糖的性质与旋光仪
- 格式:ppt
- 大小:3.24 MB
- 文档页数:24
利用旋光法测量奶粉中的糖性分析旋光法是一种常用的光学测量方法,用于分析物质的旋光性质。
在奶粉中的糖性分析中,旋光法可以用于测量奶粉中的乳糖含量。
乳糖是乳制品中最主要的糖类,也是乳制品的主要成分之一。
乳糖的含量直接影响着奶粉的甜味和营养价值。
准确测量奶粉中的乳糖含量对生产和质量控制至关重要。
旋光法基于物质对光的偏振性质的影响。
当光通过具有旋光性质的物质时,其光线会产生旋转。
而旋光的方向和旋转角度与物质的旋光性质有关。
乳糖是具有旋光性质的物质,其对光的旋转性质可以用来测量乳糖的含量。
1. 准备样品:取一定量的奶粉样品,加入适量的水溶解,得到一定浓度的奶液。
待溶解均匀后,使用滤纸滤除不溶物,得到清澈的奶液。
2. 标准曲线制备:准备一系列不同浓度的乳糖标准溶液。
可以根据实际需要,选择不同的浓度范围和间隔。
以浓度为横坐标,旋光角度为纵坐标,绘制乳糖的标准曲线。
3. 测量样品:将样品奶液倒入旋光仪的样品池中,调节仪器使光线通过样品。
根据仪器的操作说明,测量样品的旋光角度。
注意要保证读数的准确性,避免仪器和样品的温度变化对测量结果的影响。
4. 计算乳糖含量:根据所测得的样品旋光角度值,利用之前制备的乳糖标准曲线,可以推算出样品中的乳糖含量。
可以通过插值法或计算公式来计算。
需要注意的是,旋光法是一种相对定性分析方法,结果的准确性受到多种因素的影响,如温度、pH值、样品浓度等。
在使用旋光法进行奶粉中糖性分析时,需要对实验条件进行严格控制,保证实验的可重复性和准确性。
旋光法对样品处理的要求较高,需要将样品溶解均匀,并去除颗粒和杂质,以获得准确的测量结果。
所以,在进行旋光法测量前,对奶粉样品的预处理步骤也需要非常重视。
利用旋光法测量奶粉中的糖性分析可以获得乳糖含量的信息,对于奶粉的质量控制和生产过程的监测具有重要意义。
但在实际操作中,还需要综合考虑各种因素的影响,以提高测量结果的准确性和可靠性。
葡萄糖、果糖的旋光度测定一、 实验目的和要求1、 了解旋光仪测定旋光度的基本原理;2、 掌握用旋光仪测定溶液或液体物质的旋光度的方法;3、 了解葡萄糖和果糖的旋光性质;4、 学习通过测定旋光度计算溶液含糖量的方法。
二、 实验内容和原理只在一个平面上振动的光叫做平面偏振光,简称偏振光。
物质能使偏振光的振动平面旋转的性质,称为旋光性或光学活性。
具有旋光性的物质,叫做旋光性物质或光学活性物质。
旋光性物质使偏振光的振动平面旋转的角度叫做旋光度。
许多有机化合物,尤其是来自生物体内的大部分天然产物,如氨基酸、生物碱和碳水化合物等,都具有旋光性。
这是由于它们的分子结构具有手征性所造成的。
因此,旋光度的测定对于研究这些有机化合物的分子结构具有重要的作用,此外,旋光度的测定对于确定某些有机反应的反应机理也是很有意义的。
测定溶液或液体的旋光度的仪器称为旋光仪,其工作原理见下图。
常用的旋光仪主要由光源、起偏镜、样品管(也叫旋光管)和检偏镜几部分组成。
物质的旋光度与测定时所用溶液的浓度、样品管长度、温度、所用光源的波长及溶剂的性质等因素有关。
因此,常用比旋光度[α]来表示物质的旋光性。
溶液的比旋光度与旋光度的关系为:[]()t D c Lαα=⨯溶剂式中[]tD α为比旋光度;t 为测定时的温度(℃);D 表示钠光(波长λ=589.3nm);α为观测的旋光度;c 为溶液的浓度,以g·mL -1为单位;L 为样品管的长度,以dm 为单位。
如果被测定的旋光性物质为纯液体,可直接装入样品管中进行测定,这时,比旋光度可由下式求出:[]t D d Lαα=⨯式中d 为纯液体的密度(g·mL -1)。
测定旋光度具有以下意义:1. 测定已知物溶液的旋光度,再查其比旋光度,即可计算出已知物溶液的浓度。
2. 将未知物配制成已知浓度的溶液,测其旋光度,计算出比旋光度,再与文献值对照,作为鉴定未知物的依据。
3. 由比旋光度可按下式求出样品的光学纯度(OP )。
旋光仪及旋光糖量计检定规程一、检定设备及工具旋光仪是用来测量物质旋光性质的仪器,旋光糖量计则是测量糖溶液旋光性质的仪器。
在进行检定之前,需要确保旋光仪和旋光糖量计的正常工作状态。
同时,还需要准备一定数量的标准物质和标准试液。
二、检定流程1. 校准仪器:首先,将旋光仪和旋光糖量计置于水平台面上。
然后,通过调节旋光仪的零位调节钮,使旋光仪的读数为零。
接着,使用标准物质调整旋光糖量计的刻度,使其读数与标准物质的旋光度相等。
2. 测量样品:选取待测样品,将其注入旋光仪的测量池中。
然后,将旋光仪的度数调至适当范围,并记录下读数。
3. 校正误差:将待测样品的读数减去旋光仪的误差读数,得到真实的旋光度。
同样,将该样品注入旋光糖量计中,记录下读数。
4. 检定结果:根据旋光仪和旋光糖量计的读数,计算出待测样品的旋光度。
同时,通过与标准物质的对比,判断该样品是否符合标准要求。
三、检定注意事项1. 在进行检定之前,确保旋光仪和旋光糖量计的光学元件清洁,以免影响测量结果。
2. 检定过程中,要注意避免任何物质的污染,以免影响测量结果的准确性。
3. 根据待测样品的性质,选择合适的旋光仪和旋光糖量计进行测量,以确保测量结果的准确性。
4. 在测量过程中,要控制好温度和湿度,以避免对测量结果产生影响。
5. 检定结束后,及时清洁旋光仪和旋光糖量计,以保证下次使用时的准确性。
四、检定结果的判断1. 如果待测样品的旋光度与标准物质的旋光度相等或非常接近,则判定为合格。
2. 如果待测样品的旋光度与标准物质的旋光度存在较大差异,则判定为不合格。
3. 对于不合格的样品,需要进一步分析原因,并采取相应措施进行修正或调整。
五、检定结果的记录和报告1. 在每次检定之后,记录下旋光仪和旋光糖量计的读数,并将其与标准物质的旋光度进行对比。
2. 将检定结果进行汇总,制作检定报告。
报告中应包括检定日期、检定人员、待测样品的信息、旋光度的测量结果以及是否符合标准要求等内容。
用旋光计测定糖溶液的浓度一、[仪器与用具]旋光计,玻璃管,蔗糖溶液,钠灯。
二、[实验原理]平面偏振光在某些晶体内沿其光轴方向传播时,虽然没有发生双折射,却发现透射光的振动面相对于原入射光的振动面旋转了一个角度。
晶体的这种性质称为旋光性。
后来从实验发现,某些液体也具有旋光性。
如果迎着光的传播方向看,旋光性物质使振动面沿顺时针方向旋转,称为右旋物质;使振动面沿逆时针方向旋转,称为左旋物质。
实验表明,振动面旋转的角度ϕ与其所通过旋光性物质的厚度成正比。
若为溶液,则又正比于溶液的质量浓度c ,此外,旋转角还与入射光波长及溶液温度等有关。
对溶液来说,振动面的旋转角lc ρϕ= (3-13-10)式中l 是以分米(dm)为单位的液柱长;c 为溶液的质量浓度,代表每立方厘米溶液中所含溶质的质量(质量以克为单位);ρ为比例系数,称为物质的旋光率,旋光率的定义是平面偏振光通过1dm 长的液柱,在1cm 3溶液中含有1g 旋光物质时所产生的旋转角。
纯洁蔗糖在20℃时,对于钠黄光,经多次测定确认g /dm cm 50.663⋅= ρ。
因此,若测出糖溶液的旋转角ϕ和液柱长l ,即可按式(3-13-10)算出蔗糖溶液的质量浓度c 。
专门用于测量糖溶液浓度的旋光计,称为糖量计。
旋光计的结构如图3—13—8所示。
S 为光源(钠灯);F 为聚光镜(固定);N 1为起偏器(尼科耳棱镜);N 2为检偏器(尼科耳棱镜),N 2可以旋转,旋转的角度从N 2所附的刻度盘R 上读出;D 为半荫片(一半是玻璃,一半是石英半波片;或两旁为玻璃,中间为石英半波片如图3—13—9所示),H 为盛放溶液的管子;T 为短焦距望远镜。
由光源发出的单色光经N 1后成为平面偏振光,其偏振面与N l 的主截面平行(参看图图3—13—9 图3—13—83—13—10),平面偏振光通过半荫片D 的玻璃部分后,透射光的偏振面不变,设其振动方向为OA 1,而通过石英半波片那一部分光的振动面却转过了一角度,设其振动方向为OA 2。
葡萄糖、果糖的旋光度测定一、 实验目的和要求1、 了解旋光仪测定旋光度的基本原理;2、 掌握用旋光仪测定溶液或液体物质的旋光度的方法;3、 了解葡萄糖和果糖的旋光性质;4、 学习通过测定旋光度计算溶液含糖量的方法。
二、 实验内容和原理只在一个平面上振动的光叫做平面偏振光,简称偏振光。
物质能使偏振光的振动平面旋转的性质,称为旋光性或光学活性。
具有旋光性的物质,叫做旋光性物质或光学活性物质。
旋光性物质使偏振光的振动平面旋转的角度叫做旋光度。
许多有机化合物,尤其是来自生物体内的大部分天然产物,如氨基酸、生物碱和碳水化合物等,都具有旋光性。
这是由于它们的分子结构具有手征性所造成的。
因此,旋光度的测定对于研究这些有机化合物的分子结构具有重要的作用,此外,旋光度的测定对于确定某些有机反应的反应机理也是很有意义的。
测定溶液或液体的旋光度的仪器称为旋光仪,其工作原理见下图。
常用的旋光仪主要由光源、起偏镜、样品管(也叫旋光管)和检偏镜几部分组成。
物质的旋光度与测定时所用溶液的浓度、样品管长度、温度、所用光源的波长及溶剂的性质等因素有关。
因此,常用比旋光度[α]来表示物质的旋光性。
溶液的比旋光度与旋光度的关系为:[]()t D c Lαα=⨯溶剂式中[]tD α为比旋光度;t 为测定时的温度(℃);D 表示钠光(波长λ=589.3nm);α为观测的旋光度;c 为溶液的浓度,以g·mL -1为单位;L 为样品管的长度,以dm 为单位。
如果被测定的旋光性物质为纯液体,可直接装入样品管中进行测定,这时,比旋光度可由下式求出:[]t D d Lαα=⨯式中d 为纯液体的密度(g·mL -1)。
测定旋光度具有以下意义:1. 测定已知物溶液的旋光度,再查其比旋光度,即可计算出已知物溶液的浓度。
2. 将未知物配制成已知浓度的溶液,测其旋光度,计算出比旋光度,再与文献值对照,作为鉴定未知物的依据。
3. 由比旋光度可按下式求出样品的光学纯度(OP )。
旋光仪实验报告引言:光学是研究光的性质和行为的学科,其中旋光现象是光学领域中的一个重要研究内容。
旋光现象指的是光通过某些有机化合物或无机晶体时,光的偏振方向发生旋转的现象。
旋光仪是一种用于测量旋光现象的仪器,它通过测量光的偏振方向的旋转角度来得到物质的旋光性质。
实验目的:本次实验的目的是通过使用旋光仪测量已知浓度的葡萄糖溶液的旋光性质,进一步了解旋光现象。
实验原理:旋光现象的产生是由于物质的分子结构不对称性所致。
当光通过旋光样品时,光的偏振方向会发生旋转,旋转角度与样品的浓度、长度和特性有关。
旋光仪是一种基于偏光仪原理的仪器。
它由光源、偏振片、样品室和光强计组成。
光源发出的光通过偏振片,只有一个方向的光通过,形成线偏振光。
线偏振光通过样品室,被样品引起的旋转改变了光的偏振方向。
旋光仪中的光强计检测经过样品后的光的强度,并将强度转换为信号输出。
实验步骤:1. 首先,将旋光仪接通电源,待仪器预热。
2. 使用毛玻璃块清洁样品室,以确保样品室内干净,不影响光的传输。
3. 打开旋光仪上的平台,放置已知浓度的葡萄糖溶液样品于样品室中。
4. 调节旋光仪中的偏振片,使得光通过样品室前后的偏振方向相同。
5. 读取旋光仪上显示的旋光角度,记录数据。
6. 重复步骤3-5,使用不同浓度的葡萄糖溶液进行实验。
实验结果分析:根据实验数据,我们可以绘制旋光角度与葡萄糖溶液浓度之间的关系曲线。
实验数据显示,随着葡萄糖溶液浓度的增加,旋光角度也随之增大。
这表明葡萄糖溶液的旋光性质与其浓度成正比。
这种现象可以通过分子之间的相互作用解释。
在葡萄糖溶液中,葡萄糖分子倾向于形成聚集体,称为旋光体。
随着浓度的增加,旋光体的数量增加,旋光效应增强。
实验应用:旋光仪在医药、化学和食品等领域有广泛的应用。
例如,在药物研发中,可以借助旋光仪来研究药物分子的旋光性质,以评估化合物的纯度和药效。
此外,旋光仪还被用于检验食品中是否有伪造成分。
有些食品添加剂会导致旋光现象的改变,通过使用旋光仪可以确定食品中是否存在添加剂或其他不正当成分。