 与Y 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求Z = X − Y 的密度函数.解:方法一:分布函数法作曲线簇x − y = z ,得z 的分段点为0, 1, 当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,31203102102123233333)(z z z x x xzdx dx x xdy dx xdy dx z F z z zz z xzx z x Z −=+=+=+=∫∫∫∫∫∫−,当z ≥ 1时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X − Y 为连续随机变量, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=′=.,0,10),1(23)()(2其他z z z F z p Z Z方法二:增补变量法函数z = x − y 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v y x z 有反函数⎩⎨⎧=+=,,v y v z x 且11011==′′′′=vz vzy y x x J , 则∫+∞∞−+=dv v v z p z p Z ),()(,作曲线簇x − y = z ,得z 的分段点为0, 1,当z ≤ 0或z ≥ 1时,p Z (z ) = 0, 当0 < z < 1时,)1(23)(23)(3)(210210z v z dv v z z p z z Z −=+=+=−−∫, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他z z z p Z 8. 某种商品一周的需要量是一个随机变量,其密度函数为⎩⎨⎧≤>=−.0,0,0,e )(1t t t t p t设各周的需要量是相互独立的,试求(1)两周需要量的密度函数p 2 (x );(2)三周需要量的密度函数p 3 (x ). 解:方法一:根据独立伽玛变量之和仍为伽玛变量设T i 表示“该种商品第i 周的需要量”,因T i 的密度函数为⎪⎩⎪⎨⎧≤>Γ=−−.0,0,0,e )2(1)(121t t t t p t可知T i 服从伽玛分布Ga (2, 1),(1)两周需要量为T 1 + T 2,因T 1与T 2相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2服从伽玛分布Ga (4, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 61.0,0,0,e )4(1)(3142x x x x x x x p x x (2)三周需要量为T 1 + T 2 + T 3,因T 1, T 2, T 3相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2 + T 3服从伽玛分布Ga (6, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 1201.0,0,0,e )6(1)(5163x x x x x x x p xx 方法二:分布函数法(1)两周需要量为X 2 = T 1 + T 2,作曲线簇t 1 + t 2 = x ,得x 的分段点为0,当x ≤ 0时,F 2 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=xt x t t t xt x t t t t dt dt t t dt x F 02110221121221121)e e (e e e )( ∫−−+−−=xt x dt t t xt t 0111121]e e )[(1xt t x t t x t t 0121213111e e e 212131⎥⎦⎤⎢⎣⎡−−⎟⎠⎞⎜⎝⎛−−=−−−11)1(e e e 212131233−−−−⎟⎠⎞⎜⎝⎛−−=−−−x x x x x x xxx x x x x x −−−−−−−−=e 61e 21e e 132, 因分布函数F 2 (x )连续,有X 2 = T 1 + T 2为连续随机变量, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 61)()(322x x x x F x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,F 3 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=x x x t t x x x x t x t x dx dt t x dx x F 003322003332232332232)e e (e 61e e 61)(∫−−+−−=x x x dx x x x x x 0232323242]e e )[(6`12 xx x x x x x x x x x x x 0222324242522222e 6e 6e 3e e 41415161⎥⎦⎤⎢⎣⎡−−−−⎟⎠⎞⎜⎝⎛−−=−−−−− )1(e e e 21e 61e 4141516123455−−−−−−⎟⎠⎞⎜⎝⎛−−=−−−−−x x x x x x x x x x x xx x x x x x x x x x −−−−−−−−−−−−=e 1201e 241e 61e 21e e 15432, 因分布函数F 3 (x ) 连续,有X 3 = T 1 + T 2 + T 3为连续随机变量, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 1201)()(533x x x x F x p x 方法三:卷积公式(增补变量法)(1)两周需要量为X 2 = T 1 + T 2,卷积公式∫+∞∞−−=2222)()()(21dt t p t x p x p T T ,作曲线簇t 1 + t 2 = x ,得x 的分段点为0, 当x ≤ 0时,p 2 (x ) = 0, 当x > 0时,xxx xxxt t x x t x t dt t xt dt t t x x p −−−−−−=⎟⎠⎞⎜⎝⎛−=−=⋅−=∫∫e 61e3121e )(e e )()(30322202222022)(2222, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 61)(32x x x x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,卷积公式∫+∞∞−−=3333)()()(32dt t p t x p x p T X ,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,p 3 (x ) = 0,21当x > 0时,∫∫−−−−−+−=−=x x xt t x dt t xt t x t x dt t t x x p 03433323233033)(333e )33(61e e )(61)(33 x xx x t x t x t x t −−=⎟⎠⎞⎜⎝⎛−+−=e 1201e 51432161505343233323, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 1201)(53x x x x p x9. 设随机变量X 与Y 相互独立,试在以下情况下求Z = X + Y 的密度函数:(1)X ~ U (0, 1),Y ~ U (0, 1); (2)X ~ U (0, 1),Y ~ Exp (1). 解:方法一:分布函数法(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,2020002121)(1)(z x zx dx x z dy dx z F zz zxz Z =⎟⎠⎞⎜⎝⎛−=−==∫∫∫−,当1 ≤ z < 2时,1121110110110)(211)(111)(−−−−−−−−−=−+=+=∫∫∫∫∫∫z z z z xz z Zx z z dx x z dx dy dx dy dx z F121221)1(21122−−=+−−−=z z z z , 当z ≥ 2时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=′=.,0,21,2,10,)()(其他z z z z z F z p Z Z(2)作曲线簇x + y = z ,得z 的分段点为0, 1,当z < 0时,F Z (z ) = 0, 当0 ≤ z < 1时,z z x z zx z zx z y z xz y Z z x dx dx dy dx z F −+−+−−−−−+−=−=−=−⋅==∫∫∫∫e 1)e ()e 1()e (e )(0000,当z ≥ 1时,z z x z x z x z y xz y Z x dx dx dy dx z F −−+−+−−−−−+−=−=−=−⋅==∫∫∫∫e e 1)e ()e 1()e (e )(111110,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≥−<≤−=′=−−.0,0,1,e )1(e ,10,e 1)()(z z z z F z p z z Z Z方法二:卷积公式(增补变量法) 卷积公式∫+∞∞−−=dy y p y z p z p Y X Z )()()(,(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,2。
第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。
解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。
解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解(1)100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯=(2)由数学期望的性质有(2)223.2E R ER πππ==(3)因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。
利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得 2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差(参看习题二第16题)。
习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 111222⨯⨯=111222⨯⨯=2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 的联合分布律如表: 23247C 3C 35= 13247C 2C 35= 1232247C C 6C 35= 1132247C C 12C 35= 13247C 2C 35= 2427C /C =2132247C C 6C 35= 23247C 3C 35=3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin 0sin sin 0sin 4346362(31).4=--+=-题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.x y x x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=e ,0,0,.y x y -⎧<<⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=22,1,0,.cx y x y ⎧≤≤⎨⎩其他(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0, .y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=1,,01,0,.y x x ⎧<<<⎨⎩其他求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.x x y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为 2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立? 2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38YXXYXY(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e (1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x y x y +∞≥==⎰⎰⎰⎰336231010101=d 12y yzy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180h 的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii kk n ki k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为 V =max(X ,Y ) 0 1 2 3 4 5 P 00.040.160.280.240.28(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑ 0,1,2,3,i =于是 U =min(X ,Y ) 0 1 2 3 P0.280.300.250.17(4)类似上述过程,有W =X +Y 0 1 2 3 4 5 6 7 8 P0.020.060.130.190.240.190.120.0520.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r rR θθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和y 1 y 2 y 3P {X =x i }=p ix 1 x 21/81/8P {Y =y j }=p j 1/61【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= YX而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布. 【解】(1) {|}C (1),0,0,1,2,mmn mn P Y m X n p p m n n -===-≤≤=.(2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求:(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.27. 设随机变量X,Y 独立同分布,且X 的分布函数为F(x),求Z=max{X,Y}的分布函数.解:因为X,Y 独立同分布,所以F X (z )=F Y (z),则F Z (z )=P{Z ≤z}=P{X ≤z ,Y ≤z}=P{x ≤z}·P{Y ≤z}=[F (z )]2.28.设随机变量X 与Y 相互独立,X 的概率分布为1{},1,0,1,3P X i i ===-Y 的概率密度为1,01,()0,Y y f y ≤<⎧=⎨⎩其他.记Z =X +Y .(1)求1{|0};2P Z X ≤= (2)求Z 的概率密度()Z f z分析 题(1)可用条件概率的公式求解.题(2)可先求Z 的分布函数,再求导得密度函数.解(1) 1{0,}12{|0}2{0}P X Z P Z X P X =≤≤===1{0,}2{0}P X Y P X =≤== 11{}22P Y =≤=(2)(){}{}Z F z P Z z P X Y z =≤=+≤{,1}{,0}{,1}P X Y z X P X Y z X P X Y z X =+≤=-++≤=++≤= {1,1}{,0}{1,1}P Y z X P Y z X P Y z X =≤+=-+≤=+≤-= {1}{1}{}{0}{1}{1}P Y z P X P Y z P X P Y z P X =≤+=-+≤=+≤-=1[{1}{}{1}]3P Y z P Y z P Y z =≤++≤+≤-1[(1)()(1)]3Y Y Y F z F z F z =+++-'1()()[(1)()(1)]3Z Z Y Y Y f z F z f z f z f z ==+++-1,1230,.z ⎧-≤<⎪=⎨⎪⎩其他29.设随机变量(X,Y)服从二维正态分布,且X 与Y 不相关,f X (x),f Y (y)分别表示X,Y 的概率密度,求在Y=y 的条件下,X 的条件概率密度f X |Y (x |y).解:由第四章第三节所证可知,二维正态分布的不相关与独立性等价,所以f(x,y)= f X (x) ·F Y (y),由本章所讨论知,/()()(,)(/)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===.30.设二维随机变量(X ,Y )的概率密度为2,01,01,(,)0,.x y x y f x y --<<<<⎧=⎨⎩其他(1)求{2};P X Y >(2)求Z =X +Y 的概率密度()Z f z .分析 已知(X,Y)的联合密度函数,可用联合密度函数的性质{(,)P X Y ∈}(,)GG f x y dxdy =⎰⎰ 解(1); Z=X+Y 的概率密度函数可用先求Z 的分布函数再求导的方法或直接套公式求解. 解 (1)2{2}(,)x yP X Y f x y dxdy >>=⎰⎰120120(2)57().824xdx x y dy x x dx =--=-=⎰⎰⎰(2)()(,),Z f z f x z x dx +∞-∞=-⎰其中 2()01,01(,)0x z x x z x f x z x ---<<<-<⎧-=⎨⎩其他201,01z x z x -<<<-<⎧=⎨⎩其他当02z z ≤≥或时,()0Z f z =; 当01z <<时,0()(2)(2);zZ f z z dx z z =-=-⎰当12z ≤<时,121()(2)(2),Z z f z z dx z -=-=-⎰即Z 的概率密度为2(2)01()(2)120Z z z z f z z z -<<⎧⎪=-≤<⎨⎪⎩其他友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!。