北师大六年级数学概念整理
- 格式:pdf
- 大小:154.85 KB
- 文档页数:7
北师大版小学六年级数学上册知识点整理一、圆的知识1、圆是由曲线围成的平面封闭图形。
圆中心的一点叫圆心,用字母O 表示。
以某一点为圆心,可以画无数个圆。
连接圆心和圆上任意一点的线段叫半径,用字母r 表示。
连接圆心并且两端都在圆上的线段叫直径,用字母d 表示。
2、圆有无数条半径,有无数条直径。
圆心决定圆的位置,半径决定圆的大小。
3、在同一个圆中,所有的半径都相等,所有的直径都相等。
在同一个圆中,直径是半径的2倍,半径是直径的12。
4、①车走一圈的距离,相当于车轮的周长。
车走的距离=车轮的周长×走的圈数②把一条线围成一个图形,那么这么线的长度相当于这个图形的周长5、圆内最长的线段是直径,圆规两脚之间的距离是半径。
6、在一个正方形里画一个最大的圆,圆的直径就是正方形的边长。
在一个长方形里画一个最大的圆,圆的直径就是长方形的宽7、把圆对折,再对折(对折2次)就能找到圆心。
因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
半圆只有1条对称轴。
8、如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,这条直线叫做对称轴,这时,我们也说这个图形关于这条直线的轴对称。
对称轴是一条直线。
9、常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
10、圆一周的长度就是圆的周长。
圆的周长总是直径的3倍多一些,圆的周长除以直径的商(圆的周长与直径的比值)是一个固定的数,我们把它叫做圆周率,用字母π表示, π是一个无限不循环小数,为了计算简便,通常取近似值3.14。
11、圆的周长=圆周率×直径 即 C 圆=πd =2πr 。
12、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
六年级数学上册知识点整理一、圆1、圆有无数条半径,有无数条直径。
圆心决定圆的位置,半径决定圆的大小。
2、在同一个圆中,所有的半径都相等,所有的直径都相等。
在同一个圆中,直径是半径的2倍,半径是直径的12。
3、圆内最长的线段是直径,圆规两脚之间的距离是半径。
4、在一个正方形里画一个最大的圆,圆的直径就是正方形的边长。
在一个长方形里画一个最大的圆,圆的直径就是长方形的宽。
5、常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
6、圆的周长=圆周率×直径即 C 圆=πd =2πr 。
7(理解)、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
8、如果用S 表示圆的面积,r 表示圆的半径,那么圆的面积公式:S 圆=πr 2。
9(特别注意)半圆的周长不是圆的周长的一半,而是圆的周长的一半再加上一条直径长,即πr+2r ;2半圆的面积是圆的面积的一半,即πr 2。
10、周长相等时,圆的面积最大;面积相等时,圆的周长最小。
考试一般正方形、长方形和圆:①它们周长相等时,圆的面积最大,正方形面积居中,长方形的面积最小;②它们面积相等时,长方形周长最大,正方形周长居中,圆的周长最小。
11、一个圆的半径扩大(缩小)几倍,直径就扩大(缩小)几倍,周长也扩大(缩小)几倍,面积就扩大(缩小)几的平方倍,但圆周率永远不变。
如:r 扩大3倍,d 扩大3倍,C 扩大3倍,S 扩大9倍.12、几个公式:C =πd =2πr d =C 圆πd = 2r S Cd 圆=πr r =2πr =213、永远记住要带单位,周长是(cm),面积是平方(cm 2),体积是立方(cm 3)。
14、背诵:3.14×1=3.14 3.14×2=6.283.14×3=9.42 3.14×4=12.563.14×5=15.7 3.14×6=18.843.14×7=21.98 3.14×8=25.123.14×9=28.26 3.14×10=31.415、圆的面积:3.14×12=3.14 3.14×22=12.563.14×32=28.26 3.14×42=50.243.14×52=78.5 3.14×62=113.04二、分数混合运算1(计算题,一定注意运算顺序)分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。
六年级上册知识点汇总目录六年级上册知识点汇总 (1)第一单元圆 (2)第二单元分数混合运算 (5)(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是: (5)(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?” (6)(3)用方程解决稍复杂的分数应用题的步骤: (6)(4)要记住以下几种算术解法解应用题: (6)第三单元观察物体 (9)第四单元百分数的认识 (9)1、百分数的意义 (9)2、百分数的读法和写法 (9)3、百分数和分数的区别 (9)4、小数、分数、百分数的互化 (10)5、求一个数是另一个数的百分之几的方法 (10)6、求百分率的方法: (10)7、求一个数的百分之几是多少的实际问题的解法 (11)第五单元数据处理 (11)一、绘制条形统计图(主要是用于比较数量大小) (11)二、关于复试条形统计图 (11)三、绘制复试折线统计图(不仅可以比较大小,还可以比较数量变化的快慢)12 第六单元比的认识 (12)第七单元百分数的应用 (15)第一单元圆1、圆的定义:平面上的一种曲线图形。
2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、圆心确定圆的位置,半径确定圆的大小。
5、直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d 表示。
6、在同一个圆内,所有的半径都相等,所有的直径都相等。
7、在同一个圆内,有无数条半径,有无数条直径。
8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29、圆的周长:围成圆的曲线的长度叫做圆的周长。
10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
第一单元圆1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d/2)²或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
北师大版六年级上册数学知识点归纳第一单元圆圆概念总结1.圆的定义:圆是由曲线围成的平面封闭图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
圆内最长的线段是直径,6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×2车轮为什么是圆的答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。
9.圆的周长:围成圆的曲线的长度叫做圆的周长。
或者,圆一周的长度就是圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π≈。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
\11.圆的周长公式:C圆=πd =2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
如果用S表示圆的面积, r表示圆的半径,那么圆的面积公式:S圆=πr214.圆的面积公式:S=πr²或者S=π(d÷2)²或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
第一单元圆1、圆心决定圆的位置,半径(直径)决定圆的大小。
在同圆或等圆中,所有的直径都相等,所有的半径都相等,直径是半径的2倍。
一个圆有无数条半径,有无数条直径。
2、连接圆心和圆上任意一点的线段叫半径,经过圆心并且两端都在圆上的线段叫直径。
3、圆是轴对称图形,有无数条对称轴,任意一条直径所在的直线都是圆的对称轴。
圆环也有无数条对称轴。
4、一个圆的周长总是它直径的兀倍,也就是3倍多一点,这就是圆周率。
圆周率是一个固定不变的数,不会随着圆的大小而改变,是一个无限不循环小数,一般取其近似值3.14。
圆的周长与直径的比是兀:1,比值是兀。
我国古代数学家祖冲之首先算出圆周率的值在3.1415926和3.1415927之间。
5、周长相等的长方形、正方形和圆,圆的面积最大,正方形面积次之,长方形面积最小。
6、圆的周长=圆周率×直径 C=兀D D= C÷兀圆的面积=圆周率×半径2 S=兀r27、圆环的面积=圆周率×(大圆半径2-小圆半径2) S环=兀(R2 -r2)8、圆的半径扩大a倍,则直径扩大a倍,周长也扩大a倍,则面积扩大a2倍。
周长相等的圆,则其半径、直径、面积一定相等,反之则不等。
9、在圆形跑道上,相邻两个跑道一圈相差:道差=2兀×跑道宽。
圆典型题例第二单元百分数的应用1、存入银行的钱叫本金。
取款时银行多支付的钱叫利息。
利息和本金的比率叫利率。
2、利息=本金×利率×存款时间保险费=保险金额×保率×时间3、求甲数是乙数的几分之几?甲数÷乙数4、求甲数比乙数多几分之几?(甲数-乙数)÷乙数5、已知甲数,乙数是甲数的c/b ,求乙数。
乙数=甲数×c/b 单位“1”的量是甲数,是已知的。
6、已知甲数,乙数比甲数多c/b ,求乙数。
乙数=甲数+甲数×c/b ,或者列式为:甲数×(1+ c/b)。
北师大版六年级数学上册知识点汇总第一单元圆1.圆的定义:由曲线围成的封闭图形,且圆上任意一点到中心点(圆心)的距离都相等。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径或圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d/2)²或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形(圆环),外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
北师大版六年级上册数学全册知识点汇编第一单元圆圆概念总结1.圆的定义:圆是由曲线围成的平面封闭图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
圆内最长的线段是直径6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×2车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。
9.圆的周长:围成圆的曲线的长度叫做圆的周长。
或者,圆一周的长度就是圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C圆=πd =2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
如果用S表示圆的面积, r表示圆的半径,那么圆的面积公式:S圆=πr2 14.圆的面积公式:S=πr²或者S=π(d÷2)² 或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
第一单元圆1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =1/2d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d/2)²或者S=π(C÷(2π))²≈15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
一、数的认识与应用
1.复习整数的概念,能够在数轴上表示和比较整数。
2.复习小数与整数的比较,能够读写和比较小数。
3.掌握小数和分数之间的转化关系,并能够进行分数和小数的互化。
二、小数的认识与应用
1.复习小数的概念,能够利用小数进行加、减、乘、除运算。
2.掌握小数与小数之间的比较,能够判断大小。
3.学会利用小数进行单位换算,如米和厘米、千克和克的换算。
三、长度、质量和容量单位换算
1.复习长度、质量和容量的基本单位及其符号,如米、千克和升,并能够进行换算。
2.学会利用图形和实物进行长度、质量和容量单位的换算。
四、多边形
1.掌握三角形、四边形、五边形、六边形等不规则多边形的命名和性质。
2.能够根据图形的特点进行分类,并能够分别计算各个多边形的边长和面积。
五、图形的对称
1.复习图形的对称性的概念,能够判断图形是否对称。
2.学会利用折纸对称的方法完成图形的折叠和对称。
六、数学语言的表达
1.学习利用数学语言和符号进行数学问题的描述和解答。
2.掌握常用数学语言和符号的意义和运用,如“是…的几倍”、“小
数点后几位”、“取整数部分”等。
以上是北师大版小学六年级数学知识点的大致内容。
通过学习这些知
识点,学生能够进一步加深对数学概念和运算的理解,提高数学应用能力,为进入中学阶段的学习打下坚实的基础。
北师大版六年级上册数学知识点归纳第一单元圆圆概念总结1.圆的定义:圆是由曲线围成的平面封闭图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
圆内最长的线段是直径6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。
9.圆的周长:围成圆的曲线的长度叫做圆的周长。
或者,圆一周的长度就是圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π= 3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C圆=πd=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小以上倍数的平方倍。
北师大版数教六年级上册观念、公式之阳早格格创做第一单元圆观念归纳1、圆的定义:当一条线段绕着它的一个端面正在仄里内转动一周时,它另一个端面的轨迹喊干圆.2、将一弛圆形纸片对于合二次,合痕相接于圆核心的一面,那一面喊干圆心.圆心普遍用字母O表示.它到圆上任一面的距离皆相等.3、半径:对接圆心到圆上任性一面的线段喊干半径.半径普遍用字母r表示.把圆规的二足分启,二足之间的距离便是圆的半径.4、圆心决定圆的位子,半径决定圆的大小.5、直径:通过圆心而且二端皆正在圆上的线段喊干直径.直径一般用字母d表示.6、正在共一个圆内或者等圆中,所有的半径皆相等,所有的直径也皆相等.7、正在共一个圆内或者等圆中,直径的少度是半径的2倍,半径的少度是直径的一半.8、正在共一个圆内或者等圆中,有无数条半径,有无数条直径.直径=2半径半径=1/2直径用字母表示为:d=2rr=d÷29、圆的周少:围成圆的直线的少度喊干圆的周少.10、圆的周少经常直径的3倍多一些,圆的周少除以直径的商(圆的周少与直径的比值)是一个牢固的数,咱们把它喊干圆周率,用字母π表示, π是一个无限没有循环小数,为了估计简便,常常与近似值3.14.π≈3.14.天下上第一个把圆周率算出去的人是尔国的数教家祖冲之.11、圆的周少公式:(1).知直径供周少周少=圆周率×直径字母 C=πd(2).知半径供周少周少=圆周率×半径×2 字母C=2πr12、圆的里积:圆所占里积的大小喊干圆的里积.13、把一个圆割成一个近似的少圆形,割拼成的少圆形的少相称圆周少的一半,宽相称于圆的半径,果为少圆形的里积=少×宽,所以圆的里积=π×r×r14、圆的里积公式:(1)知半径供圆的里积:圆的里积=圆周率×半径的仄圆,字母:S=πr²(2)知直径供圆的里积:圆的里积=圆周率×(直径÷2)的仄圆,字母S=π()2(3)知周少供圆的里积:半径=周少÷圆周率÷2,圆的里积=圆周率×半径的仄圆字母:S=π()215、正在一个正圆形里绘一个最大的圆,圆的直径等于正圆形的边少.16、正在一个少圆形里绘一个最大的圆,圆的直径等于少圆形的宽.17、一个环形,中圆的半径是R,内圆的半径是r,它的里积是:S=πR2 –πr2或者S=π(R2-r2)(其中R=r+环的宽度)18、一个半圆的周少=圆周少的一半+直径字母:C半=πd÷2+d=πr+2r=(π+2)r= 5.14r19、环形的周少=中圆的周少+内圆的周少20、半圆的里积=圆的里积÷2 公式为:S=πr²÷221、正在共一个圆里,半径夸大或者缩小几倍,直径战周少也夸大或者缩小相共的倍数,而里积夸大或者缩小相共倍数的仄圆倍.如:正在共一个圆里,半径夸大4倍,那么直径战周少便皆夸大 4倍,而里积夸大16倍.22、二个圆的半径比等于直径比等于周少比,而里积比等于以上比的仄圆.如:二个圆的半径比是2:3,那么那二个圆的直径比战周少比皆是2:3,而里积比是4:9.23、当一个圆的半径减少a厘米时,它的周少便减少2πa厘米;当一个圆的直径减少a厘米时,它的周少便减少πa厘米.24、正在共一个圆中,圆心角占圆周角的几分之几,它地圆的扇形里积便占圆里积的几分之几,所对于的弧便占圆里积的几分之几.25、当少圆形、正圆形战圆的周少相等时,圆的里积最大,少圆形的里积最小.26、扇形的弧少公式:L=πd÷360×n(n表示圆心角的度数)27、轴对于称图形:如果一个图形沿着一条直线对于合,二侧的图形不妨实足沉合,那个图形便是轴对于称图形,合痕地圆的那条直线喊干对于称轴.28、惟有一条对于称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆.惟有二条对于称轴的图形有:少圆形.惟有三条对于称轴的图形有:等边三角形.惟有五条对于称轴的图形有:五角星有无数条对于称轴的图形有:圆、圆环29、直径地圆的直线是圆的对于称轴.第四单元认识比一、1、二个数相除又喊二个的比,比的后项没有克没有及为0.(球赛中“比”不过一种记录办法)如:5:7=5÷72、比的组成部分有:前项、比号、后项3、最简整数比:前项与后项是互量的二个整数,那样的比喊干最简整数比.4、比的基赋本量:比的前项战后项共时乘上除以相共的数(0除中),比值没有变,那喊干比的基赋本量.5、比、分数、除法的通联与辨别.比与除法的闭系:前项相称于被除数,后项相称于除数,比号相称于除号,比值相称于商.比与分数的闭系:前项相称于分子,后项相称于分母,比号相称于分数线,比值相称于分数值. 如:2:3=2÷3=6、化简比与供比值的辨别.化简比:前项与后项共时乘或者除以相共的数(0除中)化简比是一个前项与后项互量的最简的整数比(一定要有前项、比号、后项)供比值:前项÷后项=一个数(不妨是小数、分数或者整数)二、比的应用 1、已知总量及那二个量的比,供按比率调配,如二个数的比为甲:乙要领一:(1)先供总份数,甲+乙=总份数(2)再供每一个量占总份的几分之几是几要领二:甲+乙=总份数总数÷总份数=每份数甲:甲×每份数=甲的总量乙:乙×每份数=乙的总量2、已知二个量的等到其中一个量,供另一个量.要领一:比的前项战后项共时夸大相共的倍数.要领二:如那二个量的比甲:乙甲的总量甲的总量÷甲=倍数乙×倍数=乙的总量3、已知二个量的等到其中一个量,供总量要领:如那二个量的比甲:乙甲的总量甲的总量÷甲=倍数乙×倍数=乙的总量甲的总量+乙的总量=总量4、已知二个量的等到好量,供总量. 甲-乙=份数好好量÷份数好=每份数量级每份量×(甲+乙)=总量第五单元统计1、复式条形统计图①用分歧的条形代表分歧类别的数量;②图例;③特性:简单瞅出百般数量的几,并举止分歧类型数量的比较2、复式合线统计图①统计分歧类型数量的变更情况,使用合线统计图;②注意:标图例、描面、连线;③特性:领会瞅出数量的几,也能瞅出数量变更的趋势;3、死计中的数(1)数据天下不妨用咱们身边认识的实物去体验较大的数据(2)数字的用处①数字不妨表示数量、实物的程序、传播疑息②身份证编码、邮政编码(3)正背数①正背数表示具备好异意思的量,不妨互相对消;②咱们不妨认为确定“0”面,正背数皆戴有单位第六单元瞅察物体1、拆一拆①共一个物体,瞅察的角度分歧,所瞅察到的物体的形状也分歧;(正里、上头、左里)②根据三视图(正、上、左)拆出切合央供的坐体图形,根据二个里推理出拆出坐体图形所需的最少战最多块数小正圆体.2、瞅察的范畴瞅察范畴随瞅察面的变更而变更,瞅察面越矮,瞅察范畴越小,瞅察面越下,瞅察范畴越大3、瞅图找闭系(1)足球场内的声音图不妨表示变量之间的闭系,瞅图有好处找变量与变量之间的闭系去预测已去(2)成员之间的闭系注意箭头目标、程序。
完整版)新北师大版小学六年级数学总复习知识点归纳小学六年级数学知识点总结一、常用数量关系式1.每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数2.速度×时间=路程,路程÷速度=时间,路程÷时间=速度3.单价×数量=总价,总价÷单价=数量,总价÷数量=单价4.工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率5.加数+加数=和,和-一个加数=另一个加数6.被减数-减数=差,被减数-差=减数,差+减数=被减数7.因数×因数=积,积÷一个因数=另一个因数8.被除数÷除数=商,被除数÷商=除数,商×除数=被除数二、小学数学图形计算公式1.正方形(C:周长,S:面积,a:边长)周长=边长×4,C=4a面积=边长×边长,S=a×a正方体(V:体积,a:棱长)表面积=棱长×棱长×6,S表=a×a×6体积=棱长×棱长×棱长,V=a×a×a2.长方形(C:周长,S:面积,a:长,b:宽)周长=(长+宽)×2,C=2(a+b)面积=长×宽,S=ab长方体(V:体积,S:面积,a:长,b:宽,h:高)表面积=(长×宽+长×高+宽×高)×2,S=2(ab+ah+bh) 体积=长×宽×高,V=abh3.三角形(S:面积,a:底,h:高)面积=底×高÷2,S=ah÷2三角形高=面积×2÷底,三角形底=面积×2÷高4.平行四边形(S:面积,a:底,h:高)面积=底×高,S=ah5.梯形(S:面积,a:上底,b:下底,h:高)面积=(上底+下底)×高÷2,S=(a+b)×h÷26.圆形(S:面积,C:周长,d:直径,r:半径)周长=直径×π=2×π×半径,C=πd=2πr面积=半径×半径×π7.圆柱体8.圆锥体9.总数÷总份数=平均数10.相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间11.利润与折扣问题三、常用单位换算1.长度单位换算1千米=1000米,1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米2.面积单位换算1平方千米=100公顷,1公顷=平方米,1平方米=100平方分米,1平方分米=100平方厘米,1平方厘米=100平方毫米3.体(容)积单位换算1立方米=1000立方分米,1立方分米=1000立方厘米,1立方分米=1升,1立方厘米=1毫升,1立方米=1000升4.重量单位换算1吨等于1000千克,1千克等于1000克,1千克等于1公斤。
第一单元圆圆概念总结1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =1 2 d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d÷2)²或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径R,内圆的半径r,它的面积S=πR²-πr²或S=π(R²-r²)。
北师大版六年级数学知识点梳理小学数学里面的全部学问其实就是4个东西,加减乘除,或者说是和差倍的关系,把小学的全部数学学问总结为加减乘除是协助大家学好数学的关键。
下面是我给大家整理的一些六年级数学学问点,盼望对大家有所协助。
六年级数学重难学问点根本概念:行程问题是探究物体运动的,它探究的是物体速度、时间、路程三者之间的关系.根本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追刚好间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法根本题型:确定路程(相遇路程、追及路程)、时间(相遇时间、追刚好间)、速度(速度和、速度差)中随意两个量,求第三个量。
六年级数学学问点扇形统计图的意义1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各局部数量同总数之间关系,也就是各局部数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减改变,还可清楚看出各个数量的多少。
(3)扇形统计图直观显示局部和总量的关系。
数学广角--数与形2+4+6+8+10+12+14+16+18+20=(110)规律:从2起先的n个连续偶数的和等于n×(n+1)。
10×(10+1)=10×11=110从1起先的连续奇数的和正好是这串数个数的平方。
第一单元圆1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心(O)。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d÷2)² 或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
第一单元圆1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母 O 表示。
它到圆上任意一点的距离都相等。
3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母 r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母 d 表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的 2 倍,半径的长度是直径的一半。
用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3 倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或 C=2πr 圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d/2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是 R,内圆的半径是 r,它的面积是S=πR²-πr²或S=π(R²-r²)。
总复习概念整理整数和小数1.最小的一位数是1,最小的自然数是02.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……4.小数的分类:小数有限小数无限循环小数无限小数无限不循环小数5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……数的整除1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。
质数都有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
合数至少有3个约数。
最小的质数是2,最小的合数是41~20以内的质数有:2、3、5、7、11、13、17、191~20以内的合数有“4、6、8、9、10、12、14、15、16、186.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各位上 数的和能被3整除,这个数就能被3整除。
7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。
8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。
11.互质数:公约数只有1的两个数叫做互质数。
12.两数之积等于最小公倍数和最大公约数的积。
三.四则运算1.一个加数=和-另一个加数 被减数=差+减数减数=被减数-差一个因数=积÷另一个因数被除数=商×除数 除数=被除数÷商2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
3.运算定律:(1)加法交换律:a+b=b+a乘法交换律:a×b=b×a两个数相加,交换加数的位置,它们的和不变。
两个数相加,交换因数的位置,它们的积不变。
(2)加法结合律:(a+b)+c=a+(b+c)乘法结合律:(a×b)×c=a×(b×c)三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(3)乘法分配律:(a+b)×c=a×c+b×c两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)减法的性质:a-b-c=a-(b+c) 除法的性质:a÷b÷c=a÷(b×c)从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
一个数连续除以两个数,等于这个数除以两个除数的积。
四.关系式1.速度×时间=路程路程÷时间=速度路程÷速度=时间工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率单价×数量=总价总价÷数量=单价 总价÷单价=数量五.方程方程:含有未知数的等式叫做方程。
方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
解方程:求方程解的过程叫做解方程。
六.分数和百分数分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。
分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。
分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。
分数的分类:分数可以分为真分数和假分数。
真分数:分子小于分母的分数叫做真分数。
真分数小于1。
假分数:分子大于或等于分母的分数叫做假分数。
假分数大于或者等于1。
6.最简分数:分子与分母互质的分数叫做最简分数。
7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫做百分率或者百分比。
百分数通常用“%”来表示。
七.量的计量1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。
体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。
质量单位有:吨、千克、克,写出它们之间的进率。
时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。
2.一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。
小月有:4、6、9、11月,共4个,每月30天。
二月平年是28天,闰年是29天。
左拳记月法3.一年有4个季度,每个季度3个月。
4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
5.名数:把计量得到的数和单位名称合起来叫做名数。
单名数:只带有一个单位名称的叫做单名数。
复名数:带有两个或两个以上单位名称的叫做复名数。
6.名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。
八.几何初步知识1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。
射线和直线是无限长的。
2.角:从一点引出两条射线所组成的图形叫做角。
3.角的大小:角的大小看两条边*开的大小,*开的越大,角越大。
计量角的大小的单位:度,用符号“°”表示。
小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。
角的两边在一条直线上的角叫做平角。
平角180°。
垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。
(画图说明)平行线:在同一平面内不相交的两条直线叫做平行线。
也可以说这两条直线互相平行。
(画图说明)平行线之间垂直线段的长度都相等。
三角形:有三条线段围成的图形叫做三角形。
三角形的分类:(1)按角分:锐角三角形、钝角三角形、直角三角形。
(2)按边分:一般三角形、等腰三角形、等边三角形。
10.三角形三个内角和是180°。
11.四边形:由四条线段围成的图形。
12.圆是一种曲线图形。
圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
13.圆的半径、直径都有无数条。
在同一个圆里,直径是半径的2倍,半径是直径的二分之一。
14.轴对称图形:如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
15.学过的图形中的轴对称图形有:圆、等腰三角形、等边三角形、长方形、正方形、等腰梯形16.周长:围成一个图形的所有边长的总和就是这个图形的周长。
面积:物体的表面或围成的平面图形的大小,叫做它们的面积。
17。
表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
体积:物体所占空间的大小叫做物体的体积。
18.长方体、正方体都有12条棱,6个面,8个顶点。
正方体是特殊的长方体,等边三角形是特殊的等腰三角形。
19.圆柱的三个特点:(1)上下一样粗细(2)侧面是曲面(3)两个底面是相同的圆20.圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。
圆柱的高有无数条,这些高都平行且相等。
21.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。
22.圆周率π是一个无限不循环小数。
π=3.141592653……23.把圆等份成若干份,拼成的图形接近于长方形。
这个长方形的长相当于圆周长的一半,宽就是圆的半径。
24.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
25.等底等高的圆锥的体积是圆柱的,等底等高的圆柱的体积是圆锥的三倍。
体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的,圆锥的高是圆柱的3倍。
九.比和比例比的意义:两个数相除又叫做两个数的比。
比例的意义:表示两个比相等的式子叫做比例。
求比值:比的前项除以比的后项所得的商叫做比值。
比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。
比例的基本性质:在比例里,两个外项的积等于两个内项的积。
4.应用比的基本性质可以化简比;应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。
5.用字母表示比与除法和分数的关系。
a:b=a÷b=(b≠0)6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。
7.图上距离:实际距离=比例尺或=比例尺实际距离=图上距离÷比例尺图上距离=实际距离×比例尺8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。
化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。
9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。