向心加速度公式推导的几种方法
- 格式:doc
- 大小:79.00 KB
- 文档页数:5
高中物理中向心加速度的公式该如何推导?你好,我们来说说向心加速度的公式的几种推导方法:方法一:(课本上的方法)利用加速度的定义推导(又称矢量合成法):如上图所示:设小球在很短的时间t内从A运动到B,在时间t内速度变化为△v,因为△OAB∽△BDC(可自己证一下),所以有:△v/v=AB/R当t→0时,AB=弧AB所以:v=弧AB/t,a=△v/t所以a=v2/R补充:在矢量合成法中应用三角函数推导:如上图所示,物体自半径为r的圆周a匀速率运动至b,所经时间为△t,若物体在a、b点的速率为va=vb=v,则其速度的增量△v=vb-va=vb+(-va),由平行四边形法则作出其矢量图如图1.由余弦定理可得:(由于公式难于表述,用图片替代)可见当θ→0时,α=90°,即△v的方向和vb垂直,由于vb方向为圆周切线方向,故△v的方向指向圆心.因△v的方向即为加速度的方向,可见匀速圆周运动中加速度的方向指向圆心,方法二:利用运动的合成与分解推导(简称运动合成法)由于惯性, 小球有离开圆心沿切线运动的趋势, 而细线的拉力却拉着小球向圆心运动.这样小球运动可分解成沿切线方向的匀速直线运动和沿半径方向的初速度为零的匀加速直线运动设在很短的时间t内, 小球沿圆周从A到B,可分解为沿切线AC方向的匀速直线运动和沿AD方向初速度为零的匀加速直线运动.如图一:方法三:利用开普勒第三定律、万有引力定律和牛顿第二定律推导向心加速度设:质量为m的人造地球卫星以速率v在半径为r的近圆轨道上绕地球运行, 运行周期为T,地球质量为M.根据开普勒第三定律:T2/r3=k(k为常量)根据万有引力定律:F=GMm/r2对于圆周运动的物体有:T=2πr/v根据牛顿第二定律:a=F/m联立上述各式有:a=(GMk/4π2)×(v2/r)所以:a∝v2/r——上述三方法自己总结方法四:曲率圆法——来自百度贴吧方法五:类比法:设有一位置矢量r绕o点旋转,其矢端由a至b时发生的位移为△s (如图).若所经时间为△t,则在此段时间内的平均速率v=△s/△t,显然这个速率描述的是位置矢量矢端的运动速率,当△t趋近于零时,这个平均速率就表示位置矢量的矢端在某一时刻的即时速率,如果旋转是匀角速的,则其矢端的运动也是匀速率的,易知其速率:v=2πR/T(1)(1)式中t为旋转周期.再如图5是一物体由a至b过程中,每转过1/8圆周,速度变化的情况.现将其速度平移至图6中,容易看出图6和图5相类似,所不同的是图5表示的是位置矢量的旋转.,而图6则是速度矢量的旋转,显然加速度是速度的变化率,即a=△v/△t (2)由图6可知,这个速度变化率其实就是速度矢量矢端的旋转速率,其旋转半径就是速率v的大小,故联立(1)(2)两式就可得出结论:a=v2/r方向的判断:比较图5图6可以看出当△t→o时△v的方向和△s的方向相垂直.故加速度的方向和速度方向相垂直.。
圆周运动向心加速度公式推导(向心加速度公式的推导方法
ppt)
1、我没法画图,口述一下,你可以自己画了看看:在圆周上,取一小段圆弧AB,圆心为O,假设在A点速度为v1,在B 点速度为v2,那么v1,v2分别垂直于OA,OB,|v1|=|v2|=v。
2、把v2平移到跟v1起点相同的地方比较,可以发现v1跟
v2,以及v1,v2的差构成一个等腰三角形,顶角=角AOB,那么不难看出,当角AOB很小的时候,底边无限接近垂直于
v1,所以加速度也垂直于v1。
3、至于加速度大小,还是从这个等腰三角形中看,底边大小=2*v*sin(1/2角AOB),角AOB无限小就成了2*v*1/2*角
AOB=v*角AOB,从A到B时间为r*角AOB/v,所以加速度为速度的改变乘以时间=v1-v2/t=v^2/r。
4、推导中用到了正弦函数一个性质: x很小的时候,sin(x)越等于x。
5、在x越接近于0的时候,sin(x)/x越接近1。
这篇文章已经分享到这里了,希望对大家有帮助。
向⼼加速度的6个公式
向⼼加速度的公式:an=Fn/m=4π²R/T²=4π²f²R=v²/R=ω²R=vω。
向⼼加速度公式
an=Fn/m
=4π²R/T²=4π²f²R
=v²/R=ω²R=vω
上式中,an表⽰向⼼加速度,Fn表⽰向⼼⼒,m表⽰物体质量,v表⽰物体圆周运动的线速度(切向速度),ω表⽰物体圆周运动的⾓速度,T表⽰物体圆周运动的周期,f表⽰物体圆周运动的频率,R表⽰物体圆周运动的半径。
(ω=2π/T)
由⽜顿第⼆定律,⼒的作⽤会使物体产⽣⼀个加速度。
合外⼒提供向⼼⼒,向⼼⼒产⽣的加速度就是向⼼加速度。
可能是实际加速度,也可能是物体实际加速度的⼀个分加速度。
法向加速度
法向加速度⼜称向⼼加速度,在匀速圆周运动中,法向加速度⼤⼩不变,⽅向可⽤右⼿螺旋定则确定。
质点作曲线运动时,所具有的沿轨道法线⽅向的加速度叫做法向加速度。
数值上等于速度v的平⽅除曲率半径r,即v²/r;或⾓速度的平⽅与半径r的乘积,即ω²r。
其作⽤只改变物体速度的⽅向,但不改变速度的⼤⼩。
(于凤刚 推导整理) 向心加速度公式的推导两法
方法一:
加速度公式的推导关键注意:课本P 21“做一做”③如图5.5-4当角θ用弧度表示时,弧长QP 可以表示为。
当θ很小很小时(物理上定义为5o ),弧长与弦长没什么区别,所以此式也可以表示弦长。
这个关系也可以来计算矢量△v 的长度。
根据上述知识结合右图
设A B ==v v v
得: θ∆=v v (与QP=r θ同理) 根据a t ∆=∆v 及t
θω∆=∆ 得:
a t
θω∆=
=∆v v 又因为r ω=v 所以2a r ω=
方法二:
根据数学知识:当θ很小很小时(物理上定义为5o
),sin θθ≈(θ以弧度为单位的数值)。
在上图A B ∆、、v v v 矢量组成的三角形是等腰三角形,根据几何知识有, 2sin 2
θ∆∆=v v (设A B ==v v v ) 因为△θ很小很小,所以
sin
22
θθ∆∆= 故, θ∆=∆v v
根据a t ∆=∆v 及t
θω∆=∆ 得:
a t
θω∆=
=∆v v 又因为r ω=v 所以
2
a r ω=。
向心加速度公式的几种推导向心加速度公式的几种推导向心加速度是物体在做匀速圆周运动时所受到的加速度,它与物体的速度和半径有关。
向心加速度的公式可以通过不同的推导方法得出。
本文将介绍几种常见的推导方法,解释向心加速度的概念和公式。
第一种推导方法是通过定义力的方向来推导。
在物体做匀速圆周运动时,它受到一个向心力的作用,该力的方向指向圆心。
根据牛顿第二定律,物体的加速度与受力成正比。
因此,我们可以得到向心加速度的方向是指向圆心的。
根据定义,向心加速度的大小等于速度的平方除以半径,表示为a = v^2 / r,其中a是向心加速度,v是速度,r是半径。
第二种推导方法是利用速度的变化率来推导。
在匀速圆周运动中,物体的速度大小是恒定的,但其方向在不断变化。
为了描述速度的变化率,我们引入一个新的物理量,即角速度。
角速度表示单位时间内物体在圆周运动中所转过的角度。
根据等速圆周运动的性质,角速度与速度的大小之间存在一定的关系。
我们可以将速度的大小表示为v = ωr,其中v是速度,ω是角速度,r是半径。
由于角速度的单位是弧度/秒,所以速度的单位是米/秒。
然后,我们对速度对时间求导,得到加速度的大小。
根据导数的链式法则,加速度大小的推导公式为a = d(v)/dt = d(ωr)/dt = r(dω/dt)。
因为匀速圆周运动中角速度不变,所以dω/dt = 0,即加速度的大小为零。
但由于速度的方向在不断变化,所以加速度的方向是向心方向。
第三种推导方法是使用几何关系来推导。
考虑一个物体在半径为r的圆周上运动,它在1秒内沿圆周运动一周。
我们知道圆周的周长等于2πr,所以物体运动的距离为2πr。
另外,我们知道速度的定义为单位时间内所运动的距离。
所以,速度的大小等于运动的距离除以时间,即v = 2πr / 1 = 2πr。
根据速度的定义和向心加速度的定义,我们可以得到a = v^2 / r = (2πr)^2 / r = 4π^2r。
V tΔV 高中物理公式推导二 圆周运动向心加速度的推导1、作图分析: 如图所示,在0t、t 时刻的速度位置为:2、推导过程:第一,对于匀速圆周运动而言,速度的大小是不发生变化的,变化的只是速度的方向,如图所示,速度方向的变化量为v ,则有:RƟV 0V 0θθ∆=∆≈∆t v v v 0第二,根据加速度的定义:tv a ∆∆=则有:t v t v a n ∆∆=∆∆=θ0第三,根据圆周运动的相关关系知:Rv t =∆∆=θω是故,圆周运动的向心加速度为:Rv a n 2=第四,圆周运动的向心力的大小为:Rvmm a F n 2==3、意外收获:第一,对于圆周运动,我们应该理解速度、角速度、周期之间的关系。
具体为:R v =ωT πω2=vR πω2=第二,我们应该掌握极限的相关知识,合理利用极限来解决相关问题。
第三,如果我们谈论的不是匀速圆周运动,我们同样可以利用此方法进行谈论。
对于非匀速圆周运动(或者叫做曲线运动),不仅速度的方向发生了变化,而且速度的大小也发生了变化,所以, 不仅有向心加速度之外,应该也有使物体速度大小变化的加速度。
但是,在这种情况下,我们的向心加速度,叫做径向加速度,速度大小变化的加速度,叫做切向加速度。
故有:(1)向心加速度为:R v a n 2=(2)切向加速度为:t v a t ∆∆=(注意:这里的v∆是指切向速度方向速度的变化量,并不是指图上的v∆。
)4、注意事项:对于匀速圆周运动而言,需要掌握的知识点并不是很多,我们只要能够理解一些物理量之间的基本关系即可。
本篇的讨论只为学有余力的高中学生推荐,不过,物理推导讲究的是方法,并不是死记硬背公式,掌握了这一知识点的推导过程对以后了解其他物理知识会有很大的帮助。
向心加速度公式的推导方法首先,我们假设一个物体在平面上做匀速圆周运动,其质量为m,速度为v。
这个物体受到一个向心力Fc的作用,该力指向物体所绕的圆心。
根据牛顿第二定律,物体所受的合力等于质量乘以加速度,即F = ma。
将合力拆分成两个分力:向心力Fc和切向力Ft。
1.向心力Fc:向心力Fc的方向指向物体所绕的圆心,大小为Fc = m•ac,其中ac为物体的向心加速度。
2.切向力Ft:切向力Ft的方向垂直于速度矢量v,大小为Ft = m•at,其中at为物体的切向加速度。
由于物体作匀速圆周运动,速度大小保持不变,所以at = 0。
根据向量加法,合力F等于向心力Fc和切向力Ft的矢量和。
由于切向力Ft为零,所以F=Fc。
现在我们来推导向心加速度公式。
根据牛顿第三定律,任何两个物体之间的作用力和反作用力大小相等、方向相反。
在这个圆周运动的例子中,物体对圆心施加向心力Fc,圆心对物体同样施加一个反向的力-Fc。
这个反向力-Fc实际上是质量为m的物体受到的合力F,即-Fc = F = ma。
根据向量的减法,力-Fc可以表示为-Fc = (-m•ac)。
再根据牛顿第二定律F = ma,我们有(-m•ac) = ma。
将方程两边除以-m,得到ac = a,即物体的向心加速度等于物体的加速度。
由于物体作匀速圆周运动,其速度方向始终垂直于加速度方向。
因此,速度v和加速度a的关系可以用速度的模长(大小)来表示,即v=,v,a=,a。
当物体作圆周运动时,其加速度a可以通过速度v的变化来计算。
由物体速度v的定义可知,v = ds/dt,其中ds表示质点在t时刻的位移矢量。
速度的变化可表示为dv = dv/dt。
将速度表示为位移的导数,我们有:dv/dt = d(ds/dt) / dt = d²s/dt²。
由于物体作匀速圆周运动,其速度大小,v,保持不变。
因此,dv/dt = 0,即加速度的时间变化率为零。
向心加速度公式的几种推导一、运用速度增量法推导如图,表示速度(率)v 作匀速圆周运动的物体,在时间Δt 内由A 点运动到B 点。
在这运动过程中,由于Δt 非常小,可以看成是过A 点切线方向速度为v 的匀速直线运动和在AO 方向初速度为零的匀加速直线运动的合运动。
物体过A 点沿切线方向的速度为v ,在AO 方向上的初速度v 0=0,当经过很短时间Δt 内,物体由A 点运动到B 点,线速度大小仍是v ,但方向改变了,由于方向的改变,使物体在AO 方向获得了分速度vt=vsin θ。
这时物体在AO 方向速度的增量应是:ΔV =V t-v0=vsin θ。
在这段时间内,物体沿切线方向匀速运动走过的距离可看成是由E 到B ,即EB=V ·Δt由此得到:v v θRsin EB t ==∆又根据加速度的定义式可得:Rv vv v2/Rsin sin ta ===∆∆θθ二、运用位移合成法推导1、如图(1)表示以速率v 作匀速圆周运动的物体经过很短时间Δt ,由A 点运动到B 点,于是有错误!未指定书签。
AB=V Δt当Δt 小到某种程度,即AB 弦与AB 弧几乎重合,则有:AB 弦=AB 弧=v Δt如果物体位于A 点时,力的作用消失,则物体将沿切线方向作匀速运动,在Δt 时间内经过位移v Δt 。
但实际上物体在Δt 时间内沿圆周运动到了B 点,这是由于物体还受到向心力的作用,加速离开了切线,其位移为AF ,它和过A 点切线方向的位移v Δt 合成起来,使物体由A 移动到B 。
由于时间Δt 很短,向心力可近似看成在过A 点的半径方向,从图中可以看出:由于: ΔABC ∽ΔABF所以 AC AB ABAF=于是ACAB AF 2=将式代入此式并注意AC=2R所以222t AF RV∆= 上式中v 、R 都是常量,此时表明位移AF 与时间Δt 的平方成正比,符合匀加速直线运动的规律。
与初速度为零的匀加速直线运动的位移公式221at S =相比较,可得出匀速圆周运动的向心加速度公式为:R v a 2=2、图(2)表示物体以速率v 作匀速圆周运动的情形,在很短时间Δt 内由A 点运动到B 点,与上题思考方法不同的是,现在把该运动过程看成是同时参与两个分运动的合运动。
向心加速度的证明一、引言在物理学中,向心加速度是指一个物体在圆周运动中所受到的加速度,也是圆周运动的基本概念之一。
本文将对向心加速度进行证明,通过理论推导和实际案例分析来探讨向心加速度的原理和应用。
二、向心力的定义向心加速度是由向心力引起的,而向心力又是指物体在圆周运动中受到的使其向中心点靠近的力。
根据牛顿第二定律,向心力的表达式可以表示为: [F_c = m a_c] 其中,[F_c]表示向心力,[m]表示物体的质量,[a_c]表示物体所受的向心加速度。
三、向心加速度的计算公式在圆周运动中,物体所受的向心加速度的计算公式为: [a_c = ] 其中,[a_c]表示向心加速度,[v]表示物体的速度,[r]表示物体所受力的半径。
四、向心加速度的证明证明方法一:物理推导我们可以通过物理推导来证明向心加速度的计算公式。
证明过程: 1. 假设物体以速度[v_0]沿半径为[r]的圆周做匀速运动。
2. 根据牛顿第一定律,物体所受的力和加速度在方向上相同,即向心加速度的方向与向心力的方向相同。
3. 由于物体做匀速运动,所以它的加速度大小保持不变。
4. 通过施加实验,我们可以得到[a_c = ]的结论。
证明方法二:例题分析通过分析实际例题,我们也可以证明向心加速度的计算公式。
实例1:一个物体以[10 m/s]的速度在[5 m]的半径上做匀速圆周运动,求其向心加速度。
解析:根据向心加速度的计算公式[a_c = ],代入[v = 10 m/s]和[r = 5 m],可得: [a_c = = 20 m/s^2]实例2:一个卫星绕地球做匀速圆周运动,其速度为[3 ^4 m/s],半径为[8 ^6 m],求其向心加速度。
解析:同理,根据向心加速度的计算公式[a_c = ],代入[v = 3 ^4 m/s]和[r = 8 ^6 m],可得: [a_c = = 11250 m/s^2]通过上述例题的分析,验证了向心加速度的计算公式[a_c = ]的准确性。
向心加速度公式推导集萃向心加速度是匀速圆周运动中的教学难点,这是由于学生因长期接受标量运算而产生的思维定势,认为匀速圆周运动中物体运动速率不变,故其因此我们在教学中必须强调两点,一的矢量性,速度的方向变化也表示速度有变化,故△v≠0,另一是速度变化的方向就是加速度的方向。
因此在教学中必须说清楚△v的方向。
教材中引进了速度三角形的方法,实际上已经考虑到了上述两点。
关于向心加速度公式的推导方法甚多,下面提供几种有别于课本的推导方法,供大家参考。
1 矢量合成法如图1所示,物体自半径为r的圆周a匀速率运动至b,所经时间为△t,若物体在a、b 点的速率为v a=v b=v,则其速度的增量△v=v b-v a=v b+(-v a),由平行四边形法则作出其矢量图如图1。
由余弦定理可得可见当θ→0时,α=90°,即△v的方向和v b垂直,由于v b方向为圆周切线方向,故△v 的方向指向圆心.因△v的方向即为加速度的方向,可见匀速圆周运动中加速度的方向指向圆心,。
. .2 运动合成法众所周知,物体作圆周运动的条件一是受到一个指向圆心的向心力的作用.另一是有一个初速度.可以设想,若没有初速度则物体将向着圆心方向作匀加速运动.若没有向心力,则物体将沿初速度方向作匀速运动.可见圆周运动应当是沿圆心方向的匀加速直线运动和沿初速度方向的匀速运动的合运动.如图2所示,物体自a至b的运动,可看成先由a以速度v 匀速运动至c,再由c以加速度α匀加速运动至b,由图可知当△t→o时ac方向的运动可以忽略.故物体只有指向圆心方向的加速度α.3 位移合成法如图3所示,设物体自a点经△t沿圆周运动至b,其位移ab可看成是切向位移s1和法向位移s2的矢量和.由以上分析可知,其法向运动为匀加速由图知:△acb∽△adb,故有ac∶ab=ab∶ad,4 类比法设有一位置矢量r绕o点旋转,其矢端由a至b时发生的位移为△s(如图4).若所经时间为△t,则在此段时间内的平均速率显然这个速率描述的是位置矢量矢端的运动速率,当△t趋近于零时,这个平均速率就表示位置矢量的矢端在某一时刻的即时速率,如果旋转是匀角速的,则其矢端的运动也是匀速率的,易知其速率(1)式中t为旋转周期.再如图5是一物体由a至b过程中,每转过1/8圆周,速度变化的情况。
【字体:A 】向心加速度公式推导向心加速度是匀速圆周运动中的教学难点,这是由于学生因长期接受标量运算而产生的思维定势,认为匀速圆周运动中物体运动速率不变,故其因此我们在教学中必须强调两点,一的矢量性,速度的方向变化也表示速度有变化,故△v≠0,另一是速度变化的方向就是加速度的方向。
因此在教学中必须说清楚△v的方向。
教材中引进了速度三角形的方法,实际上已经考虑到了上述两点。
关于向心加速度公式的推导方法甚多,下面提供几种有别于课本的推导方法,供大家参考。
1 矢量合成法如图1所示,物体自半径为r的圆周a匀速率运动至b,所经时间为△t,若物体在a、b点的速率为v a=v b=v,则其速度的增量△v=v b-v a=v b+(-v a),由平行四边形法则作出其矢量图如图1。
由余弦定理可得可见当θ→0时,α=90°,即△v的方向和v b垂直,由于v b方向为圆周切线方向,故△v的方向指向圆心.因△v的方向即为加速度的方向,可见匀速圆周运动中加速度的方向指向圆心,。
. .2 运动合成法众所周知,物体作圆周运动的条件一是受到一个指向圆心的向心力的作用.另一是有一个初速度.可以设想,若没有初速度则物体将向着圆心方向作匀加速运动.若没有向心力,则物体将沿初速度方向作匀速运动.可见圆周运动应当是沿圆心方向的匀加速直线运动和沿初速度方向的匀速运动的合运动.如图2所示,物体自a至b的运动,可看成先由a以速度v匀速运动至c,再由c以加速度α匀加速运动至b,由图可知当△t→o时ac方向的运动可以忽略.故物体只有指向圆心方向的加速度α.3 位移合成法如图3所示,设物体自a点经△t沿圆周运动至b,其位移ab可看成是切向位移s1和法向位移s2的矢量和.由以上分析可知,其法向运动为匀加速由图知:△acb∽△adb,故有ac∶ab=ab∶ad,4 类比法设有一位置矢量r绕o点旋转,其矢端由a至b时发生的位移为△s(如图4).若所经时间为△t,则在此段时间内的平均速率显然这个速率描述的是位置矢量矢端的运动速率,当△t趋近于零时,这个平均速率就表示位置矢量的矢端在某一时刻的即时速率,如果旋转是匀角速的,则其矢端的运动也是匀速率的,易知其速率(1)式中t为旋转周期.再如图5是一物体由a至b过程中,每转过1/8圆周,速度变化的情况。
向心力、向心加速度1. 引言在物理学中,向心力与向心加速度是描述物体在圆周运动中受到的力和加速度。
向心力是指沿着半径方向向圆心指向的力,而向心加速度是物体在圆周运动中的加速度,指向圆心。
在本文中,我们将详细讨论向心力和向心加速度的概念、计算方法以及在实际生活和科学研究中的应用。
2. 向心力的概念和计算方法2.1 向心力的概念向心力是指物体在圆周运动中受到的沿着半径方向的力,它的作用方向始终指向圆心。
向心力的存在使得物体保持在圆周运动中,而不会沿半径方向飞出或飞入圆心。
2.2 向心力的计算方法根据牛顿第二定律(F=ma),向心力的计算可以通过以下公式得到:F = m * a_c其中,F表示向心力,m表示物体的质量,a_c表示物体在圆周运动中的向心加速度。
3. 向心加速度的概念和计算方法3.1 向心加速度的概念向心加速度是指物体在圆周运动中的加速度,它的方向始终指向圆心。
向心加速度的存在使得物体在圆周运动中加速,因此也被称为“圆周加速度”。
3.2 向心加速度的计算方法向心加速度可以用以下公式来计算:a_c = v^2 / r其中,a_c表示向心加速度,v表示物体的速度,r表示物体运动的半径。
4. 向心力和向心加速度的应用向心力和向心加速度在物理学和工程学中有许多应用。
以下是其中的几个例子:4.1 离心机离心机是一种利用向心力原理进行分离或加工的设备。
通过快速旋转容器,使得物质在向心力的作用下分离,常用于化学、生物等领域的实验和工业生产中。
4.2 路边栅栏的设计在道路旁设置栅栏时,需要考虑到车辆可能发生失控状况。
为了将失控的车辆引导到安全区域,栅栏的设计需要考虑向心力。
合理设置栅栏的形状和倾斜角度可以使失控的车辆受到向心力的作用,使其保持在道路边缘,减少事故发生的风险。
4.3 环形轨道上的列车运行在一些特定的交通工具,如环形轨道上的列车或过山车,向心力是保证乘客安全和行驶稳定的重要因素。
合理计算列车运行速度和曲线半径,确保乘客在运动过程中不会受到过大的向心力,是保证乘客舒适度的关键。
背心加速度公式推导完备版—李往辉整治之阳早格格创做背心加速度是匀速圆周疏通中的教教易面,那是由于教死果少久交受标量运算而爆收的思维定势,认为匀速圆周疏通中物体疏通速率没有变,故其果此咱们正在教教中必须强调二面,一的矢量性,速度的目标变更也表示速度有变更,故△v≠0,另一是速度变更的目标便是加速度的目标.果此正在教教中必须道领会△v的目标.课本中引进了速度三角形的要领,本量上已经思量到了上述二面.闭于背心加速度公式的推导要领甚多,底下提供几种有推导要领,供大家参照.要领一:(课原上的要领)利用加速度的定义推导(又称矢量合成法):如图所示:设小球正在很短的时间t内从A疏通到B,正在时间t内速度变更为△v,果为△OAB∽△BDC(可自己证一下),所以有:△v/v=AB/R当t→0时,AB=弧AB所以:v=弧AB/t,a=△v/t所以a=v²/R要领二:正在矢量合成法中应用三角函数推导:如图所示,物体自半径为r的圆周a匀速率疏通至b,所经时间为△t,若物体正在a、b面的速率为va=vb=v,则其速度的删量△v=vb-va=vb+(-va),由仄止四边形规则做出其矢量图如图.由余弦定理可得可睹当θ→0时,α=90°,即△v的目标战vb笔直,由于vb目标为圆周切线目标,故△v的目标指背圆心.果△v 的目标即为加速度的目标,可睹匀速圆周疏通中加速度的目标指背圆心,.要领三:利用疏通的合成取领会推导(简称疏通合成法)设正在很短的时间t内, 小球沿圆周从A到B,可领会为沿切线AC目标的匀速直线疏通战沿AD目标初速度为整的匀加速直线疏通.如图一:要领四:利用启普勒第三定律、万有引力定律战牛顿第二定律推导背心加速度设:品量为m的人制天球卫星以速率v正在半径为r 的近圆轨讲上绕天球运止, 运止周期为T,天球品量为M.根据启普勒第三定律:T²/r³=k(k为常量)根据万有引力定律:F=GMm/r²对付于圆周疏通的物体有:T=2πr/v根据牛顿第二定律:a=F/m联坐上述各式有:a=(GMk/4π²)×(v²/r)所以:a∝v²/r要领五:直率圆法要领六:类比法:设有一位子矢量r绕o面转动,其矢端由a至b时爆收的位移为△s(如图4).若所经时间为△t,则正在此段时间内的仄衡速率隐然那个速率形貌的是位子矢量矢端的疏通速率,当△t趋近于整时,那个仄衡速率便表示位子矢量的矢端正在某一时刻的坐即速率,如果转动是匀角速的,则其矢端的疏通也是匀速率的,易知其速率(1)式中t为转动周期.再如图5是一物体由a至b历程中,每转过1/8圆周,速度变更的情况.现将其速度仄移至图6中,简单瞅出图6战图5相类似,所分歧的是图5表示的是位子矢量的转动.,而图6则是速度矢量的转动,隐然加速度是速度的变更率,即由图6可知,那个速度变更率本来便是端的转动速率,其转动半径便是速率v的大小,故有比较图5图6不妨瞅出当△t→o时△v的目标战△s的目标相笔直.故加速度的目标战速度目标相笔直.。
向心加速度公式的推导方法向心加速度公式的推导方法1、矢量合成法如图1所示,物体自半径为r的圆周a匀速率运动至b,所经时间为△t,若物体在a、b点的速率为va=vb=v,则其速度的增量△v=vb-va=vb+(-va),由平行四边形法则作出其矢量图如图1。
由余弦定理可得可见当θ→0时,α=90°,即△v的方向和vb垂直,由于vb方向为圆周切线方向,故△v的方向指向圆心.因△v的方向即为加速度的方向,可见匀速圆周运动中加速度的方向指向圆心,.2 .运动合成法众所周知,物体作圆周运动的条件一是受到一个指向圆心的向心力的作用.另一是有一个初速度.可以设想,若没有初速度则物体将向着圆心方向作匀加速运动.若没有向心力,则物体将沿初速度方向作匀速运动.可见圆周运动应当是沿圆心方向的匀加速直线运动和沿初速度方向的匀速运动的合运动.如图2所示,物体自a至b的运动,可看成先由a以速度v匀速运动至c,再由c以加速度α匀加速运动至b,由图可知当△t→o时ac方向的运动可以忽略.故物体只有指向圆心方向的加速度α3、.位移合成法如图3所示,设物体自a点经△t沿圆周运动至b,其位移ab可看成是切向位移s1和法向位移s2的矢量和.由以上分析可知,其法向运动为匀加速4、类比法设有一位置矢量r绕o点旋转,其矢端由a至b时发生的位移为△s(如图4).若所经时间为△t,则在此段时间内的平均速率显然这个速率描述的是位置矢量矢端的运动速率,当△t趋近于零时,这个平均速率就表示位置矢量的矢端在某一时刻的即时速率,如果旋转是匀角速的,则其矢端的运动也是匀速率的,易知其速率(1)式中t为旋转周期.再如图5是一物体由a至b过程中,每转过1/8圆周,速度变化的情况。
现将其速度平移至图6中,容易看出图6和图5相类似,所不同的是图5表示的是位置矢量的旋转.,而图6则是速度矢量的旋转,显然加速度是速度的变化率,即由图6可知,这个速度变化率其实就是端的旋转速率,其旋转半径就是速率v的大小,故比较图5图6可以看出当△t→o时△v的方向和△s的方向相垂直.故加速度的方向和速度方向相垂直.。
向心加速度推导公式过程嘿,大家好,今天咱们聊聊向心加速度。
说到向心加速度,可能有人会一脸懵逼,觉得这玩意儿和自己关系不大。
向心加速度可是在咱们日常生活中随处可见的哦,想想你坐过山车的时候,或者转个圈的时候,那种感觉简直就像在飞,心脏都要跳到嗓子眼儿了。
想象一下,咱们在公园里转圈玩,手里还拿着冰淇淋,嘴里还啃着零食,这时候你突然转了个身,哎哟,冰淇淋差点掉了!这就是向心加速度的威力了,它让你在转弯的时候,身体不得不往中心靠。
好吧,咱们得认真说说这加速度是怎么来的。
要知道,向心加速度不是个神秘的家伙,它其实和咱们每天的生活息息相关。
向心加速度的公式看起来简单得很,实际上可是有点儿门道。
你知道吗,向心加速度的公式是a = v² / r,这里a就是加速度,v是速度,r是半径。
简单来说,就是你转的圈越大,速度越快,向心加速度就越大。
哎,这就好比你拿着个大西瓜,想要把它转起来,西瓜越大,转起来就越费劲儿。
咱们再深入点儿,想象一下,车子在高速公路上飞驰,突然一个急转弯,车子就得通过向心加速度把你往车内挤。
真是个考验,简直就像坐过山车一样刺激,让你体验到心跳加速的感觉。
这时候,车轮和地面的摩擦力就显得至关重要,摩擦力足够大,车子就能顺利转弯;如果摩擦力不够,那可就麻烦了,车子可能就会滑出轨道,简直像在玩命,真让人心惊胆战。
我们再聊聊半径。
嘿,你有没有想过,转弯的半径其实是影响向心加速度的重要因素。
转的圈越小,向心加速度就越大,这就好比你用力转个小圈,立刻能感觉到身体往中心靠拢。
可要是你转得太大,想要追求那种“自由旋转”,结果反倒感觉不到什么向心加速度,简直是想转而转不动。
再说说速度,速度这个小家伙可真有意思。
你加速,向心加速度就跟着上涨,仿佛在对你说:“来吧,继续冲!”这让我想起了赛车比赛,那种一脚油门下去的快感,简直让人欲罢不能。
速度越快,身体的感觉就越强烈,真的是肾上腺素飙升。
赛车手就像是在跟向心加速度赛跑,一不小心就会超速,结果可就得看运气了。
【字体:A 】
向心加速度公式推导
向心加速度是匀速圆周运动中的教学难点,这是由于学生因长期接受标量运算而产生的思维定势,认为匀速圆周运动中
物体运动速率不变,故其
因此我们在教学中必须强调两点,一的矢量性,速度的方向变化也表示速度有变化,故△v≠0,另一是速度变化的方向就是加速度的方向。
因此在教学中必须说清楚△v的方向。
教材中引进了速度三角形的方法,实际上已经考虑到了上述两点。
关于向心加速度公式的推导方法甚多,下面提供几种有别于课本的推导方法,供大家参考。
1 矢量合成法
如图1所示,物体自半径为r的圆周a匀速率运动至b,所经时间为△t,若物体在a、b点的速率为v a=v b=v,则其速度的增量△v=v b-v a=v b+(-v a),由平行四边形法则作出其矢量图如图1。
由余弦定理可得
可见当θ→0时,α=90°,即△v的方向和v b垂直,由于v b方向为圆周切线方向,故△v的方向指向圆心.因△v的方向即为加速度的方向,可见匀速圆周运动中加速度的方向指向圆心,。
. .
2 运动合成法
众所周知,物体作圆周运动的条件一是受到一个指向圆心的向心力的作用.另一是有一个初速度.可以设想,若没有初速度则物体将向着圆心方向作匀加速运动.若没有向心力,则物体将沿初速度方向作匀速运动.可见圆周运动应当是沿圆心方向的匀加速直线运动和沿初速度方向的匀速运动的合运动.如图2所示,物体自a至b的运动,可看成先由a以速度v匀速
运动至c,再由c以加速度α匀加速运动至b,由图可知
当△t→o时ac方向的运动可以忽略.故物体只有指向圆心方向的加速度α.
3 位移合成法
如图3所示,设物体自a点经△t沿圆周运动至b,其位移ab可看成是切向位移s1和法向位移s2的矢量和.由以上分析可
知,其法向运动为匀加速
由图知:△acb∽△adb,故有ac∶ab=ab∶ad,
4 类比法
设有一位置矢量r绕o点旋转,其矢端由a至b时发生的位移为△s(如图4).若所经时间为△t,则在此段时间内的平均
速率显然这个速率描述的是位置矢量矢端的运动速率,当△t趋近于零时,这个平均速率就表示位置矢量的矢端在某一时刻的即时速率,如果旋转是匀角速的,则其矢端的运动也是匀速率的,易知其速率
(1)式中t为旋转周期.再如图5是一物体由a至b过程中,每转过1/8圆周,速度变化的情况。
现将其速度平移至图6中,容易看出图6和图5相类似,所不同的是图5表示的是位置矢量的旋转.,而图6则是速度矢量的旋转,显然加速度
是速度的变化率,即
由图6可知,这个速度变化率其实就是端的旋转速率,其旋转半径就是速率v的大小,故有
比较图5图6可以看出当△t→o时△v的方向和△s的方向相垂直.故加速度的方向和速度方向相垂直.
介绍上述方法目的在于使广大学生对向心加速度这个难点有更深刻的了解,也可以从中得到启迪,对拓宽思路有所裨益.。