关于不锈钢复合钢制压力容器的焊后热处理问题
- 格式:pdf
- 大小:552.23 KB
- 文档页数:8
钢制压力容器焊接工艺及焊后热处理方法分析摘要:焊接是钢制压力容器制造和安装中重要的工序,焊接质量直接关系到钢制压力容器在使用过程中的安全性和稳定性,并且对压力容器的工作性能和使用寿命具有决定性的影响。
所以在焊接之前,应该对焊件的材质、化学成分、结构类型以及焊接性能等进行全面的分析,然后制定出科学合理的焊接工艺,并且做好焊后热处理工作,确保钢制压力容器的焊接质量。
文章主要对钢制压力容器焊接工艺以及焊后热处理方法进行分析,为进一步提升钢制压力容器的焊接质量提供参考。
关键词:钢制压力容器;焊接工艺;焊后热处理引言焊接工艺作为压力容器制造中的关键技术,在整个压力容器制造中占有很大比重。
焊接质量的好坏,对压力容器的质量、可靠性和安全性有着直接影响。
低温压力容器一般是指设计温度低于-20℃的压力容器,包括CO2吸收塔、H2S吸收塔、液化乙烯、液化天然气等存储和运输容器。
随着我国工业水平的进步和发展,钢制压力容器焊接工艺水平也有了一定程度的提高,其质量管理水平也有了明显改善,同时也促进了我国经济的提升。
因此,在进行钢制压力容器的生产和制造过程中,必须重视焊接工艺,满足国家规定的有关焊接标准和要求,从而确保钢制压力容器的质量。
1钢制压力容器焊接工艺1.1打底氩弧焊通常用于打底。
焊接顺序遵循自下而上的原则。
在点焊的起始位置和完成时,角磨机可用于锐化倾斜开口以匹配接头要求。
在焊接过程中必须保证底层的质量。
首先应通过测试板测试氩弧底部,以消除氩气中杂质的可能性。
在特定的焊接过程中,焊接操作的工作范围应该被周围的板块遮挡,主要目的是防止自然风焊接对成品质量产生不良影响。
底部焊接电极接头的位置用角磨机抛光,焊缝底部塌陷或顶部凹陷会影响整个成品的质量,严重的情况会导致成品存在裂缝。
为了避免裂缝,应严格按设计要求检查底部焊缝和二次焊缝的焊接质量。
1.2中层施焊底部焊接完成后,应去除工作范围内的氧化物等杂质,并进行全面的目视检查。
压力容器制造中的热处理1.概述1)热处理对钢材性能的影响热处理是通过加热和冷却固态金属来改变其内部组织结构并获得所需性能的一种工艺。
对于碳素钢、低合金钢以及合金结构钢,常用的热处理工艺有退火、正火、淬火、回火以及它们的组合,如正火加回火、淬火加回火。
对于奥氏体不锈钢,常用的热处理工艺是固溶处理和稳定化热处理(见本节第5条)。
①退火退火是将钢件加热到适当温度,保温一定时间后缓慢冷却(例如随炉冷却)的热处理工艺。
根据钢材成分和热处理目的不同,退火又分为完全退火、不完全退火、等温退火、球化退火、去应力退火和再结晶退火等。
下面简要介绍完全退火、去应力退火和再结晶退火对钢材组织和性能的影响。
a)完全退火完全退火是把钢件加热到Ac3以上30~50"C,保温一定时间后在炉内缓慢冷却的热处理工艺,主要用于亚共析成分的碳钢和合金钢。
由于加热温度略高于Ac3,珠光体和铁素体全部转变为奥氏体,且奥氏体晶粒比较细小。
随炉冷却至Ar3以下时,奥氏体中首先析出铁素体,继续冷却至Ar1,以下时,剩余的奥氏体全部转变为珠光体。
经过这样的加热和冷却过程的相变,可细化晶粒并获得接近平衡状态的组织,以降低硬度,改善加工性能,消除钢件中的内应力。
b)去应力退火去应力退火是将钢件加热到Ac1以下100~200'C,保温一段时间(在压力容器制造中通常按1h/25mm计算)后,缓慢冷却的工艺方法,其目的是去除或降低冷成形、焊接等所产牛的砖全应力.稳宁结构尺寸。
去应力退火时,钢材并不发生相变,但可以消除焊接接头中的淬硬组织(马氏体),从而改善韧性。
钢件或焊接结构中残余应力的降低主要是在加热、保温及缓慢冷却过程中通过塑性变形所产生的应力松弛来实现的。
c)再结晶退火钢件的冷塑性变形(如封头的冷成形等)会导致冷加工硬化,使材料的强度、硬度提高,塑性、韧性降低,并产生较大的内应力。
再结晶退火是将钢件加热到不超过Ac1的温度,经适当保温后随炉缓慢冷却的工艺操作。
钢制压力容器焊接工艺及焊后热处理方法分析【摘要】本文主要探讨了钢制压力容器焊接工艺及焊后热处理方法的分析。
首先分析了钢制压力容器的焊接工艺,包括焊接材料选择、焊接方法、焊接参数控制等内容,对焊接工艺进行了详细的解析。
接着对焊后热处理方法进行了分析,包括焊接残余应力的消除、组织结构的调整等方面的内容。
最后对钢制压力容器的焊接工艺及焊后热处理方法进行了综合分析,总结出了钢制压力容器在焊接过程中需要注意的问题和提出了相应的解决方法,为提高钢制压力容器的焊接质量提供了参考。
通过本文的研究可以更好地了解钢制压力容器的焊接工艺和焊后热处理方法,为实际工程应用提供重要的指导。
【关键词】钢制压力容器、焊接工艺、焊后热处理、分析、综合、方法、压力容器、焊接、钢制、热处理、工艺、结论、引言。
1. 引言1.1 钢制压力容器焊接工艺及焊后热处理方法分析钢制压力容器在工业领域中起着至关重要的作用,它承载着各种液体或气体的压力,因此其质量和安全性至关重要。
而钢制压力容器的焊接工艺及焊后热处理方法对其性能和寿命有着直接的影响。
钢制压力容器的焊接工艺分析是确保容器质量的重要一环。
在焊接过程中,应根据不同材料和厚度选择合适的焊接方法,控制好焊接参数,确保焊缝质量。
常见的焊接方法包括气体保护焊、焊丝焊接等,每种方法都有其适用的情况和注意事项。
焊后热处理方法也是影响钢制压力容器性能的重要因素。
热处理可以消除焊接过程中产生的残余应力,改善焊缝组织,提高容器的强度和韧性。
常见的热处理方法包括回火、正火等,需要根据具体情况选择合适的方法。
2. 正文2.1 钢制压力容器焊接工艺分析钢制压力容器是工业生产中常见的设备之一,其质量和安全性直接关系到生产工艺和人员生命财产安全。
钢制压力容器的焊接工艺至关重要。
钢制压力容器的焊接工艺主要包括选择合适的焊接方法、焊接电流、焊接电压、焊接速度等。
一般来说,常用的焊接方法包括氩弧焊、埋弧焊、气保护焊等,其中氩弧焊在焊接过程中能够提供良好的焊缝形态和焊接质量,广泛应用于钢制压力容器的焊接中。
钢制压力容器的焊接和热处理钢制压力容器制造中,焊接技术是极为关键的一项技术,文章综合理论与实际两大方面,对钢制压力容器(尤其是不锈钢复合钢板制压力容器)详细讨论了设计中的焊接工艺和热处理工艺,强调了焊接质量的重要性,对钢制压力容器的设计与制造,都有一定的指导意义。
<b> 焊接,是涉及、生产及安装压力容器中非常重要的一项技术,设计中焊接接头的正确选择和制造中焊接质量的优缺点,都会对压力容器的工作及使用寿命产生决定性影响,甚至还可能会危及人类的生命、财产安全。
从这点来看,压力容器的焊接质量,既是个安全性问题,同时也是个经济性问题。
1.不锈钢复合板的焊接工艺通过翻阅与焊接相关的资料,以及开展焊接性试验,根据NB/T 47015-2011《压力容器焊接规程》,SH/T 3527-2009《石油化工不锈复合钢板焊接规程》,GB/T 13148-2008《不锈钢复合钢板焊接技术要求》等标准来对焊接工艺进行评定,接焊缝焊后RT探伤、晶间腐蚀试验及力学性能试验等项目都应严格符合标准及需求。
焊接工艺的最终评估结果将作为制定产品焊接工艺的重要依据。
1.1.焊接方法不锈钢复合钢板有许多成熟的焊接方法,大体可分为焊条电弧焊、钨极氩弧焊、埋弧焊等。
有些换热器的管箱与浮头盖都是复合材料,没有很大的焊接空间,直焊缝不长,可进行双面焊,对于这类换热器产品,采用焊条电弧焊方法更为合适,这样不仅能提升焊接质量,同时还可压缩成本,其操作较为灵活,几乎不受工件形状与焊接位置的影响。
1.2.焊接材料的选择焊材的选择,应根据基层强度相等和保证复合层耐腐蚀性的原则进行。
1.3.焊接设备和环境通常可选择直流焊机,基层、复层及过渡层这3种焊缝均可选择焊条电弧焊。
所采用的钢丝刷、扁铲等工具都,都应是不锈钢材料。
焊接应在0 ℃以上的环境下进行,同时,现场应采取必要的防风措施。
1.4.焊接沟槽和接头装配1.4.1.沟槽选用沟槽形式时,应充分考虑焊接渡层的特点,焊接顺序应依次为焊基层、渡层到复层,,要尽可能不对复层进行焊接或进行少量焊接,同时还应避免复层焊缝被多次受热,从而逐步增强复层焊缝的耐腐蚀性能,该沟槽形式还能有效降低设备内部的铲磨工作量。
不锈钢复合板压力容器的热处理摘要:不锈钢复合板有着十分优良的经济性,因此在当前的压力容器制造过程中得到日益广泛的应用,不锈钢耐腐蚀层呈现出特别良好的耐腐蚀性能,不锈钢基层可选择强度更高的钢质底板,使钢板厚度有效减少,进一步降低不锈钢制作过程中的制造难度和成本。
需要注意的是,在焊接之后,要着重做好热处理工作,这样才能使其性能进一步优化。
基于此,下文重点探讨和分析不锈钢复合板压力容器的热处理技术等相关内容。
关键词:不锈钢复合板;压力容器;热处理引言在不锈钢结构中复合板是两种材料的复合,两种材料所涉及的成分在物理和化学性质方面有一定的差异,所以复合压力容器制造过程中要着重做好每一个步骤,这是至关重要的。
其中,热处理技术应用是特别关键的内容,在实际的操作过程中,主要是应用相对应的介质,把压力容器的复合材料加热到冷却,通过这样的处理,进一步有效改变压力容器材料的化学成分和金相组织中的不稳定因素,以此使材料的金属性能进一步改进,使其最优化,进一步提升整体压力容器的安全性能。
1不锈钢复合板压力容器的热处理技术综述热处理主要指的是把固态金属及其合金(钢及其合金)结合相应的要求对其展开加热、保温和冷却,通过这样的方式,对其内部组织进行有针对性的改变,从而有效实现既定要求的性能的工艺过程,其中,在具体的操作中,对热处理造成影响的因素包括温度和时间等。
在温度的变化下,不锈钢在固体状态下能够发生相对应的相变。
针对此类压力容器进行处理的过程中,所涉及的热处理技术,主要包括三个阶段,分别是,加热,保温,冷却。
这三个阶段既是互相独立,又是互相配合,有效统一的。
2不锈钢复合板压力容器的热处理不同阶段具体来说,相关阶段主要体现在以下内容:2.1加热阶段在热处理技术中,这是特别重要的阶段,同时也是关键所在,和能否完成相对应的加热目标,有着至关重要的紧密联系。
在实际的操作过程中,要设置相对应的加温温度系数,在热处理技术的发展过程中,最开始是煤和木炭加热,然后用气体液体燃料或电进行加热当前有效应用熔融金属的加热处理,为了使热处理质量和效果得到更有效的加强,呈现出更加良好的加热效果,要针对加热温度进行有效控制。
钢制压力容器焊接工艺及焊后热处理方法分析钢制压力容器是一种常用的容器类型,它主要用于存储和输送高压气体、液体或腐蚀性介质。
为了确保容器的安全和可靠性,焊接工艺和焊后热处理方法是非常关键的。
钢制压力容器的焊接工艺主要包括焊接材料的选择、焊接接头的设计、焊接工艺参数的确定和焊接操作的控制等。
焊接材料的选择要符合容器的工作条件和要求,通常采用与母材相似或相兼容的焊材。
接头的设计应满足容器的强度和密封性要求,常见的接头形式包括对接接头、角接接头和封头接头等。
焊接工艺参数的确定需要考虑到焊缝的质量和强度,如焊接电流、电压、焊接速度、电极间距和焊接层数等。
焊接操作的控制对于焊接质量和焊接过程的稳定性至关重要,包括焊接位置、热输入控制、焊接层间温度控制和焊后热处理等。
焊后热处理是钢制压力容器焊接工艺中一个不可或缺的步骤,它可以消除焊接产生的残余应力、改善焊缝的力学性能和减少焊接缺陷的产生。
常见的焊后热处理方法包括回火、正火和淬火等。
回火是将焊接区域加热至适当温度,保持一段时间后冷却至室温,主要用于减少焊接区域的硬化和提高焊接接头的韧性。
正火是将焊接区域加热至适当温度,并保持一段时间后冷却,主要用于增加焊接区域的强度和硬度。
淬火是将焊接区域迅速加热至适当温度,然后迅速冷却,主要用于提高焊接区域的硬度和强度。
钢制压力容器的焊接工艺和焊后热处理方法对于容器的安全和可靠性起到了至关重要的作用。
正确选择和控制焊接工艺参数,进行适当的焊后热处理,可以提高焊接接头的质量和性能,延长容器的使用寿命。
与此需要定期检测和维护焊接接头,确保容器的安全运行。
关于压力容器设计中的热处理问题在压力容器设计的过程中,往往涉及到许多复杂而必要的处理技术,其中热处理技术是一项技术比较细腻和传统的重要环节。
热处理技术对于改善压力容器的金属材料以及完善其金属本质性能具有重要的作用。
在设计压力容器时总共包括四项热处理方面,本文主要针对这四项热处理技术的相关问题进行探讨。
關键词:压力容器;设计;热处理压力容器在人们的工业生产中具有非常广泛的用途,主要用于盛装气体或者液体,并能够承受一定的压力,广泛应用于能源工业、科学研究事业、军队工程以及石油化工工程等多种行业,是安全和达标生产时的重要设备。
压力容器设计中进行的热处理技术是运用相应的介质,将压力容器所使用的金属材料或者合金材料进行加热、保温和冷却过程,进而在不改变金属材料的外部形状的情况下,使其内部的纤维组织及其部分化学成分发生改变,以调控金属材料的基本性能并使其得到最大的潜力发挥的技术。
在工业生产所使用的压力容器主要涉及到四项热处理问题,即金属焊接后的消除应力的热处理、改善金属或合金材料基本性能的热处理、恢复金属材料或合金材料的性能的热处理以及焊接后的消除氢的热处理。
下面笔者主要针对压力容器设计中的焊接后的热处理问题进行探讨分析。
1 简介热处理的基本工艺技术热处理技术基本上主要是加热、保温和冷却三个基本过程的有机配合和衔接的技术,其中(1)热处理的加热技术是重要的设计程序之一。
现今的加热方法有很多种,比如,以液体或者气体燃料作为热源或者以电加热等进行直接加热。
也可以利用液态盐或金属,以至浮动粒子进行间接加热。
(2)热处理的温度值是一个重要的技术参数标准之一。
制定和控制适当的温度值范围是提高热处理质量的重要问题,但是由于在压力容器的设计中因使用不同的金属或者合金材料,必须在适当的时间设计适当的温度值,才能保证金属材料的基本性能得到最大的潜力发挥,才能获得较高的容器质量。
(3)金属材料加热后必然需要冷却的过程。
工业生产上要求因压力容器的材质不同和技术标准的不同,必须采用不同的冷却速度。
关于不锈钢复合钢板制容器的焊后热处理研究
王当杰
一、SH/T 3527-2009《石油化工不锈钢复合钢焊接规程》
1、6.6 焊后热处理解析中说明如下:
★★★据美日等相究氏体不后理效果分析,其安全性及晶格定国关研奥锈钢焊热处认为对稳
性,目前不一,因此在范中氏体不件的后理要求,在准范中不作还认识规对奥锈钢焊焊热处标规
强制性定。
规
★★★不合板的后理一般避免行,其主要原因是:
对锈钢复钢焊热处应进
①基系不一;
复层与层热胀数
②合界面因受高影生附加余力;
复温响产残应
③影削弱不合板的剪切强度;
响与锈钢复钢
化物,降低的耐性能;
④可能析出Cr碳复层蚀
⑤素体不合在理程中,易形成δ相,引起脆化,降低了合板的性。
铁锈钢复钢热处过复层组织复钢韧
如定需要行后理,重理,因此定了6.1.1条。
设计规认为进焊热处时应慎处规
6.6.1 焊后热处理应按设计文件要求进行。
6.6.2 用不锈钢复合钢板制造的设备、管道或部件,当其基层需要进行焊后热处理时,应按基层
要求选择热处理加热温度,其他参数按不锈钢复合钢板总厚度进行计算。
常用不锈钢复合钢焊后热处理参数见表8。
热处理的加热速度、恒温时间及冷却速度应符合下列要求:
a) 加热升温到400 ℃后,升温速度最大不得超过5000/δ ℃/h,且不得超过200℃/h;
最小不得低于50 ℃/h;
b) 恒温时间应按δ/25h,且不小于1/4h,在各恒温点的温度均应在热处理温度规定的范
围内,温间
各恒点的温度其差值不得大于65℃;
c) 降温时的冷却速度不得超过6500/δ ℃/h,其不得超过260 ℃/h,最小不得低于50 ℃
/h,温度降至400℃后可自然冷却;
d) 升温时,加热区内任意5000mm长范围内温差不得大于150℃。
注:δ为管子壁厚,mm。
6.6.3 当基层材料需要焊后热处理时,复层盖面焊缝的焊接可在热处理之后进行。
6.6.4 奥氏体不锈钢复合钢制造的设备、管道或部件进行焊后热处理时,应采取防止复层脱落和
碳化物析出的措施,控制a相形成。
6.6.5 复层为铁素体或马氏体不锈钢复合钢制造的设备、管道或部件,按复层材料要求进行焊后
热处理。
但采用奥氏体不锈钢焊接材料焊接过渡层和复层,且基层不要求焊后热处理时,可免做焊后热处理。
6.6.6 局部热处理时应对整个设备或管道焊接接头圆周同时进行加热,加热方法宜采用电加热,
加热范围应以焊缝中心为基准,两侧不应小于焊缝宽度的三倍,且不小于100 mm。
2、标准解释:
3、正文如下:
二、钢制化工容器制造技术要求(HG20584-1998)中规定如下:
三、《压力容器用爆炸焊接复合板》 NB/T 47002-2009 规定如下:
1、NB/T 47002.1-2009 《不锈钢-钢复合板》,NB/T 47002.2-2009 《镍-钢复合板》、NB/T 47002.4-2009 《铜-钢复合板》三个标准中交货状态规定如下:
2、NB/T 47002.3-2009 《钛-钢复合板》规定如下:
四:结论
1、焊后热处理的温度按《钢制化工容器制造技术要求》(HG20584-1998)的表6-1
2、保温时间
按HG20584-1998中第6.0.3条中第二款“
3、焊后热处理方法
基本可按GB150,并参考SH/T3527-2009:
焊后热处理应优先采用在炉内加热的方法,其操作应符合如下规定:
a)焊件进炉时炉内温度不得高于400℃;
b)焊件升温400℃后,加热区升温速度最大不得超过5000/δs(℃/h)(δs焊接接头处钢材厚
度mm),且不得超过200℃/h;最小不得低于50℃/h;
c) 升温时,加热区内任意5000mm 长范围内温差不得大于120℃;
d) 恒温时间应按δ/25h,且不小于1/4h,在各恒温点的温度均应在热处理温度规定的范围内,
温间各恒点的温度其差值不得大于65℃;
e) 升温和保温期间应控制加热区气氛,防止焊件表面氧化;
f) 焊件温度高于400℃时,加热区降温速度不得超过6500/δs
(℃/h),其不得超过260 ℃/h,最小不得低于50 ℃/h;
g) 焊件出炉时,炉温不得高于400℃,出炉后应在静止的空气中冷却。
注:δs ——焊接接头处基层加复层钢材厚度mm。
6.6.4
4、 当基层材料需要焊后热处理时,复层盖面焊缝的焊接可在热处理之后进行。
奥氏体不锈钢复合钢制造的设备、管道或部件进行焊后热处理时,应采取防止复层脱落和碳化物析出的措施,控制a 相形成。
5、 注意:应进可能避免不锈钢做热处理
国关研奥锈钢焊热处认为对稳★★★据美日等相究氏体不后理效果分析,其安全性及晶格定还认识规对奥锈钢焊焊热处标规性,目前不一,因此在范中氏体不件的后理要求,在准范中不作规强制性定。
对锈钢复钢焊热处应进★★★不合板的后理一般避免行,其主要原因是:
复层与层热胀数①基系不一;
复温响产残②合界面因受高影生附加应余力;
响与锈钢复钢③影削弱不合板的剪切强度;
④可能析出Cr 碳复层蚀化物,降低的耐性能;
铁锈钢复钢热处过复层组织复钢韧⑤素体不合在理程中,易形成δ相,引起脆化,降低了合板的性。
设计规认为进焊热处时应慎处如定需要行后理,重理。