微生物遗传育种学1工业微生物菌种
- 格式:ppt
- 大小:4.49 MB
- 文档页数:7
第三章发酵工业微生物菌种微生物发酵工业是利用微生物的生长和代谢活动生产各种有用物质的现代工业,它是以培养微生物进行发酵为主。
而在这个过程中,优良的菌种是一个现代化的发酵工业必不可少的,最为重要的环节。
其他如先进的生产工艺和先进的设备,则是为了更充分发挥优良菌种的性能而设计的。
第一节工业微生物菌种的分离和选育第二节工业微生物菌种的改良第三节发酵工业中菌种的退化第四节工业微生物菌种的保藏第五节工业微生物菌种的扩大培养第一节工业微生物菌种的分离和选育一般来说,从自然界直接分离到的菌种,不能立即适应实际的生产需要,只有通过选育,才能提高代谢产物的产量、改进产品质量直至简化工艺。
在微生物发酵工业中生产菌种的选育方法有:•微生物菌种的分离和选育•菌种的改良第一节工业微生物菌种的分离和选育一、微生物菌种的选育二、微生物常规育种三、根据代谢的调节机理选择高产突变菌株一、微生物菌种的选育从自然界分离新菌种一般包括以下几个步骤:1、采样2、增殖培养3、纯种分离4、性能测定1、采样采样地点的确定要根据筛选的目的、微生物的分布概况及菌种的主要特征与外界环境关系等,进行综合、具体地分析来决定。
如果不了解某种生产菌的具体来源,一般可以从土壤中分离。
①、确定选好地点取离地面5——15cm处的土壤几十克,盛入预先消毒好的牛皮纸袋或塑料袋中,扎好,记录采样时间、地点、环境情况等,以备查考。
②、尽快分离一般土壤中芽孢杆菌、放线菌和霉菌孢子忍耐不良环境能力较强,不太容易死亡。
但一般应尽快分离。
③、酵母菌或霉菌类微生物采样酵母菌或霉菌类微生物,它们对碳水化合物的需要量比较多,一般又喜欢偏酸环境,所以在普通植物花朵、瓜果种子及腐植质等上面比较多。
2、增殖培养收集到的样品,如含有所需的菌种较多,可直接进行分离。
如果样品含有所需要的菌种很少,就要设法增加该菌种的数量,进行增殖(富集)培养。
富集培养:富集培养就是指利用不同微生物之间的生命活动特点的不同,制定出特定的环境条件,使仅仅适应于这种条件的微生物旺盛生长,从而使其在群落中的数量大大增加的微生物的分离方法。
工业微生物遗传育种作业第一章1 何谓工业微生物;2. 工业微生物菌种的生产要求是什么?3.工业微生物育种的基础是什么?迄今为止大约经历了几个发展阶段?第二章1.细菌的细胞壁有何功能?青霉素和溶菌酶怎样杀死菌?2.酵母菌、霉菌可用什么酶制成原生质体?为什么?3.细胞膜最大的特点是什么?4.根据细胞里面的结构试分析为什么高等动物的蛋白质不能在原核微生物中表达的主要原因。
5.细菌的繁殖方式有哪几种?第三章1.试述真核生物与原核生物遗传物质的主要区别。
2.DNA的构型有哪几种?3.真核微生物中含有遗传物质的细胞器存在哪些共性?4.什么是遗传密码?有什么特征?5.何谓基因,基因组?基因可以分为哪几类?其精细结构是什么?基因是怎样表达的?第四章1.何谓突变,突变型,基因突变?按分子机制突变可以分为哪几类?2.根据表型,突变可以分为几种?基因突变的特点有哪些?3.微生物抗性的来源有几种?怎么区分?4.何谓正向突变,回复突变,抑制突变,增变基因,突变热点,染色体畸变,条件致死突变,沉默突变,突变率,光复活作用?5.突变后,细胞内有哪些修复机制可以阻止DNA发生损伤?6.突变一定会引起表型变化吗?为什么?7.突变有何规律?8.何谓表型延迟?为什么会有这种现象的出现?9.移码突变后,基因编码的蛋白质一般是变短了还是更长,为什么?第五章1.诱变剂有哪几种?分别列出几种常用的诱变剂。
2.影响辐射生物效应的因素有哪些?3.UV诱变的机制是怎样的,其有效光谱是多少,剂量一般可以用哪些方法表示?4.利用UV设计一方案,将野生型E.coli诱变成营养缺陷型。
5.怎样提高UV诱变的诱变率?6.碱基类似物中的5-Bu是怎样引起正突变和回复突变的?利用其诱变育种时可以采用哪些处理办法?7.利用NTG诱变育种时其诱变机制怎样,可以怎样进行诱变?用HNO2呢?8.DNA链上的损伤是否一定发生表型的改变,尽你所能说出理由。
9.突变后基因型是否会很快出现,为什么?第六章1.从土壤中采微生物样时,应注意哪些?2.何谓富集培养?可采用一些什么办法富集?3.利用平皿生化反应分离Bac时可以用哪些方法?4.厌氧菌分离时主要用哪些方法除氧?第七章1.何谓诱变育种,其目的是什么?诱变育种有哪些显著特点?2.影响菌种在同一平皿上出现不同菌落类型的因素有哪些?3.影响诱变育种时的突变率的因素主要有哪些?4.用于诱变育种的出发株应具备哪些特点,为什么要将其纯化?诱变时为什么要制备单细胞悬液?对用于诱变时的菌又有何要求?5.确定诱变剂的种类后,怎样选择一个菌株的最适诱变剂量?6.何谓营养突变型,在营养缺陷型突变株选育过程中,有哪些方法可以淘汰野生型,简述每种方法的原理及适应对象。
工业微生物育种摘要:本文综述了工业微生物遗传育种的历史地位,介绍了遗传育种的方法和机理,并对其前景进行了展望。
关键词:工业微生物;遗传育种;方法;机理工业微生物育种也就是菌种改良,是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造,去除不良性质,增加有益新性状,以提高产品的产量和质量的一种育种方法[1],使我们获得所需要的高产、优质和低耗的菌种,其目的是改良菌种的特性,使其符合工业生产的要求。
当前菌种选育的基本内容是根据菌种自然变异而进行的自然选育,以及用人工方法引起菌种变异,再按照工业生产的要求进行筛选来获得新的变种。
工业微生物遗传育种的主要方法有经典的自然选育和诱变育种技术,使菌种发生突变,存优去劣,这是目前普遍采用的方法,容易施行,易见成效;另一条途径是研究目的物的基因结构及基因调控、表达的方式,进行基因重组、转殖,使之高效表达。
工业微生物菌种的选育,不仅可提高目的物的产量,使目的物产量上百上千倍的提高,大大降低生产成本,提高经济效益,而且通过微生物菌种的选育,可简化工艺,减少副产品,提高产品质量,改变有效成分组成,甚至获得活性更高的新成分[2]。
本文主要从工业微生物遗传育种的历史地位、方法与技术、理论机理和发展前景综述了工业微生物育种的研究进展。
1 历史地位工业微生物菌种选育在发酵工业历史有着重要的地位,是决定发酵产品能否具有工业化价值及发酵过程成败与否的关键。
菌种选育技术的广泛应用为我们提供了各种类型的突变菌株,使得在食品工业、医药、农业、环境保护、化工能源、矿产开发等领域产生众多新的产品,促使传统产业的技术改造和新型产业的产生,同时使诸如抗生素、有机酸、维生素、色素、生物碱、激素以及其它生物活性物质等产品的产量成倍甚至成千万倍地增长,并且产品的质量也不断的提高。
如青霉素是于1929 年英国Flemirlg 发现的,当时的利用表面培养只能获得1~2U/ml 青霉素,经过数十载的诱变育种使其产量提高到目前的90000U/ml,以及由最初的纯度20%和得率35%提高到纯度99.9%和得率90%[3],与此同时链霉素、土霉素、金霉素和氯霉素等抗生素也大规模的生产起来;在代谢控制育种的推动下使得产氨基酸、核苷酸、有机酸等次生代谢产物的高产菌株大批投入生产;由基因工程构建的工程菌株使得微生物次生代谢产物生产能力迅速提高,而且生产出微生物本生不能生产的外源蛋白质,如胰岛素、生长激素、单克隆抗体和细胞因子等等。
第一章绪论一、微生物遗传育种对野生型菌株或低产菌株进行遗传操作和分离筛选,从大量突变体中筛选出性状优良的菌株,并对其发酵条件加以优化,得到适合发酵工业生产的优良菌种(产量、质量、新产物)。
二、微生物遗传育种的具体目标:1、提高产量生产效率和生产效益总是排在一切商业发酵首位的目标2、提高产物的纯度,减少副产物如色素;提高有效组分3、改变菌种形状,改善发酵过程,如改变和扩大菌种的原料结构;改善菌种生长速率;提高斜面孢子化程度;降低需氧量和能耗;耐不良环境;耐目的产物;改变细胞透性,提高产物分泌4、遗传性状特别是生产性状稳定5、改变生物合成途径,获得新产物三、优良发酵菌株应具备哪些特性1、遗传稳定2、易于培养:营养谱广、培养条件易达到3、易于保存(如孢子丰富或产生休眠体)4、种子生长旺盛5、发酵周期短,产量高,产物单一6、产物易于分离纯化第二章微生物遗传学基础一、名词解释:基因:遗传信息的基本单位。
一般指位于染色体上编码一个特定功能产物(如蛋白质或RNA分子等)的一段核苷酸序列。
转化:受体细胞直接吸收了来自供外源DNA片断,并把它整合到自己的基因组中,细胞部分遗传性状发生变化的现象叫转化。
转导:外源遗传物质通过噬菌体的携带进入受体细胞,并与受体染色体发生基因重组接合:供体菌通过性菌毛传递不同长度的单链DNA给受体菌,在后者细胞中发生交换、整合,从而使后者获得新的遗传性状的现象。
菌种衰退:菌种在培养或保藏过程中,由于自发突变的存在,出现某些原有优良生产性状的劣化、遗传标记的丢失等现象,称为菌种的衰退。
二、突变型的种类形态突变型、生化突变型、条件致死突变型、致死突变型、抗性突变型。
三、试质粒的性质及其在基因工程中的应用性质:自我复制、拷贝数高、不相容性、转移性。
应用:基因工程中作为载体将目的基因带入宿主细胞;其所带抗性基因可作为标记基因;降解复杂有机化合物;合成限制性内切酶或修饰酶。
第三章遗传与变异一、基因组对于原核生物来说,就是它的整个染色体;对于二倍体的真核生物来说,是能够维持配子或配子体正常功能的最低数目的一套染色体。
⼯业微⽣物育种全解1.⼯业微⽣物育种在发酵⼯业中的作⽤如何?其⽬的是什么?⼯业微⽣物育种建⽴在:(1)遗传和变异(微⽣物遗传学)的基础之上;(2)物理和化学诱变剂的发现和应⽤;(3)⼯业⾃动化(⾃动仪表装置和微机)。
⼯业微⽣物育种在发酵⼯业中占有重要地位,是决定该发酵产品能否具有⼯业化价值及发酵过程成败与否的关键。
2.⼯业微⽣物发展经历了哪⼏个阶段?1)⾃然选育阶段2)⼈⼯诱变选育阶段3)杂交育种阶段4)代谢控制育种阶段5)基因⼯程育种阶段3.⼯业微⽣物育种的核⼼指标有哪些?1)在遗传上必须是稳定的。
稳定性。
2)易于产⽣许多营养细胞、孢⼦或其它繁殖体。
3)必须是纯种,不应带有其他杂菌及噬菌体。
4)种⼦的⽣长必须旺盛、迅速。
5)产⽣所需要的产物时间短。
转化率。
6)⽐较容易分离提纯。
7)有⾃⾝保护机制,抵抗杂菌污染能⼒强。
8)能保持较长的良好经济性能。
产率。
9)菌株对诱变剂处理较敏感,从⽽可能选育出⾼产菌株。
10)在规定的时间内,菌株必须产⽣预期数量的⽬的产物,并保持相对地稳定。
4.⾰兰⽒阳性和阴性菌的细胞壁结构有何差异?它们对溶菌酶和青霉素的敏感有何不同?5.缺壁细菌有哪些类型和异同?制备缺壁细菌主要有哪些途径?原⽣质体:G+菌经溶菌酶或青霉素处理;球状体:G-菌,残留部分细胞壁。
是研究遗传规律和进⾏原⽣质体育种的良好实验材料。
L型细菌:⾃发突变形成细胞壁缺陷菌株;6.原⽣质体制备时,为什么不同微⽣物要选择不同的酶?举例说明。
酶在原⽣质体制备中主要⽤来酶解细胞壁的,不同的微⽣物其细胞壁成分及含量可能不同,所以要⽤不同的酶。
酵母菌的细胞壁主要成分有葡聚糖、⽢露聚糖蛋⽩质、⼏丁质。
霉菌的细胞壁:主要成分是纤维素、⼏丁质、葡聚糖等。
藻类的细胞壁:主要成分有纤维素构成结构⾻架。
7.基因组、基因、密码⼦、简并、同义密码⼦的概念是什么?⼀、基因组1. 原核⽣物就是它的整个染⾊体,原核⽣物的基因组较⼩,DNA的含量低,如E.coli的DNA分⼦质量为2.4×109Da,相当于4.2×106bp,含有3000-4000个基因,SV40病毒仅5个基因。
工业微生物育种学一、微生物资源多样性微生物资源多样性是工业微生物育种学的基础。
微生物世界中存在着广泛的物种多样性,这些物种具有各种各样的生理生化特性,能够产生丰富的代谢产物。
了解和利用这些多样性,是进行工业微生物育种的前提。
二、遗传物质基础遗传物质基础是工业微生物育种学的核心。
掌握微生物的基因组结构、基因表达调控等基本遗传信息,有助于我们理解微生物的生长、代谢等生命活动,以及如何对其进行改造和优化。
三、突变机制与诱变育种突变机制与诱变育种是工业微生物育种学的重要手段。
突变是指基因组中DNA序列的改变,而诱变育种则是利用诱变因素诱导微生物发生突变,再从中筛选有益突变株的方法。
了解突变机制有助于我们预测和控制突变的发生,提高育种效率。
四、基因工程育种基因工程育种是工业微生物育种学的核心技术。
通过基因工程技术,我们可以精确地对微生物进行遗传改造,实现定向进化,提高微生物的生产能力和性能。
基因工程育种具有精度高、见效快等特点,已成为工业微生物育种的主要手段。
五、菌种筛选与初筛技术菌种筛选与初筛技术是工业微生物育种学的重要环节。
通过筛选,我们可以从自然界或实验室中大量菌株中挑选出发酵性能优良、生产能力强的菌株。
初筛技术包括菌落形态观察、生理生化特性检测等方法,是菌种筛选的基础。
六、菌种改良与性能评价菌种改良与性能评价是工业微生物育种学的重要内容。
通过遗传操作和定向进化等技术手段对菌株进行改良,提高其生产能力和性能。
性能评价则是对改良后菌株进行全面的表征和评估,确保其满足工业生产的需求。
七、发酵过程优化发酵过程优化是工业微生物育种学的关键环节。
发酵过程涉及到菌株的生长、代谢等多个方面,是工业微生物育种的最终目标。
通过优化发酵条件、控制发酵过程等方法,可以提高微生物的发酵效率和产物产量。
八、工业微生物应用实例工业微生物应用实例展示了工业微生物育种学的实际价值。
通过具体的应用实例,我们可以了解工业微生物育种在生产实践中的重要性和作用,进一步推动工业微生物育种学的发展和应用。