1 2x2 1 3x;
解:移项,得 2x2-3x=-1,
二次项系数化为1,得 x2 3 x 1 ,
22
配方,得
x2
3 2
x
3 4
2
1 2
3 4
2
,
即
x
3 4
2
1 16
,
移项和二次项系数
由此可得 x 3 1 ,
3
为什么方程 两边都加12?
因为实数的平方不会是负数,所以x取任何实数时,
上式都不成立,所以原方程无实数根.
思考1:用配方法解一元二次方程时,移项时要 注意些什么?
移项时需注意改变符号.
思考2:用配方法解一元二次方程的一般步骤. ①移项,二次项系数化为1; ②左边配成完全平方式; ③左边写成完全平方形式; ④降次; ⑤解一次方程.
+(
3 2
)2= (
3 2
)2
-
2,
(t -
3 2
)2
=
1 4
.
移项,得
(t - 3 )2 = 1 ,
2
2
即
t - 3 = 1 ,或 t - 3 = 1 .
22
2
2
所以
t1= 2 , t2 = 1 .
即在1s或2s时,小球可达10m高.
例2.试用配方法说明:不论k取何实数,多项式 k2-4k+5 的值必定大于零.
规律总结
一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p.
①当p>0时,则 x n p ,方程的两个根为