广州地铁环控系统设计方案研究

  • 格式:doc
  • 大小:262.50 KB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁环控系统设计方案研究(二)

前言

在建筑物林立的城市闹市区修建地铁,设置地面风亭是一项十分困难的事情,地面风亭数量越多,设置难度越大,为了避免风亭风口之间的相互影响,地铁规规定各风口之间的间距应大于5m。车站一端设置4个风亭时,4个风口如果在立面上错开,则风亭成为一个庞然大物,影响城市景观,4个风口如果在平面上错开时,占地面积很大,地方难找且协调工作十分艰巨。目前国地铁传统的设计是车站一端设置4个风亭,车站两端共设置8个地面风亭,工程量巨大。能否将风亭数量减少一些,应是设计者研究课题之一。地铁1号线采用开/闭式系统,在其前期设计阶段,设置的地面风亭每个车站为8个,为了解决多个风亭设置的困难,当时作为环控设计负责人的本人,对其进行了分析与研究,提出了将每站8个风亭数量减少的设想,并经过艰巨努力,使每站按6个风亭付诸工程实施,为地铁节省了一笔十分可观的工程投资。风亭数量可以减少的原因,作者已在《地铁1号线环控设计总结》(收入《回顾与思考》一书第九章—环境控制系统)中进行了介绍,这里不再说明。遗憾的是这一设计进步,没有得到业人士的认可,致使在其后采用开/闭式系统的地铁2号线和地铁1、2号线仍然按照每站8个地面风亭进行设计施工,为此作者感到十分可惜。地铁2~5号线采用了屏蔽门系统,2、3号线每个地铁车站均设置了8个地面风亭,4、5号线则是部分车站按照8个地面风亭设计,部分车站按6个地面风亭设计。8个地面风亭设计方案就是作者第一篇文章(简称“文章1”)中介绍的A型设计方案,6个地面风亭设计方案就是文章1中的B 型方案。本文除了对开/闭式系统和屏蔽门系统各站均可以按照6个地面风亭进行设计加以肯定外,还将进一步探讨能能否使各站风亭减少至4个或更少的可能性,以便最大限度减少地铁风道风亭土建工程量和工程投资。

一、A型方案设计情况的讨论

1、A型方案8个风亭设置情况概述

将车站大系统划入文章1中的A型设计方案系统图后,则成为本文所示的系统图1,因此A型设计方案就是8个风亭的方案,既车站每一端有2个隧道风亭、1个进(送)风亭及1个排(出)风亭,计4个,车站两端合计共8个风亭。它的设计基本情况是:(1)对车站通风空调系统设计了送风系统和回排风系统,其中送风系统由进风亭、进风道(井)、组合式空调机(AHU)等组成,回排风系统由回排风机(RAF)、排风亭(包含排风道(井),以下风亭均包含了风道(井))等组成;(2)对区间隧道在车站两端分别为左、右线设置了各1个活塞通风系统及机械通风系统,活塞通风系统由活塞通风道、活塞通风阀、活塞通风亭等组成,机械通风系统由TVF风机、机械通风亭等组成,显然活塞通风亭与机械通风亭共同合用一个风亭,故称为隧道风亭,活塞通风与机械通风系统紧密相连,通常称其为区间隧道通风系统;(3)对站隧道设计了单一的排风(排热)系统,该系统由车顶和站台下均匀排风(OTE和UPE)道、TEF风机、排风亭等组成。图示表明排热系统的风亭与车站排系

统的风亭共同合用一个风亭,由此可见“合用设计”已经存在,并不是新概念,本文只是给以明确,并按照“合用设计”这一概念进一步探讨风亭设计数量减少的可能性。

为了进行文字表述,图1中的编号不同于各条地铁线路设计,其编号规定详见图1中的说明。

2、A型方案隧道通风气流的基本分析

隧道通风系统由活塞通风与机械通风组成,图2对A型方案的右线隧道活塞通风与机械通风气流进行了分解。图中(1)是没有机械通风,仅列车在区间隧道运行时所产生的活塞风风流状况,列车前方为正压,因此,列车前方的风亭均为排(出)风,列车后方为负压,其后方风亭均为进风,图中用风流箭头的多少来表示各风亭和各通风段的相对风量大小,列车前后用3个风流箭头表示的隧道段风量最大,其它用2个箭头表示的风亭和隧道段的风量并不完全相等,而只是表示它比用1个箭头表示的风量大而已。图中(2)是车站两端区间隧道没有列车运行,仅站隧道排热系统的TEF风机运转时的风流状况,同上图一样,图中用风流箭头的多少来表示各风亭和各通风段的风量大小。由图可知:(1)列车在区间隧道运行时所形成的活塞风流,在没有其它风流影响时,对各车站进站端的1#风亭而言,以排(出)风为主,对各车站出站端的2#风亭而言,以进风为主;(2)在没有列车活塞风影响时,车站两端的1#与2#风亭均是TEF风机进行机械排风时的进风通路。

3、A型方案隧道通风气流的综合分析

正常运行时隧道(包括区间隧道和站隧道)通风是由列车运行的活塞通风与TEF风机机械通风共同组成的。TEF风机机械通风可以认为是一稳定流,列车运行所产生的活塞通风则是一动态的非稳定流,两者的组合仍为动态非稳定流,其计算比较复杂,一般需要借助电脑程序进行。但个人认为,定性分析和静态分析是程序计算的基础之一,作为工程应用,进行静态的定性分析乃是我们进行设计问题研究的重要方法之一,同时也是我们检查程序计算结果的重要手段之一。为此,本文进行了图3所示的静态的定性分析。

为了进行气流分析与叠加,我们对图2气流作以下简化设定:略去较小风量影响,仅对中等风量和较大风量进行分析,且均用单一风流箭头表示。为此对一个车站两端风亭而言,对应于图2-(1)可以形成图3-(1)所示的气流图,对应于图2-(2)可以形成图3-(2)所示的气流图。将图3中的(1)图与(2)图叠加则形成(3)图,由图3-(3)可以看出:(1)车站进站端的1#风亭及其活塞通风道,两种气流方向相反,互相抵消通风量减小;(2)车站出站端2#风亭及其活塞通风道,两种气流方向相同,互相加强通风量增大。

4、A型方案隧道通风综合分析小结

通过以上综合分析我们可以认为A型方案设置在车站进站端的1#风亭及其活塞通风道的对外通风作用十分有限,可以取消,设置在车站出站端的2#风亭及其活塞通风道的通风作用明显,需要加强。

三、B型方案设计情况的讨论

1、B型方案6个风亭设置情况概述

按照A型方案通风综合分析车站进站端的1#风亭及其活塞通风道可以取消的结论,可以使车站的风亭数量由8个减少为6个。将车站大系统画入文章1中的B型设计方案系统图后,则成为本文所示的系统图4,该图示即为地铁4、5号线一些车站所采用,并被作者在文章1中称为的B型设计方案。B型方案为车站每端有1个出站端的隧道通风亭(2#)和车站通风空调进风亭(3#)及排风亭(4#),计为3个风亭。其实取消车站进站端的1#风亭及其活塞通风道后的隧道通风系统可以按照文章1的建议方案1或建议方案2设计,本文为了两篇文章的衔接和避免不必要的误解继续沿用文章1的B型方案系统设计图来进行表述。

2、B型方案隧道通风气流的综合分析