决策树的例题
- 格式:ppt
- 大小:793.00 KB
- 文档页数:75
注意答卷要求:1.统一代号:P 为利润,C 为成本,Q 为收入,EP 为期望利润 2.画决策树时一定按照标准的决策树图形画,不要自创图形 3.决策点和状态点做好数字编号 4.决策树上要标出损益值某企业似开发新产品,现在有两个可行性方案需要决策。
I 开发新产品A ,需要追加投资180万元,经营期限为5年。
此间,产品销路好可获利170万元;销路一般可获利90万元;销路差可获利-6万元。
三种情况的概率分别为30%,50%,20%。
II.开发新产品B ,需要追加投资60万元,经营期限为4年。
此间,产品销路好可获利100万元;销路一般可获利50万元;销路差可获利20万元。
三种情况的概率分别为60%,30%,10%。
(1)画出决策树销路好 0.317090 -61005020(2)计算各点的期望值,并做出最优决策求出各方案的期望值:方案A=170×0.3×5+90×0.5×5+(-6)×0.2×5=770(万元)方案B=100×0.6×4+50×0.3×4+20×0.1×4=308(万元)求出各方案的净收益值:方案A=770-180=590(万元)方案B=308-60=248(万元)因为590大于248大于0所以方案A最优。
某企业为提高其产品在市场上的竞争力,现拟定三种改革方案:(1)公司组织技术人员逐渐改进技术,使用期是10年;(2)购买先进技术,这样前期投入相对较大,使用期是10年;(3)前四年先组织技术人员逐渐改进,四年后再决定是否需要购买先进技术,四年后买入技术相对第一年便宜一些,收益与前四年一样。
预计该种产品前四年畅销的概率为0.7,滞销的概率为0.3。
如果前四年畅销,后六年畅销的概率为0.9;若前四年滞销,后六年滞销的概率为0.1。
相关的收益数据如表所示。
(1)画出决策树(2)计算各点的期望值,并做出最优决策投资收益表单位:万元解(1)画出决策树,R为总决策,R1为二级决策。
人工智能决策树例题经典案例一、经典案例:天气预测决策树在天气预测中有广泛应用,下面是一个关于是否适宜进行户外运动的示例:1. 数据收集:- 温度:高(>30℃)/中(20℃-30℃)/低(<20℃)- 降水:是/否- 风力:高/中/低- 天气状况:晴朗/多云/阴天/雨/暴雨- 应该户外运动:是/否2. 构建决策树:- 根据温度将数据分为三个分支:高温、中温、低温- 在每个分支中,继续根据降水、风力和天气状况进行划分,最终得到是否适宜户外运动的决策3. 决策树示例:温度/ / \高温中温低温/ | | \ |降水无降水风力适宜/ \ | | / \是否高中低| |不适宜适宜- 如果温度是高温且有降水,则不适宜户外运动- 如果温度是高温且无降水,则根据风力判断,如果风力是高,则不适宜户外运动,如果风力是中或低,则适宜户外运动 - 如果温度是中温,则不论降水和风力如何,都适宜户外运动- 如果温度是低温,则需要考虑风力,如果风力是高,则适宜户外运动,如果风力是中或低,则不适宜户外运动4. 参考内容:决策树的构建和应用:决策树通过对输入特征进行划分,构建了一棵树形结构,用于解决分类或回归问题。
构建决策树主要包括数据预处理、特征选择、划分策略和停止条件等步骤。
特征选择可以使用信息增益、基尼指数等算法,划分策略可以使用二叉划分或多叉划分,停止条件可以是叶子节点纯度达到一定阈值或达到预定的树深度。
决策树的应用包括数据分类、特征选择和预测等任务。
天气预测案例中的决策树:将天气预测问题转化为分类问题,通过构建决策树,可以得到识别是否适宜户外运动的规则。
决策树的决策路径可以用流程图或树状图表示,帮助理解和解释决策过程。
决策树的节点表示特征值,分支表示判断条件,叶子节点表示分类结果。
决策树的生成算法可以基于启发式规则或数学模型,如ID3、C4.5、CART等。
决策树的优缺点:决策树具有可解释性强、易于理解和实现、能处理非线性关系等优点。
决策树习题练习(答案)决策树习题练习答案1.某投资者预投资兴建一工厂,建设方案有两种:①大规模投资300万元;②小规模投资160万元。
两个方案的生产期均为10年,其每年的损益值及销售状态的规律见表15。
试用决策树法选择最优方案。
表1 各年损益值及销售状态销售状态概率损益值(万元/年)大规模投资小规模投资销路好 0.7100 60 销路差 0.3 -2020【解】(1)绘制决策树,见图1;100×10 -20×10 60×1020×10 销路好0.7 销路差(0.3)销路好0.7 销路差(0.3)大规模小规模 340 340 3202 31 图1 习题1决策树图(2)计算各状态点的期望收益值节点②:节点③:将各状态点的期望收益值标在圆圈上方。
(3)决策比较节点②与节点③的期望收益值可知,大规模投资方案优于小规模投资方案,故应选择大规模投资方案,用符号“//”在决策树上“剪去”被淘汰的方案。
2.某项目有两个备选方案A和B,两个方案的寿命期均为10年,生产的产品也完全相同,但投资额及年净收益均不相同。
A方案的投资额为500万元,其年净收益在产品销售好时为150万元,,销售差时为50万元;B方案的投资额为300万元,其年净收益在产品销路好时为100万元,销路差时为10万元,根据市场预测,在项目寿命期内,产品销路好时的可能性为70%,销路差的可能性为30%,试根据以上资料对方案进行比选。
已知标准折现率ic=10%。
【解】(1)首先画出决策树150 5010010 销路好0.7 销路差0.3 销路好0.7 销路差0.3 -500 -3002 31 图2 决策树结构图此题中有一个决策点,两个备用方案,每个方案又面临着两种状态,因此可以画出其决策树如图18。
(2)然后计算各个机会点的期望值机会点②的期望值=150(P/A,10%,10)×0.7+(-50)(P/A,10%,10)×0.3=533(万元) 机会点③的期望值=100(P/A,10%,10)×0.7+10(P/A,10%,10)×0.3=448.5(万元) 最后计算各个备选方案净现值的期望值。
决策树实例计算计算题⼀ 1.为⽣产甲产品,⼩⾏星公司设计了两个基本⽅案:⼀是建⼤⼯⼚,⼆是建⼩⼯⼚。
如果销路好,3年以后考虑扩建。
建⼤⼯⼚需投资300万元,建⼩⼯⼚需投资160万元,3年后扩建另需投资140万元。
扩建后可使⽤7年,其年度损益值与⼤⼯⼚相同。
每种⾃然状态的预测概率及年度损益值如下表:前 3 年后 7 年根据上述资料试⽤决策树法做出决策。
四、计算题(15分)答:建⼤⼚收益=581-300=281建⼩⼚收益=447-160=287所以应选择建⼩⼚⽅案。
⼆⼭姆公司的⽣产设备已经落后,需要马上更新。
公司有⼈认为,⽬前产品销路增长,应在更新设备的同时扩⼤再⽣产的规模。
但也有⼈认为,市场形势尚难判断,不如先更新设备,3年后再根据形势变化考虑扩⼤再⽣产的规模问题。
这样,该公司就⾯临着两个决策⽅案。
决策分析的有关资料如下:A、现在更新设备,需投资35万元, 3年后扩⼤⽣产规模,另需投资40万元。
B、现在更新设备的同时扩⼤再⽣产的规模,需投资60万元。
C、现在只更新设备,在销售情况良好时,每年可获利6万元;在销售情况不好时,每年可获利4、5万元。
D、如果现在更新与扩产同时进⾏,若销售情况好,前3年每年可获利12万元;后7年每年可获利15万元;若销售情况不好,每年只获利3万元。
E、每种⾃然状态的预测概率如下表前 3 年后 7 年根据上述资料试⽤决策树法做出决策。
答案:结点7收益值=0、85×7 × 15+0、15 ×7 ×3=92、4(万元)结点8收益值=0、85×7 ×6+0、15 ×7 ×4、5=40、4(万元)结点9收益值=0、1×7 × 15+0、9 ×7 ×3=29、4(万元)结点10收益值=0、1×7 × 6+0、9 ×7 ×4、5=32、6(万元)结点1收益值=0、7×[52、4+(3 × 6)]+0、3 ×[32、6+(3 × 4、5)]=63、1(万元)结点2收益值=0、7×[92、4+(3 × 12)]+0、3 ×[29、4+(3 × 3)]=101、4(万元)答:⽤决策树法进⾏决策应选择更新扩产⽅案,可获得收益41、4万元。
决策树算法例题经典
案例1:购物产品推荐。
假设当前我们需要进行购物产品推荐工作,用户可以选择若干项属性,例如品牌、价格、颜色、是否有折扣等等,在已知一些样本的基础上,构
建一棵决策树,帮助用户快速得到最佳购买推荐。
如果用户选择的品牌为A,则直接推荐产品P3;如果选择品牌为B,
则继续考虑价格,如果价格低于100,则推荐产品P1,否则推荐产品P2。
如果用户选择的品牌为C,则直接推荐产品P4。
当然,这只是一个简单的例子,实际应用场景中可能会有更多的属性
和样本。
因此,在构建决策树时需要考虑选取最优特征,避免过度拟合等
问题。
案例2:疾病预测。
假设有一组医学数据,其中包括患者的年龄、性别、身高、体重、血
压等指标以及是否患有糖尿病的标签信息。
我们希望构建一个决策树来帮
助医生快速判断患者是否可能患有糖尿病。
如果患者年龄大于45岁,则进一步考虑体重,如果体重高于120kg,则判断为高风险群体;否则判断为低风险群体。
如果患者年龄不超过45岁,则直接判断为低风险群体。
当然,这只是一个简单的例子,实际应用场景中可能会有更多的指标
和样本。
因此,在构建决策树时需要考虑选取最优特征,避免过度拟合等
问题。
《决策树习题练习(答案)》摘要:20×10 销路好0.7 销路差(0.3)销路好0.7 销路差(0.3)大规模小规模 340 340 320 2 3 1 图1 习题1决策树图(2)计算各状态点的期望收益值节点②:节点③:将各状态点的期望收益值标在圆圈上方,100 10 销路好0.7 销路差0.3 销路好0.7 销路差0.3 -500 -300 2 3 1 图2 决策树结构图此题中有一个决策点,两个备用方案,每个方案又面临着两种状态,因此可以画出其决策树如图18,点⑦:150×0.3+100×0.5+50×0.2=105(万元)点②:105×0.3-3×0.7=29.4(万元)点⑧:110×0.2+60×0.7+0×0.1=64(万元)点⑨:110×0.4+70×0.5+30×0.1=82(万元)点④:82×0.4-2×0.6=31.6(万元)点⑩:70×0.2+30×0.5-10×0.3=26(万元)点⑤:26×0.7-2×0.3=17.6(万元)点⑥:0 (3)选择最优方案决策树习题练习答案 1.某投资者预投资兴建一工厂,建设方案有两种:①大规模投资300万元;②小规模投资160万元。
两个方案的生产期均为10年,其每年的损益值及销售状态的规律见表15。
试用决策树法选择最优方案。
表1 各年损益值及销售状态销售状态概率损益值(万元/年)大规模投资小规模投资销路好 0.7 100 60 销路差 0.3 -20 20 【解】(1)绘制决策树,见图1;100×10 -20×10 60×10 20×10 销路好0.7 销路差(0.3)销路好0.7 销路差(0.3)大规模小规模 340 340 320 2 3 1 图1 习题1决策树图(2)计算各状态点的期望收益值节点②:节点③:将各状态点的期望收益值标在圆圈上方。