第二章 分子结构
- 格式:pdf
- 大小:1.09 MB
- 文档页数:73
第二章分子结构与性质一.共价键1.特点:具有性和性(无方向性)2.分类:(按原子轨道的重叠方式)(1)δ键:(以“”重叠形式)a.特征:b.种类:S-S δ键. S-P δ键. P-Pδ键(2)π键:(以“”重叠形式),特征:3.判断共价键类型的一般规律是:共价单键中共价双键中共价三键中【练习】1.下列说法正确的是()A. π键是由两个p原子轨道“头碰头”重叠形成B. δ键是镜面对称,而π键是轴对称C. 乙烷分子中的键全为δ键而乙烯分子中含δ键和π键D. H2分子中含δ键而Cl2分子中含π键2. 下列说法正确的是()A. 共价化合物中可能含有离子键B. 非金属元素之间不能形成离子键C. 气体分子单质中一定存在非极性共价键D. 离子化合物中可能含有共价键二.键参数1.键能的定义:2.键长与共价键的稳定性的关系:键长越短,往往键能,这表明共价键。
3. 决定共价键的稳定性,是决定分子的立体构型的重要参数。
【练习】1.关于键长、键能和键角,下列说法不正确的是()A.键角是描述分子立体结构的重要参数B.键长的大小与成键原子的半径和成键数目有关C.键能越大,键长越长,共价化合物越稳定D.键角的大小与键长、键能的大小无关2.下列说法正确的是()A.键能越大,表示该分子越容易受热分解B.共价键都具有方向性C.在分子中,两个成键的原子间的距离叫键长D.H-Cl的键能为431.8kJ/mol ,H-Br的键能为366 kJ/mol 这说明HCl比HBr分子稳定3.已知H-H键能为436 kJ/mol ,H-N键能为391 kJ/mol ,根据化学方程式高温、高压N2+3H22NH3,1molN2与足量H2反应放出的热量为92.4 kj/mol ,则N —N的催化剂键能是()A.431 kJ/molB.945.6 kJ/molC.649 kJj/molD.896 kJ/mol三.等电子体相同和相同的粒子具有相似的化学键特征和相同的空间构型【练习】人们发现等电子体的空间结构相同,则下列有关说法中正确的是()A.CH4和NH4+是等电子体,键角均为60°B.NO3+和CO32-是等电子体,均为平面正三角形结构C.H2O+和PCl3是等电子体,均为三角锥形结构D.B3N3H6和苯是等电子体,B3N3H6分子中不存在“肩并肩”式重叠的轨道四.价层电子对互斥理论1.价层电子对数=2.孤对电子数的计算方法:3.VSEPR模型和分子的立体构形的推测例:H2O 孤对电子数为,δ键数,价层电子对数为,VSEPR模型,略去VSEPR模型中的中心原子上的孤对电子,因而H2O分子呈形。
第二章分子结构与性质一、引言分子是物质的基本单位之一,由两个或者更多的原子通过共享电子而结合形成。
分子的结构与性质密切相关,通过研究分子结构可以了解其性质和功能。
本章将主要介绍分子结构的相关概念、分子的构象、分子的极性、分子之间的相互作用和分子的性质等内容。
二、分子结构的相关概念1.原子半径:原子半径是指原子中心到外层电子的平均距离,原子半径的大小与元素周期表上的位置有关,一般来说,周期表上原子半径随着周期数的增加而减小,随着主族号的增大而增大。
2.共价半径:共价半径是指两个原子之间共用电子对的核间距离。
共价半径随原子键数量的增加而减小,原子之间的共价半径差异越小,化学键越强。
3.共面性:共面性是指分子中原子或者键的排列方式是否在同一个平面上。
分子中的键角、键的扭曲程度等都与分子的共面性有关。
三、分子的构象1.构象的定义:构象是指分子在空间中的不同排列方式。
构象的不同通常是由于分子的键的旋转、转动和振动等造成的。
2.键角:键角是指构成分子化学键的原子之间的角度。
分子的键角直接影响分子的形状和性质。
3.立体异构体:立体异构体是指分子的空间构型不同,但是其分子式相同的化合物。
立体异构体常见的有顺式异构体和反式异构体。
四、分子的极性1.极性分子:极性分子是指分子中原子之间存在电荷分布不均匀的状况。
极性分子通常由极性键组成,极性键通常由一对电负性不同的原子组成。
2.极性键:极性键是指两个原子之间存在电子富集和电子贫集的情况。
在一个极性键中,电子富集的原子被称为δ-极性原子,而电子贫集的原子被称为δ+极性原子。
3.极性分子的特点:极性分子通常具有分子中心的电荷偏离、分子中心带电性和极性键的方向性等特点。
五、分子之间的相互作用1.范德华作用力:范德华作用力是分子之间由于电子的运动而产生的瞬时极化现象。
范德华作用力是分子之间最为普遍和重要的相互作用力。
2.氢键:氢键是指分子中氢原子与较电负的原子(如氧、氮、氟等)形成的相互作用力。
第⼆章分⼦结构第⼆章分⼦结构教学要求1、认识化学键的本质;2、掌握价键理论的内容;会⽤价键理论解释共价键的特征,会⽤价电⼦对互斥理论和杂化轨道理论解释简单的分⼦结构;3、初步认识分⼦轨道理论;4、认识分⼦间作⽤⼒和氢键的本质,会⽤其解释对物质性质的影响。
教学重点共价键的形成和本质;现代价键理论,价层电⼦对互斥模型和杂化轨道理论,同核双原⼦分⼦的分⼦轨道构成与意义;分⼦间的作⽤⼒和氢键。
教学难点价层电⼦对互斥理论,分⼦轨道理论。
教学时数9学时教学内容2.1 经典的Lewis学说2.2 价键理论2.3杂化轨道理论2.4分⼦轨道理论2.5价层电⼦对互斥理论2.6共价分⼦的性质2.7分⼦间⼒和氢键教学⽅法与媒体讲解,ppt展⽰。
引⾔通过上⼀章的学习,我们知道只有研究物质的微观结构,才能从本质上更深⼊的理解物质的性质及其变化规律。
本章内容是在原⼦结构的基础上,围绕以共价键结合的分⼦讨论有关共价键的各种理论模型以及分⼦的各种性质。
化学键:通常把分⼦或晶体中相邻原⼦之间(或离⼦)强烈的相互作⽤。
化学键有共价键、离⼦键、⾦属键。
分⼦结构通常包括:分⼦中原⼦的化学键,分⼦的空间构型,分⼦的结构与物质的物理性质、化学性质。
2.1 Lewis理论(路易斯1916年)1、电⼦配对理论---共⽤电⼦对成键。
1916年,美国的Lewis提出共价键理论,认为分⼦中的原⼦都有形成稀有⽓体电⼦结构的趋势,求得本⾝的稳定。
⽽达到这种结构,并⾮通过电⼦转移形成离⼦键来完成,分⼦中原⼦之间通过共享电⼦对⽽使每⼀个原⼦都具有稀有⽓体的稳定的电⼦结构,也称为⼋隅律规则。
路易斯结构式:把⽤短棍表⽰共价键,同时⽤⼩⿊点表⽰⾮键合的“孤对电⼦”的结构式叫做路易斯结构式。
2、Lewis学说成绩:⑴解释了⼀些简单的⾮⾦属单质和化合物分⼦的形成过程;⑵指出了共价键与离⼦键的差异。
3、Lewis学说的局限性:⑴未能阐明共价键的本质及特征,为什么都带负电荷的2个电⼦不是互相排斥,⽽配对成键?为什么共价键有⽅向性?⑵⼋偶体规则,例外很多。
第二章分子结构与性质一.共价键1.共价键的本质及特征共价键的本质是在原子之间形成共用电子对,其特征是具有饱和性和方向性。
2.共价键的类型①按成键原子间共用电子对的数目分为单键、双键、三键。
②按共用电子对是否偏移分为极性键、非极性键。
③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性。
3.键参数①键能:气态基态原子形成1 mol化学键释放的最低能量,键能越大,化学键越稳定。
②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。
③键角:在原子数超过2的分子中,两个共价键之间的夹角。
④键参数对分子性质的影响键长越短,键能越大,分子越稳定.4.等电子原理原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。
二.分子的立体构型1.分子构型与杂化轨道理论杂化轨道的要点当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。
杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同。
2分子构型与价层电子对互斥模型价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。
(1)当中心原子无孤对电子时,两者的构型一致;(2)当中心原子有孤对电子时,两者的构型不一致。
3.配位化合物(1)配位键与极性键、非极性键的比较(2)配位化合物①定义:金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物。
②组成:如[Ag(NH 3)2]OH ,中心离子为Ag +,配体为NH 3,配位数为2。
三.分子的性质2.分子的极性(1)极性分子:正电中心和负电中心不重合的分子.(2)非极性分子:正电中心和负电中心重合的分子.3.溶解性(1)“相似相溶”规律:非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂.若存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好.(2)“相似相溶”还适用于分子结构的相似性,如乙醇和水互溶,而戊醇在水中的溶解度明显减小.4.手性具有完全相同的组成和原子排列的一对分子,如左手和右手一样互为镜像,在三维空间里不能重叠的现象.5.无机含氧酸分子的酸性无机含氧酸可写成(HO)m RO n,如果成酸元素R相同,则n值越大,R的正电性越高,使R—O—H 中O的电子向R偏移,在水分子的作用下越易电离出H+,酸性越强,如HClO<HClO2<HClO3<HClO4.。
第二章分子结构2-3 σ键可由s-s、s-p和p-p原子轨道“头碰头”重叠构建而成,试讨论LiH(气态分子)、HCl、Cl2分子里的σ键分别属于哪一种?答:对LiH分子:Li的电子排布1s22s1;H的电子排布1s1∴形成LiH分子时,Li的2s1电子与H的1s1电子配对成键;或Li的2s轨道电子云与H的1s轨道电子云“头碰头”地重叠形成σ键,所以该σ键称为s-s型σ键。
2s1sLi HLi-Hs-s型σ键表示由两个s轨道电子云重叠形成的σ键。
类似分析,HCl分子中,H 1s1;Cl 1s22s22p63s23p5形成共价键时,H的1s电子云与Cl的3p轨道电子云“头碰头”重叠,即s-p型σ键。
1sH3pCl H-Cl而Cl2分子中,Cl 1s22s22p63s23p5Cl 与Cl形成共价键时,2个3p轨道“头碰头”地重叠,即p-p型σ键。
3pCl3pClCl-Cl2-5 用VSEPR模型讨论CO2、H2O、NH3、CO32-、PO33-、PO3-、PO43-的分子模型,画出它们的立体结构,用短横代表分子的σ键骨架,标明分子构型的几何图形名称。
答:①CO2分子:为AX2E m型m=(C的族价-O的化合价·O的个数)·1/2=(4-2×2)=0∴应为AX2型(∵m=0,∴无E m项),即AY2型根据VSEPR理论:AY2型应为直线分子∴CO2分子为直线型,O=C=O②H 2O 分子:为AX 2E m 型,其m 为m=(O 的族价-H 的化合价·H 的个数)·1/2=(6-1×2)=2 (即二个孤对) ∴ 应为AX 2E 2型,即AY 4型根据VSEPR 理论:AY 4型应为正四面体不考虑孤对,实际的分子应为弯型(角型)③NH 3分子:为AX 3E m 型m=(N 的族价-H 的化合价·H 的个数)·1/2=(5-1×3)=1(即一个孤对) ∴ 应为AX 3E 1型,即AY 4型根据VSEPR 理论:AY 4型应为正四面体H H不考虑孤对,实际分子的几何图形应为三角锥型④CO 32-分子:为AX 3E m 型,m=(C 的族价-O 的化合价·O 的个数+离子的电荷)·1/2=(4-2×3+2)=0 (即没有孤对) ∴ 应为AX 3E 0型,即AY 3型根据VSEPR 理论:AY 3型应为平面三角形分子 ∴CO 32-分子的几何图形为平面三角形COOO120°120°2-⑤PO 33-:AX 3E mm=(P 的族价-O 的化合价·O 的个数+离子的电荷)·1/2=(5-2×3+3)=1 (即一对孤对) ∴ 应为AX 3E 1型,即AY 4型根据VSEPR 理论:AY 3型应为四面体OO 3-若不考虑孤对,PO 33-分子的实际几何图形为三角锥形⑥PO 3- :AX 3E mm=(P 的族价-O 的化合价·O 的个数+离子的电荷)·1/2=(5-2×3+1)=0 (即没有孤对) ∴ 应为AX 3E 0型,即AY 3型根据VSEPR 理论:AY 3型应为平面三角形分子 ∴PO 3-分子的几何图形为平面三角形POOO120°120°-⑦PO 43- :AX 3E mm=(P 的族价-O 的化合价·O 的个数+离子的电荷)·1/2=(5-2×4+3)=0 (即没有孤对)∴ 应为AX 3E 0型,即AY 4型根据VSEPR 理论:AY 3型应为四面体型离子OO3-2-9 借助VSEPR 模型、杂化轨道模型、π键与σ键、大π键以及等电子体等概念,讨论OF 2、ClF 3、SOCl 2、XeF 2、SF 6、PCl 5的分子结构。