(完整版)任意角教学设计
- 格式:doc
- 大小:98.45 KB
- 文档页数:4
“任意角”的教学设计与反思一、教学设计1.教学目标:(1)了解任意角的定义;(2)掌握任意角的相关性质;(3)能够应用任意角的知识解决相关问题。
2.教学内容:(1)任意角的概念和性质;(2)任意角的弧度制和角度制;(3)任意角的三角函数;(4)任意角的正弦定理、余弦定理、正切定理等。
3.教学方法:(1)讲授结合实例,通过生动形象的例子引入任意角的概念,让学生容易理解;(2)引导学生自主探究,提出问题让学生自行思考和解决;(3)小组合作学习,让学生之间相互交流,互相学习。
4.教学流程:第一节:任意角的概念和性质1.引入:通过展示多个不同的角度的图片,引导学生探讨角的概念及其种类;2.讲解:介绍任意角的定义和性质,让学生了解任意角与定角的区别;3.实例:给出一些实际问题,让学生尝试用任意角来解决;4.总结:总结任意角的性质和应用,并检查学生的掌握情况。
第二节:任意角的三角函数1.讲解:介绍三角函数的概念和相关性质,引导学生理解三角函数与任意角的关系;2.实例:通过实例讲解如何计算任意角的三角函数值;3.练习:让学生进行练习,巩固任意角的三角函数计算方法;4.拓展:引导学生了解任意角的特殊性质,如周期性等。
第三节:任意角的三角函数定理1.讲解:介绍正弦定理、余弦定理、正切定理等任意角的三角函数定理;2.实例:通过实例讲解如何应用三角函数定理解决实际问题;3.练习:让学生进行练习,加深对三角函数定理的理解和应用能力;4.总结:总结本节内容,巩固学生的知识。
5.教学工具:(1)教材课件;(2)白板和彩色笔;(3)电子设备(如电脑、投影仪)。
6.评价方式:(1)课堂小测验,检查学生对任意角的掌握情况;(2)课堂参与度评价,评估学生在课堂中的表现;(3)课后作业,提供相关题目让学生巩固所学知识。
二、教学反思任意角作为数学中的一个重要概念,对于学生来说可能是一个比较抽象和难以理解的知识点。
在教学中,我认为可以通过以下几点来提高教学效果:2.强化基础知识:在教学中,要注重对数学基础知识的强化,如三角函数、三角恒等式等,在学生掌握这些基础知识的基础上,才能更好地理解和运用任意角的知识。
【参考教案】《任意角》(人教)第一章:任意角的概念一、教学目标1. 让学生理解任意角的概念,掌握任意角的表示方法。
2. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 任意角的概念及表示方法。
2. 任意角的分类。
三、教学重点与难点1. 重点:任意角的概念及表示方法。
2. 难点:任意角的分类。
四、教学方法1. 采用讲授法,讲解任意角的概念及表示方法。
2. 采用案例分析法,让学生通过实际例子理解任意角的分类。
五、教学步骤1. 引入新课,讲解任意角的概念及表示方法。
2. 分析实例,让学生理解任意角的分类。
3. 课堂练习,巩固所学知识。
六、课后作业1. 定义任意角,并写出表示方法。
2. 分析实例,判断任意角的类别。
第二章:任意角的度量一、教学目标1. 让学生掌握任意角的度量方法。
2. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 任意角的度量方法。
2. 弧度制的概念及应用。
三、教学重点与难点1. 重点:任意角的度量方法。
2. 难点:弧度制的概念及应用。
四、教学方法1. 采用讲授法,讲解任意角的度量方法。
2. 采用案例分析法,让学生通过实际例子理解弧度制的概念及应用。
五、教学步骤1. 引入新课,讲解任意角的度量方法。
2. 分析实例,让学生理解弧度制的概念及应用。
3. 课堂练习,巩固所学知识。
六、课后作业1. 解释任意角的度量方法。
2. 运用弧度制,解决实际问题。
第三章:任意角的三角函数一、教学目标1. 让学生掌握任意角的三角函数定义及性质。
2. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 任意角的三角函数定义及性质。
2. 三角函数在各象限的符号。
三、教学重点与难点1. 重点:任意角的三角函数定义及性质。
2. 难点:三角函数在各象限的符号。
四、教学方法1. 采用讲授法,讲解任意角的三角函数定义及性质。
2. 采用案例分析法,让学生通过实际例子理解三角函数在各象限的符号。
五、教学步骤1. 引入新课,讲解任意角的三角函数定义及性质。
随意角教课设计一、教材剖析1、本节教材的地位和作用:本课是数学必修 4 第一章三角函数中第一节的第一课时。
三角函数是基本初等函数,它是描绘周期现象的重要数学模型。
这一节中包含随意角、终边同样的角的表示方法和象限角三个内容。
角的看法的推行正是这一思想的表现之一,是初中有关知识的自然持续。
为进一步研究角的和、差、倍、半关系供给了条件,也为此后学习分析几何、复数等有关知识供给有益的工具,因此学生正确的理解和掌握角的看法的推行尤其重要。
2、教课目的:知识与技术目标:(1)推行角的看法,理解并掌握正角、负角、零角的定义;(2)理解随意角以及象限角的看法;(3)掌握全部与角 a 终边同样的角(包含角 a)的表示方法;过程与方法目标:(1)提升学生的计算能力 , 归纳归纳能力和类比思想能力;(2)经过绘图和判断角的象限,培育学生数形联合的思想方法;感情态度与价值观目标:(1)创建问题情形,激发剖析研究的学习态度,加强参加意识;(2)学会运用运动变化的看法认识事物.3、教课要点、难点:要点:理解随意角中正角、负角和零角和象限角的定义。
难点 :终边同样的角的表示方法。
二、学生状况剖析学生在初中就已经学过角的定义。
从学生学过的东西出发,联合实质生活中的例子,将随意角的范围扩展到大于 360 度,能够引起学生的的认知矛盾,激发学生的求知欲念,为这节课的顺利进行供给了有益的条件。
三、教法学法教法剖析:研究与发现新知识是教课的要点。
因此在教课中主要采纳以问题驱动、层层铺垫,从特别到一般启迪学生获取新知识。
学法指导:建构主义学习理论以为,学习是学生踊跃主动的建构知识的过程,学习应当与学生熟习的知识背景相联系。
在教课中,采纳自主研究与合作沟通的学习方式,让学生在问题情境中,经历知识的形成和发展,经过察看、操作、归纳、思虑、研究、沟通、反省参加学习,认识和理解数学知识,学会学习,发展能力。
四、教课过程环节教课内容设计设计企图从今日开始我们要学习必修四上的内容了,第一必修1和必章是什么?高中三角函数修四进行连接。
《任意角》教学设计《《任意角》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标(一)知识与技能目标理解任意角的概念(包括正角、负角、零角)与区间角的概念.(二)过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三)情感与态度目标1.提高学生的推理能力;2.培养学生应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合的表示;区间角的集合的书写.教学过程一、引入:1.回顾角的定义①角的定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.②实际生活中出现一系列关于角的问题。
在体操比赛中我们经常听到这样的术语:“转体720o”(即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?二、新课:1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角a,点O是角的顶点,射线OA,OB分别是角a的终边、始边。
2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角。
3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与X轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:30o,390o,-330o都是第一象限角;300o,-60o是第四象限角。
(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。
例如:90o,180o,270o等等。
例1在00与3600范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)-1200(2)6400(3)-950o12'例2若a=k*360o-1575o,试判断角a所在象限。
【参考教案】《任意角》(人教)一、教学目标1. 让学生理解任意角的概念,掌握任意角的定义及其表示方法。
2. 培养学生运用图形计算器进行角的测量和绘制,提高学生的动手操作能力。
3. 通过对任意角的学习,培养学生对数学的兴趣和探究精神。
二、教学重点与难点1. 教学重点:任意角的概念及其表示方法。
2. 教学难点:任意角的测量和绘制。
三、教学方法1. 采用问题驱动法,引导学生主动探究任意角的概念和表示方法。
2. 利用图形计算器,让学生亲自动手测量和绘制任意角,提高学生的实践能力。
3. 采用分组讨论法,培养学生团队合作精神,激发学生学习兴趣。
四、教学准备1. 准备图形计算器,确保每个学生都能进行实践操作。
2. 准备相关教案、PPT和教学素材。
3. 准备练习题,巩固学生所学知识。
五、教学过程1. 导入新课:通过提问方式引导学生回顾之前学过的角的概念,为新课学习做好铺垫。
2. 讲解任意角的概念:讲解任意角的概念,并用PPT展示相关图片,让学生形象地理解任意角。
3. 任意角的表示方法:介绍任意角的表示方法,如用弧度制、度分秒制等。
4. 实践操作:让学生使用图形计算器测量和绘制任意角,教师巡回指导,解答学生疑问。
5. 分组讨论:让学生分组讨论任意角的测量和绘制方法,分享彼此的经验和心得。
6. 总结提升:教师引导学生总结任意角的概念和表示方法,强调重点知识点。
7. 布置作业:发放练习题,让学生巩固所学知识,提高解题能力。
8. 课后反思:教师对本节课的教学进行反思,为的教学做好准备。
六、教学内容与要求1. 教学内容:任意角的定义与表示方法,角的测量与绘制。
2. 教学要求:学生能理解任意角的定义,能用弧度制和度分秒制表示任意角。
学生能够使用图形计算器测量任意角的度数。
学生能够绘制给定度数的任意角。
七、教学过程设计1. 教学活动一:引入新课通过实际生活中的例子(如钟表上的指针、车轮的旋转等)引出角的概念。
提问:我们之前学习的角都是有限制的,有没有无限大的角呢?2. 教学活动二:讲解任意角讲解任意角的定义,强调任意角可以是正向旋转也可以是反向旋转。
任意角数学教案设计一、教学目标1.知识与技能:(1)理解任意角的概念,掌握任意角的表示方法。
(2)掌握任意角的度量单位——弧度制,了解弧度制与角度制的换算关系。
(3)学会应用任意角的知识解决实际问题。
2.过程与方法:(1)通过实例引入任意角的概念,培养学生的观察能力和抽象思维能力。
(2)通过动手操作,让学生感受弧度制的意义,提高学生的实践操作能力。
(3)通过小组讨论,培养学生的合作精神和交流能力。
3.情感态度与价值观:(1)激发学生对任意角的兴趣,培养学生主动探索的精神。
(2)让学生感受数学与生活的紧密联系,提高学生的数学素养。
二、教学重点与难点1.教学重点:(1)任意角的定义及表示方法。
(2)弧度制的概念及弧度制与角度制的换算。
2.教学难点:(1)任意角的概念的理解。
(2)弧度制与角度制的换算关系。
三、教学过程1.引入新课(1)教师通过实例(如:钟表的时针与分针所成的角度)引导学生回顾角度的概念。
(2)提出问题:角度能否表示所有角呢?引入任意角的概念。
2.教学任意角的定义及表示方法(2)讲解任意角的表示方法,如:用符号“∠”表示角,用字母表示角的度数等。
3.教学弧度制的概念及弧度制与角度制的换算(1)教师用多媒体展示弧度制的定义,让学生直观感受弧度制的意义。
(2)讲解弧度制与角度制的换算关系,如:1弧度=57.2958度,1度=0.01745弧度。
4.动手操作(1)教师发放学具(如:量角器、圆规等),让学生测量不同位置的角,并用弧度制表示。
(2)学生互相交流测量结果,讨论弧度制与角度制的换算关系。
5.小组讨论(1)教师提出问题:如何应用任意角的知识解决实际问题?(2)学生分组讨论,举例说明任意角在实际问题中的应用。
(2)布置作业:设计一道应用任意角知识解决实际问题的题目。
四、教学反思本节课通过实例引入任意角的概念,让学生在动手操作中感受弧度制的意义,培养学生合作精神和交流能力。
在教学过程中,要注意引导学生理解任意角的概念,掌握弧度制与角度制的换算关系。
任意角教案
课题: 任意角的概念和性质
目标:
1. 理解任意角的概念和性质。
2. 能够在坐标平面上画出任意角。
3. 能够计算任意角的弧度。
教学流程:
1. 引入任意角的概念:
- 提问学生是否知道角的概念。
- 引导学生思考角的定义: 由两条射线共享一个起始点,形成的图形。
- 介绍任意角的概念: 不受限制的角度大小,可以大于360度或小于-360度。
2. 任意角的性质:
- 角的初始边可以是正角、负角或零角。
- 角的终边可以转到任何位置。
- 角度的绝对值可以大于360度,小于-360度。
3. 绘制任意角:
- 引导学生在坐标平面上画出一个零角(与x轴重合)。
- 引导学生画出一个正角和一个负角。
- 引导学生画出一个大于360度和一个小于-360度的角。
4. 计算任意角的弧度:
- 提问学生是否了解弧度的概念。
- 提供弧度的定义: 在单位圆上,所对应的弧长等于半径的弧度。
- 引导学生将角度转换为弧度: 弧度 = 角度* (π/180)。
5. 练习:
- 让学生通过绘制和计算,巩固所学知识。
- 提供一些角度和弧度的转换题目,让学生进行练习。
6. 总结:
- 回顾任意角的概念和性质。
- 强调弧度的重要性,并解释为什么使用弧度来度量角度。
扩展活动:
1. 给学生更多的练习题目,包括角度和弧度之间的互相转换。
2. 提供一些有关任意角的实际应用问题,让学生应用所学知识解决问题。
3. 引导学生思考为什么弧度的定义中出现了π,而不是其他数值。
§1.1.1任意角【教学目标】1. 知识与技能理解任意角(包括正角、负角、零角) 与象限角的概念.会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同的角及构成的集合.2. 情感态度与价值观积极参加探究活动,提高学生的推理能力,并在此过程中培养自己勇于挑战的勇气和战胜困难的自信心,增强对数学的学习兴趣.【教学重难点】1. 重点任意角概念的理解;象限角的集合的书写.2. 难点终边相同角的集合的表示;能在给定的范围内求出与已知角终边相同的角.【教学过程】一、创设情境:1.趣味问答:放大镜不能放大什么东西?2.复习:初中是如何定义角的?①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.3.情境:生活中很多实例不在范围0º到360º内.体操运动员转体720º,跳水运动员向内、向外转体1080º……4.问题:这些例子不仅不在范围0º到360º,而且方向不同,有必要将角的概念推广到任意角,想想用什么办法才能推广到任意角?二、探索新知:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.②角的相关名称:③角的分类:正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角零角:射线没有做任何旋转形成的角练习:画出130°角与-130°角⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α”; ⑵零角的终边与始边重合,如果α是零角则α =0°; 始边终边 顶点 A O B2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.[例1]判断下列角分别属于第几象限角?⑴-30°19΄; ⑵410°; ⑶90°答:⑴第四象限角; ⑵第一象限角;⑶不属于任何象限.终边落在第几象限就是第几象限角;终边落在坐标轴上的角不属于任何象限.[牛刀小试]在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ -50°; ⑵ 405°; ⑶ 210°; ⑷ -200°答:⑴第四象限角;⑵第一象限角; ⑶第三象限角; ⑷第二象限角.3. 终边相同的角的表示:所有与α终边相同的角连同α在内可以构成一个集合:{}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和. 注意以下四点:①k 为整数;②α是任意角;③相等的角终边一定相同,但终边相同的角不一定相等.[例2] 写出与下列各角终边相同的角的集合S ,并把S 中在0°到360°间的角写出来并判断它们是第几象限角.⑴-40°; ⑵520 °解:(1) {}Z k k S ∈︒⋅+︒-==,36040|ββS 中在0°~360°间的角是-40°+1×360°=320°,为第四象限角.(2) {}Z k k S ∈︒⋅+︒==,360520|ββS 中在0°~360°间的角是520°+(-1)×360°=160°,为第二象限角.[牛刀小试]在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°答:⑴240°, 第三象限角; ⑵280°, 第四象限角三、回顾小结:1.请学生回顾本节课所学过的知识内容有哪些?你知道角是如何推广的吗?2.象限角是如何定义的呢?3.你熟练掌握具有相同终边角的表示了吗?四、课后作业1.写出终边在y 轴上的角的集合.。
【参考教案】《任意角》(人教)第一章:任意角的概念与表示方法1.1 任意角的概念引导学生回顾角度的概念,引入终边相同的角。
通过图形和实际例子,让学生理解任意角的概念。
1.2 任意角的表示方法介绍用角度制表示任意角的方法。
引导学生学习用弧度制表示任意角。
让学生通过练习,掌握任意角的表示方法。
第二章:任意角的分类2.1 象限角引导学生学习象限角的概念。
通过图形和实际例子,让学生理解第一象限角、第二象限角、第三象限角和第四象限角的定义。
2.2 轴线角引导学生学习轴线角的概念。
通过图形和实际例子,让学生理解轴线角的定义。
第三章:任意角的三角函数定义3.1 正弦函数的定义引导学生学习正弦函数的概念。
通过图形和实际例子,让学生理解正弦函数的定义。
3.2 余弦函数的定义引导学生学习余弦函数的概念。
通过图形和实际例子,让学生理解余弦函数的定义。
3.3 正切函数的定义引导学生学习正切函数的概念。
通过图形和实际例子,让学生理解正切函数的定义。
第四章:任意角的三角函数性质4.1 正弦函数的性质引导学生学习正弦函数的性质。
通过图形和实际例子,让学生理解正弦函数的性质。
4.2 余弦函数的性质引导学生学习余弦函数的性质。
通过图形和实际例子,让学生理解余弦函数的性质。
4.3 正切函数的性质引导学生学习正切函数的性质。
通过图形和实际例子,让学生理解正切函数的性质。
第五章:任意角的三角函数在坐标系中的应用5.1 在直角坐标系中的应用引导学生学习任意角的三角函数在直角坐标系中的应用。
通过图形和实际例子,让学生理解任意角的三角函数在直角坐标系中的应用。
5.2 在极坐标系中的应用引导学生学习任意角的三角函数在极坐标系中的应用。
通过图形和实际例子,让学生理解任意角的三角函数在极坐标系中的应用。
第六章:任意角的三角恒等式6.1 和角公式引导学生学习两角和的正弦、余弦公式。
通过图形和实际例子,让学生理解两角和的正弦、余弦公式的推导和应用。
6.2 差角公式引导学生学习两角差的正弦、余弦公式。
【参考教案】《任意角》(人教)第一章:任意角的概念与表示方法1.1 任意角的概念1. 引导学生回顾角度的定义,复习锐角、直角、钝角的概念。
2. 引入“任意角”的概念,解释任意角是指大于0°且小于或等于360°的角。
1.2 任意角的表示方法1. 讲解如何用度数表示任意角,例如:一个任意角可以表示为375°。
2. 引导学生理解任意角可以分为锐角、直角、钝角三种类型。
第二章:任意角的度量与计算2.1 任意角的度量1. 介绍量角器的使用方法,示范如何测量任意角的度数。
2. 学生分组练习,测量不同角度的任意角,并记录结果。
2.2 任意角的计算1. 讲解如何计算两个任意角的和、差、乘积、除法。
2. 引导学生运用公式进行计算练习,例如:A + B = (A的度数+ B的度数)°。
第三章:任意角的性质与变化3.1 任意角的性质1. 引导学生探讨任意角的性质,如:任意角的对边相等、相邻角互补等。
2. 学生通过实例验证这些性质,并记录在教案中。
3.2 任意角的变化1. 讲解如何通过旋转或翻转改变任意角的大小。
2. 学生进行实际操作,观察任意角的变化,并记录在教案中。
第四章:任意角的应用4.1 任意角在几何中的应用1. 引导学生回顾几何中任意角的概念和性质。
2. 学生举例说明任意角在几何中的应用,如:计算三角形内角和、证明角度相等等。
4.2 任意角在生活中的应用1. 引导学生思考任意角在生活中的应用场景。
2. 学生举例说明任意角在生活中的应用,如:测量角度、设计建筑等。
第五章:任意角的综合练习5.1 综合练习题1. 设计一组综合练习题,包括任意角的表示、度量、计算、性质和应用等方面的内容。
2. 学生独立完成练习题,教师进行讲解和解答。
5.2 小组讨论与总结1. 学生分组讨论在练习过程中遇到的问题和解决方法。
2. 每组选代表进行总结,分享学习心得和经验。
第六章:任意角的弧度制6.1 弧度制的引入1. 讲解弧度制的概念,解释为什么用弧度制表示角度。
课时1任意角(教学案)
【教学目标】
1. 了解任意角的定义,了解其范围。
2. 掌握任意角的转角。
3. 掌握任意角的度量单位及其互换。
4. 用三角函数表示任意角的方法。
一、导入(5分钟)
1、出示“任意角”的定义:角度大于 0 度和小于 360 度的角称为任意角。
2、通过提问学生介绍一些角度范围(如锐角、直角、钝角等)。
二、新课展现(15分钟)
1、任意角的转角
1)正向旋转:将起始边沿逆时针转到终止边上的转角。
1)圆的一周为 360 度。
2)180 度是一条直线的角度。
3)度与弧度的转换:
① 角度制到弧度制的转换公式:弧度 = 度数× π / 180。
1)辐角和三角函数:由极角为辐角的点所对应的单位圆上矢量,其横坐标和纵坐标分别是该点所对应的余弦和正弦。
2)任一点的三角函数值:此点的坐标让一个半径为 1 的圆统治着。
此点与圆心O所形成的角,其三角函数值就是该点的横坐标和纵坐标。
三角函数的定义域为角度。
四、操练(10分钟)
完成以下题目
1、已知辐角α∈[0,π],D(cosα,sinα), 求tanα 的值。
A. 3/5
B. 4/5
C. 5/3
D. 5/4
3、已知辐角α 单位为弧度,则 2 sinα + 2 cos2α =()。
2、任意角的转角。
转角分为逆向旋转和正向旋转。
4、用三角函数表示任意角的方法。
任意角的三角函数值可以写成其所对应的点的半径为1的单位圆上坐标的横纵坐标。
任意角教案教案标题:任意角教案目标:1. 理解任意角的概念及其特性;2. 掌握任意角的度量方法;3. 能够运用任意角的知识解决相关问题。
教学重点:1. 任意角的定义与特性;2. 任意角的度量方法。
教学难点:1. 运用任意角的知识解决相关问题。
教学准备:1. 教师准备:黑板、白板、彩色粉笔/白板笔、投影仪;2. 学生准备:课本、笔记本。
教学过程:Step 1:导入(5分钟)教师通过提问的方式引入本节课的主题“任意角”。
例如:“在平面几何中,我们学过的角都是小于180度的,那么有没有大于180度的角呢?请思考一下。
”Step 2:概念解释与讨论(10分钟)教师简要解释任意角的概念,并与学生进行互动讨论。
教师可以使用示意图或实际物体来帮助学生理解。
例如:“任意角是指角的度数可以是任意实数,可以大于180度也可以小于-180度。
请举例说明任意角的概念。
”Step 3:任意角的度量方法(15分钟)教师介绍任意角的度量方法,包括弧度制和角度制。
教师通过实例演示如何将角度转化为弧度,并要求学生进行练习。
例如:“请将60度转化为弧度制。
”教师还可以提供一些常见角度与弧度的对应关系供学生记忆。
Step 4:练习与讨论(15分钟)教师出示一些与任意角相关的问题,要求学生独立或小组合作解决。
学生在解决问题的过程中,教师可以适时给予指导和帮助。
例如:“已知一个角的度数为240度,求其对应的弧度。
”学生可以通过运用所学的知识进行计算和推理。
Step 5:拓展应用(10分钟)教师提供一些与实际生活或其他学科相关的问题,要求学生运用任意角的知识进行解答。
例如:“航空飞行员在飞行中需要进行导航,如果飞机的航向角为-30度,飞行员需要调整飞机的方向角多少度才能保持直飞目标?”学生可以通过应用任意角的知识解决这类问题。
Step 6:总结与反思(5分钟)教师对本节课的内容进行总结,并与学生一起回顾本节课的学习收获和困难。
教师可以提出一些问题供学生思考和讨论。
教学单元第 5章三角函数教学内容 5.1.1任意角教学目标学习目标1.理解任意角的概念.2.掌握终边相同角的含义及其表示.(重点、难点)3.掌握轴线角、象限角的表示方法.(难点、易混点)核心素养1.了解任意角的概念,区分正角、负角与零角,培养直观想象的核心素养;2.理解并掌握终边相同的角的概念,能写出终边相同的角所组成的集合,提升数学抽象的核心素养;3.了解象限角的概念,强化数学抽象的核心素养。
教学重难点重点:任意角的概念,象限角的表示;难点:终边相同角的表示,角的集合书写。
学情分析学生过去接触的角都在0°~360°,关于角的认识形成一定的思维定势,这就需要通过实际问题,如时针与分针、体操等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。
教学过程教学环节教师活动学生活动设计意图情境导入观看视频,想狗蛋谜题。
引入大于360度的角以及旋转角的概念【提示】两圈=360°×2=720°360°看成一圈通过复习初中角的概念,引入本节新课,建立知识间的联系,提高学生概括、类比推理的能力。
通过复习初中正当狗蛋苦恼怎么会有大于360°的角时,狗蛋的爸爸打开了电视,电视正播放着奥运会跳水,只见运动员在空中旋转两圈后落入水中,解说员说这叫在空中转体720°,狗蛋幡然醒悟……角的概念,引入本节新课。
建立知识间的联系,提高学生概括、类比推理的能力。
新知讲授【知识一:任意角的概念】1.角的概念:规定:一条射线绕其端点按逆时针方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做负角;如果一条射线没有做任何旋转,就称它形成了一个零角.这样,我们就把角的概念推广到了任意角.2.相等角与相反角①把角的概念推广到了任意角(any angle),包括正角、负角和零角.设角α由射线OA绕端点O旋转而成,角β由射线O′A′绕端点O′旋转而成.如果它们的旋转方向相同且旋转量相等,那么就称α=β.②设α,β是任意两个角.我们规定,把角α的终边旋转角β,这时终边所对应的角是α+β.③把射钱OA绕端点O按不同方向旋转相通过探究学习,培养学生数学抽象的核心素养。
【参考教案】《任意角》(人教)第一章:任意角的概念一、教学目标:1. 让学生了解任意角的概念,理解平角和周角的特点。
2. 培养学生运用图形直观认识角的能力。
3. 引导学生运用数学语言描述角的大小。
二、教学内容:1. 任意角的概念:大于0°而小于180°的角叫做锐角;等于180°的角叫做平角;等于360°的角叫做周角。
2. 角的度量:用度、分、秒表示角的大小。
三、教学重点与难点:1. 重点:任意角的概念及分类。
2. 难点:角的度量及运用。
四、教学方法:1. 采用直观演示法,让学生通过观察图形,理解任意角的概念。
2. 运用讲授法,讲解角的度量方法及运用。
3. 引导学生运用小组讨论法,探讨任意角的特点。
五、教学步骤:1. 导入新课:通过展示各种角的照片,引导学生思考:这些角有什么共同特点?2. 讲解任意角的概念:介绍锐角、平角、周角的定义,引导学生理解任意角的概念。
3. 讲解角的度量:讲解度、分、秒的换算方法,示范如何度量角的大小。
4. 练习与巩固:让学生自主度量一些角的大小,并与同学交流分享。
5. 总结与拓展:引导学生总结本节课所学内容,提出问题:还有没有其他的角分类?激发学生进一步学习的兴趣。
第二章:任意角的性质一、教学目标:1. 让学生了解任意角的性质,掌握角的运算规律。
2. 培养学生运用图形直观认识角的能力。
3. 引导学生运用数学语言描述角的大小。
二、教学内容:1. 任意角的性质:角的大小与边的长短无关,与开口的大小有关。
2. 角的运算规律:角的和、差、倍、分等运算。
三、教学重点与难点:1. 重点:任意角的性质及运用。
2. 难点:角的运算规律及应用。
四、教学方法:1. 采用直观演示法,让学生通过观察图形,理解任意角的性质。
2. 运用讲授法,讲解角的运算规律及运用。
3. 引导学生运用小组讨论法,探讨任意角的性质。
五、教学步骤:1. 导入新课:通过展示一些角的照片,引导学生思考:这些角有什么共同特点?2. 讲解任意角的性质:介绍角的大小与边的长短无关,与开口的大小有关,引导学生理解任意角的性质。
《任意角》教学设计第一篇:《任意角》教学设计《任意角》教学设计教材分析:本小节是人教版A版必修四第一章第一节的内容。
角的概念的考查多结合三角函数的基础知识进行,对求角的集合的交、并等计算技能的考查,有一定综合性,涉及的知识点较多,不过多比较浅显。
三角函数的意义与三角函数的符号一般在最基本的层面上用选择、填空题的形式考查。
此节是三角函数的基础,在锐角三角函数的基础上,通过具体事例,再利用单位圆进一步研究任意角的三角函数,并用集合与对应的语言来刻画。
这样,在研究三角函数之前,就有必要先将角的概念推广,从而建立角的集合与实数集之间的对应关系。
信息技术的使用可动态表现角的终边旋转的过程,有利于学生观察到角的变化与终边位置的关系,进而更好地了解任意角和弧度的概念,体会角的“周而复始”的变化规律,为研究三角函数的周期性奠定基础。
一、教学目标:1、知识与技能(1)推广角的概念、引入大于的概念;(2)理解任意角并掌握正角、负角、零角的定义;(3)理解象限角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义;(4)掌握所有与角终边相同的角(包括角)的表示方法;角和负角,要求学生掌握用“旋转”定义角(5)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识;(6)揭示知识背景,引发学生学习兴趣;(7)树立运动变化观点,深刻理解推广后的角的概念;2、过程与方法通过创设情境:“转体三周半,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,说明角不够用了,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法;及象限角的含义.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、电子白板,粉笔,三角板四、教学设计【创设情境】思考:1、初中时我们是如何定义一个角的?角的范围是多少?2、如果你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度?学生活动:1、①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.范围(0°,360°)2、[实际操作]看看我们教室的时钟,会发现,校正过程中分针需要顺时针方向或逆时针方向旋转,有时转不到一周,有时转一周以上,这就是说之前的之间的角已经不够用了,这就是我们这节课要研究的主要内容——任意角设计意图:形象,具体的让学生感知角可以通过终边不停的旋转得到,以前的角度范围明显不满足现实要求,所以要进一步推广【探究新知】1、初中时,角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1一条射线由原来的位置着它的端点按逆时针方向旋转到终止位置线叫做角的始边,叫终边,射线的端点,就形成角叫做叫,绕.旋转开始时的射的顶点.记做:∠AOB或说明:在不引起混淆的前提下,“角”或“”可以简记为.图12、再如在体操比赛中我们经常听到这样的术语:“转体720”(即转体2周),“转体1080o”(即转体3周)、自行车车轮、两个齿轮旋转的示意图等都是按照不同方向旋转时成不同的角,要准确地描述这些角,不仅要知道角形成的结果,而且要知道角形成的过程,即必须要知道旋转量,又要知道旋转方向。
任意角教案一、教學目標1. 理解何謂任意角。
2. 掌握任意角的度量方法。
3. 能夠在坐標平面上繪製任意角。
4. 學會尋找任意角的正弦、餘弦和正切值。
二、教學重點1. 任意角的度量方法。
2. 坐標平面上的任意角的表示。
3. 任意角的三角函數值的求解。
三、教學過程1. 引入任意角的概念。
以圓視角為例,通過比較角在圓內表示,擁有多個圓心角相等的位置,即引入了任意角的概念。
2. 任意角的度量方法。
先介紹角度的度量,即度。
接著介紹弧度的度量方式,即引入弧度的概念。
並說明兩者之間的換算關係。
3. 坐標平面上的任意角的表示。
以直角坐標系為例,對任意角進行表示。
首先介紹角的頂點,然後介紹角的邊,最後介紹角的旋轉方向。
4. 任意角的三角函數值的求解。
先介紹正弦、餘弦、正切的定義,然後引入三角函數圖表,解析各角度的三角函數值,對特殊角的值進行強調。
四、教學延伸1. 為了幫助學生更好地理解任意角,可以輔助使用一些圖形或動畫來展示。
2. 可以通過解題來幫助學生更好地理解任意角與三角函數之間的關係。
3. 可以進一步訓練學生如何使用三角函數來計算與任意角相關的問題,如角度間的關係問題等。
五、教學反思1. 教學中應注意對於任意角的概念解釋清晰,讓學生理解何謂任意角。
2. 在教授任意角的度量方法時,應說明清楚度和弧度的關係,以及換算關係,避免學生對概念理解上的困惑。
3. 應注重培養學生對三角函數值的計算能力,透過解題以及計算訓練等方式加強學生的計算能力。
【参考教案】《任意角》(人教)一、教学目标1. 让学生理解任意角的概念,掌握任意角的定义及其表示方法。
2. 培养学生运用任意角解决实际问题的能力。
3. 引导学生通过观察、思考、交流,培养学生的抽象思维能力和创新意识。
二、教学内容1. 任意角的概念及其表示方法。
2. 任意角的分类。
3. 任意角的应用。
三、教学重点与难点1. 重点:任意角的概念及其表示方法。
2. 难点:任意角的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究任意角的概念和表示方法。
2. 运用实例分析法,让学生学会运用任意角解决实际问题。
3. 利用小组合作学习法,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生认识角的概念。
2. 自主学习:让学生自主探究任意角的概念和表示方法。
3. 课堂讲解:讲解任意角的分类及其应用。
4. 实例分析:分析实际问题,让学生学会运用任意角解决问题。
5. 练习巩固:布置练习题,让学生巩固所学知识。
6. 课堂小结:总结本节课的主要内容,强调任意角的概念和表示方法。
7. 课后作业:布置作业,巩固任意角的知识。
8. 教学反思:根据学生的反馈,调整教学方法,提高教学效果。
六、教学评价1. 评价学生对任意角概念的理解和表示方法的掌握程度。
2. 评价学生运用任意角解决实际问题的能力。
3. 评价学生在小组合作学习中的表现,包括团队协作能力和沟通能力。
七、教学资源1. 教材:人教版高中数学《三角函数》单元。
2. 教具:黑板、粉笔、多媒体教学设备。
3. 参考资料:与任意角相关的学术论文、教学案例等。
八、教学进度安排1. 第1-2课时:讲解任意角的概念和表示方法。
2. 第3-4课时:讲解任意角的分类及其应用。
3. 第5-6课时:实例分析,让学生学会运用任意角解决实际问题。
4. 第7-8课时:练习巩固,布置作业。
5. 第9-10课时:课堂小结,布置课后作业。
九、教学拓展1. 引导学生深入研究任意角的性质和特点。
1.1.1 任意角
科目:高一数学 授课教师:弥渡二中 高路洪
一、教学目标:
1.理解并掌握正角、负角、零角的定义.
2.理解任意角以及象限角的概念.
3.掌握所有与 角终边相同的角的表示方法.
二、学情分析:
三、教学重难点:
重点:将0360范围内的角推广到任意角.
难点:用集合来表示终边相同的角
四、突破方法:
在平面内建立适当的坐标系,通过数形结合来认识
角的几何表示和终边相同的角集合.
五、教学过程:
(一)创设情景,引入课题:
1、提问:初中所学的角是如何定义的?角的取值范围如何?
(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;范围:0°~360°)
2.课件出示跳水与体操比赛以及齿轮传动的图片,感受生活中与角有关的现象。
(体操:“转体720”,“转体1080”。
齿轮:被动轮与主动轮的旋转方向(顺、逆时针).)
【设计意图:创设课堂情境,使学生产生认知上的冲突,说明角的概念的推广的必要性,同时激发学生的学习兴趣和主动探究的精神.】
强调:虽然我们过去学习了0°~360°范围内的角,但在上述问题中我们发现了仅有0°~360°范围内的角是不够的,我们必须将角的概念进行推广. (板书课题)
(二)探究新知,讲授新课:
1.任意角的相关概念:
角的定义:角可以看成平面内内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.
角的名称:
【齿轮:被动轮与主动轮的旋转方向(顺、逆时针)】
顶点 A
O
角的分类: 正角:按逆时针方向旋转所形成的角叫正角
负角:按顺时针方向旋转所形成的角
零角:一条射线没有作任何旋转所形成的角
强调说明:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
2、象限角
结合上述任意角的定义,教师进一步提出问题:
问题1:度量一个角的大小,既要考虑旋转方向,又要考虑旋转量,通过上述规定,你能用图形表示210,210,660αβγ==-=-这些角吗?你能总结一下作图的要点吗?
(教师演示作图,让学生概括作图要点)
画图表示一个大小一定的角,先画一条射线作为角的始边,再由角的正负决定旋转方向,再由角的绝对值大小确定角的旋转量,画出角的终边,并用带箭头的螺旋线加以标注.
问题2:如果把上述角放在直角坐标系中,那么怎样放比较方便、合理? (让学生画图、探究、讨论和交流给出合理的方法)
【设计意图:让学生自行尝试培养学生处理数学问题的动手能力及其猜想、探究能力】
(课件出示象限角的概念)
定义:若将角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.
(练习:试在坐标系中表示300°、390°、-330°角,并判别在第几象限?) (讨论:角的终边在坐标轴上,属于哪一个象限?)
结论:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角(或轴线角).
【设计意图:让学生明确角的概念推广以后,初中的有些相关概念也要发生改变.使学生进一步理解象限角的概念,培养学生的数形结合能力,为下面引入终边相同的作好铺垫.】
3、终边相同的角
(1)请在坐标轴上画出30°,390°,-330°,并找出它们的共同点?
(三个角的终边相同,两两之间相差360的整数倍)
结论:具有这样特点的角我们把它称为终边相同的角。
与30终边相同的角的一般形式为30360,k k N +∈
2)讨论:与60°终边相同的角有哪些?都可以用什么代数式表示?写成集合呢?
(3)讨论:与α终边相同的角用集合如何表示?
结论:与α角终边相同的角,都可集合表示为: {}
360,S k k N ββα==+∈
强调:(1)k N ∈;
(2)α是任意角;
(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360的整数倍.
(三)、例题精讲,深化概念:
1、 出示例1:写出与60角终边相同的角的集合,并写出-720°~360°间角. (讨论计算方法:直接写,分析k 的取值 →试练→订正)
2、讨论:上面如何求k 的值? (解不等式法)
3、练习:写出终边在x 轴上的角的集合,y 轴上呢?坐标轴上呢?第一象限呢?
(四)、当堂检测
1、下列各角:-50°,405°,210°,-200°,-450°分别是第几象限的角?
2、以下四个命题:
①第一象限的角一定不是负角
②小于90°的角是锐角
③锐角一定是第一象限的角
④第二象限的角是钝角
其中不正确的命题个数是( )
A.1个
B.2个
C.3个
D.4个
(课件展示)
(五)、课堂小结:
1、角的分类: 正角:按逆时针方向旋转所形成的角叫正角
负角:按顺时针方向旋转所形成的角
零角:一条射线没有作任何旋转所形成的角
2、象限角
1)置角的顶点于原点
2)始边重合于X 轴的非负半轴
3)终边落在第几象限就是第几象限角
3、终边与 角α相同的角 {}360,S k k N ββα==+∈
(六)、作业设计
1.课本p5页练习3、4做在课本上;
2. 课本p9页习题1.1A 组1、2做在作业本上;
3.完成《全优设计》的相关练习.。