功率半导体器件
- 格式:ppt
- 大小:4.27 MB
- 文档页数:48
SiC功率半导体器件的优势和发展前景SiC(碳化硅)功率半导体器件是一种新兴的半导体材料,具有许多优势和广阔的发展前景。
以下是SiC功率半导体器件的优势和发展前景。
1.高温工作能力:与传统的硅功率半导体器件相比,SiC器件能够在高温环境下工作,其工作温度可达到300摄氏度以上。
这使得SiC器件在航空航天、军事装备和汽车等应用领域具有巨大的潜力。
2.高电压耐受能力:SiC器件具有更高的击穿电场强度和较低的导通电阻,可以实现更高的电压耐受能力。
这使得SiC器件在高压和高电场应用中具有优势,如电力电子转换、电力传输和分配、电网充放电和电动车充电等。
3.高频特性:由于SiC材料的电子迁移率和终端速度较高,SiC器件具有优秀的高频特性。
这使得SiC器件在高频交流/直流转换器和射频功率放大器中具有广泛的应用。
4.低导通和开启损耗:SiC材料的电阻率较低,电流密度较大。
这导致SiC器件在导通过程中的能耗更低,进而减少了开关损耗。
相对于硅器件,SiC器件具有更高的效率和更小的温升。
这使得SiC器件在能源转换和电源管理领域具有潜在的应用前景。
5.小体积和轻量化:SiC器件的小体积和轻量化特性,使得其在高功率密度应用和紧凑空间条件下的应用更具优势。
这对于电动汽车、风力和太阳能发电系统、飞机和船舶等领域都有重要意义。
6.高可靠性和长寿命:由于SiC器件的抗辐射、抗高温、耐压击穿和抗电荷扩散等特性,它具有较高的可靠性和长寿命。
这对于军事装备、航空航天和核电等关键领域的应用具有重要意义。
SiC功率半导体器件的发展前景广阔。
随着科技的不断进步和物联网的快速发展,对于功率器件的要求愈发严苛。
在电力转换、能源管理和电动汽车等领域,对功率器件的需求将进一步增加,而SiC器件作为一种高温、高电压和高频特性都优异的功率半导体器件,将有望取代传统的硅器件,成为未来功率电子的主流。
此外,随着SiC材料的制备工艺和工艺技术的不断改进,SiC器件的成本也在逐渐下降。
功率半导体器件要点功率半导体器件是指用于控制和转换电力的半导体器件,其具有承载高电流和高电压的特点。
在电力电子领域中,功率半导体器件广泛应用于电力变换、传输和控制系统中,起到关键的作用。
本文将重点介绍功率半导体器件的要点,包括常见的功率半导体器件类型、特性与工作原理、应用领域和发展趋势等方面。
1.常见的功率半导体器件类型常见的功率半导体器件包括功率二极管、功率晶体管、功率场效应管(MOSFET)、可控硅(SCR)和绝缘栅双极晶体管(IGBT)等。
每种器件都有自己特殊的工作原理、结构和性能特点,适用于不同的应用场合。
2.功率半导体器件的特性与工作原理不同类型的功率半导体器件具有不同的特性和工作原理。
例如,功率二极管通常用作电流开关和快速恢复整流器,其主要特点是低电压降、快速开关速度和高导通电流能力。
功率晶体管在电力放大和开关电路中广泛使用,具有高功率放大能力和较高的开关速度。
功率场效应管主要有MOSFET和IGBT两种类型,其特点是低输入阻抗、高开关速度和较低的控制电压。
可控硅主要用于交流电控制和直流电开关,其工作原理是通过施加门极电压来控制器件的导通。
3.功率半导体器件的应用领域功率半导体器件在电力电子领域有广泛的应用。
例如,功率二极管通常用于电源、电机驱动和变频器等电路中。
功率晶体管广泛应用于功率放大、开关和变换器等电路。
功率场效应管主要用于集成电路和电力开关等领域。
可控硅被广泛应用于交流变频器、电动机起动和照明控制等场合。
绝缘栅双极晶体管(IGBT)结合了晶体管和可控硅的特点,逐渐成为高功率应用的主流器件。
4.功率半导体器件的发展趋势随着电力电子的广泛应用和需求的增加,功率半导体器件面临着高功率、高频率、高效率和小型化等方面的挑战。
近年来,功率半导体器件在结构设计、材料改进和工艺制造等方面取得了重大进展。
新型材料如碳化硅(SiC)和氮化镓(GaN)的应用,使功率半导体器件具有更高的工作温度、更高的开关速度和更低的导通电阻。
第一章功率半导体器件1.1 概述1.1.1 功率半导体器件的定义图1-1为电力电子装置的示意图,输入电功率经功率变换器变换后输出至负载。
功率变换器即为通常所说的电力电子电路(也称主电路),它由电力电子器件构成。
目前,除了在大功率高频微波电路中仍使用真空管(电真空器件)外,其余的电力电子电路均由功率半导体器件组成。
图1-1 电力电子装置示意图一个理想的功率半导体器件、应该具有好的静态和动态特性,在截止状态时能承受高电压且漏电流要小;在导通状态时,能流过大电流和很低的管压降;在开关转换时,具有短的开、关时间;通态损耗、断态损耗和开关损耗均要小。
同时能承受高的di/dt和du/dt以及具有全控功能。
1.1.2功率半导体器件的发展功率半导体器件是电力电子技术的基础,也是电力电子技术发展的“龙头”。
从1958年美国通用电气公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由功率半导体器件构成的变流器时代。
功率半导体器件的发展经历了以下阶段:大功率二极管产生于20世纪40年代,是功率半导体器件中结构最简单、使用最广泛的一种器件。
目前已形成整流二极管(Rectifier Diode)、快恢复二极管(Fast Recovery Diode —FRD)和肖特基二极管(Schottky Barrier Diode—SBD)等3种主要类型。
晶闸管(Thyristor, or Silicon Controlled Rectifier—SCR)可以算作是第一代电力电子器件,它的出现使电力电子技术发生了根本性的变化。
但它是一种无自关断能力的半控器件,应用中必须考虑关断方式问题,电路结构上必须设置关断(换流)电路,大大复杂了电路结构、增加了成本、限制了在频率较高的电力电子电路中的应用。
此外晶闸管的开关频率也不高,难于实现变流装置的高频化。
晶闸管的派生器件有逆导晶闸管、双向晶闸管、光控晶闸管等。
功率半导体器件发展概述
原创
近几十年来,随着半导体技术及其相关应用的快速发展,半导体器件的性能也在不断提升。
首先,高功率半导体器件是指采用半导体材料制造的器件,其最大功率能力达到千瓦以上,能够满足电子设备发电、传输、控制等各种高功率应用需求。
高功率半导体器件在现代电子产品中有着越来越重要的地位,功率晶体管、功率MOSFET、IGBT、SCR、二极管、交流电动机控制器等是最重要的几种高功率半导体器件。
这些器件在现代社会发挥了重要作用,参与设计了大功率的电子设备和装置,如电源、励磁技术、变频装置、UPS等,有效地改善了电子设备的性能,为现代电子设备及相关应用提供了有效的支持。
高功率半导体器件的发展历程可以追溯到上世纪50年代,当时科学家发明出了可调谐晶体管和功率晶体管,但其最大功率并不能达到千瓦。
在1960年,科学家又发明出功率MOSFET,用于高功率电子设备设计,从而有效降低了设备整体尺寸,加快了技术迭代速度。
功率半导体的优劣势分析_功率半导体器件用途功率半导体器件概述电力电子器件(PowerElectronicDevice)又称为功率半导体器件,主要用于电力设备的电能变换和控制电路方面大功率的电子器件(通常指电流为数十至数千安,电压为数百伏以上)。
功率半导体器件分类按照电力电子器件能够被控制电路信号所控制的程度分类:1.半控型器件,例如晶闸管;2.全控型器件,例如GTO(门极可关断晶闸管)、GTR(电力晶体管),MOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管);3.不可控器件,例如电力二极管;按照驱动电路加在电力电子器件控制端和公共端之间信号的性质分类:1.电压驱动型器件,例如IGBT、MOSFET、SITH(静电感应晶闸管);2.电流驱动型器件,例如晶闸管、GTO、GTR;根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类:1.脉冲触发型,例如晶闸管、GTO;2.电子控制型,例如GTR、MOSFET、IGBT;按照电力电子器件内部电子和空穴两种载流子参与导电的情况分类:1.双极型器件,例如电力二极管、晶闸管、GTO、GTR;2.单极型器件,例如MOSFET、SIT;3.复合型器件,例如MCT(MOS控制晶闸管)、IGBT、SITH和IGCT;功率半导体器件优缺点分析电力二极管:结构和原理简单,工作可靠;晶闸管:承受电压和电流容量在所有器件中最高IGBT:开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低,输入阻抗高,为电压驱动,驱动功率小;缺点:开关速度低于电力MOSFET,电压,电流容量不及GTOGTR:耐压高,电流大,开关特性好,通流能力强,饱和压降低;缺点:开关速度低,为电流驱动,所需驱动功率大,驱动电路复杂,存在二次击穿问题GTO:电压、电流容量大,适用于大功率场合,具有电导调制效应,其通流能力很强;缺点:电流关断增益很小,关断时门极负脉冲电流大,开关速度低,驱动功率大,驱动电路复杂,开关频率低MOSFET:开关速度快,输入阻抗高,热稳定性好,所需驱动功率小且驱动电路简单,工作频率高,不存在二次击穿问题;缺点:电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。
13种常用的功率半导体器件介绍电力电子器件(Power Electronic Device),又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。
可以分为半控型器件、全控型器件和不可控型器件,其中晶闸管为半控型器件,承受电压和电流容量在所有器件中最高;电力二极管为不可控器件,结构和原理简单,工作可靠;还可以分为电压驱动型器件和电流驱动型器件,其中GTO、GTR为电流驱动型器件,IGBT、电力MOSFET为电压驱动型器件。
1. MCT (MOS Control led Thyristor):MOS控制晶闸管MCT 是一种新型MOS 与双极复合型器件。
如上图所示。
MCT是将MOSFET 的高阻抗、低驱动图MCT 的功率、快开关速度的特性与晶闸管的高压、大电流特型结合在一起,形成大功率、高压、快速全控型器件。
实质上MCT 是一个MOS 门极控制的晶闸管。
它可在门极上加一窄脉冲使其导通或关断,它由无数单胞并联而成。
它与GTR,MOSFET,IGBT,GTO 等器件相比,有如下优点:(1)电压高、电流容量大,阻断电压已达3 000V,峰值电流达1 000 A,最大可关断电流密度为6000kA/m2;(2)通态压降小、损耗小,通态压降约为11V;(3)极高的dv/dt和di/dt耐量,dv/dt已达20 kV/s ,di/dt为2 kA/s;(4)开关速度快,开关损耗小,开通时间约200ns,1 000 V 器件可在2 s 内关断;2. IGCT(Intergrated Gate Commutated Thyristors)IGCT 是在晶闸管技术的基础上结合IGBT 和GTO 等技术开发的新型器件,适用于高压大容量变频系统中,是一种用于巨型电力电子成套装置中的新型电力半导体器件。
IGCT 是将GTO 芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,结合了晶体管的稳定关断能力和晶闸管低通态损耗的优点。