冷镦锻工艺与模具设计
- 格式:doc
- 大小:34.50 KB
- 文档页数:3
冷镦模具设计培训资料冷镦模具设计是一项重要的工程技术,它涉及到冷镦工艺和模具结构的设计。
在冷镦生产过程中,模具起着关键性的作用,它决定了产品的加工精度、质量和生产效率。
因此,加强冷镦模具设计的培训是十分必要的。
以下是一份关于冷镦模具设计的培训资料。
一、冷镦模具设计的基本知识1.冷镦工艺的基本原理与特点:冷镦是利用金属在常温下的可塑性进行成型的一种冷加工方法。
冷镦工艺的特点是成型力量小、能耗低、能高效地将原材料加工成型,具有广泛的应用前景。
2.冷镦模具的分类:根据不同的加工要求和产品形状,冷镦模具主要可分为剪切模具、折边模具、拉伸模具和成形模具等几类。
3.冷镦模具的工作原理:冷镦模具是利用金属在受力作用下发生塑性变形,以达到所需产品形状和尺寸的一种工具。
冷镦模具的工作原理主要包括切削原理、切断原理、拉伸原理和成形原理等。
二、冷镦模具设计的基本步骤与方法1.冷镦模具设计的基本步骤:a.明确产品形状与尺寸要求;b.建立产品三维几何模型;c.分析产品的特点与加工工艺;d.制定模具加工工艺方案;e.进行模具结构设计;f.完善模具零部件设计;g.进行模具装配与调试;h.进行模具试验与修正;i.完善模具设计文件。
2.冷镦模具设计的基本方法:a.模具结构设计方法;b.模具加工工艺与工装设计方法;c.模具材料与热处理的选择方法;d.模具零部件装配与调试方法;e.模具试验与优化设计方法。
三、冷镦模具设计的关键技术与注意事项1.冷镦模具设计的关键技术:a.模具结构设计技术;b.模具零件设计技术;c.模具加工与装配技术;d.模具热处理技术。
2.冷镦模具设计的注意事项:a.注意材料的选择与热处理;b.注意模具结构的合理性与刚度;c.注意模具零部件的制造精度;d.注意模具的涂层保护与维护。
四、冷镦模具设计的应用与发展趋势1.冷镦模具设计的应用领域:冷镦模具广泛应用于汽车、摩托车、电子、家电、建筑设备等工业领域。
2.冷镦模具设计的发展趋势:a.使用CAD/CAM/CAE等先进技术进行模具设计与分析;b.开展模具标准化与模具设计规范的制定与推广;c.结合数值模拟与优化技术,提高冷镦模具设计与生产过程的效率和质量。
以GB5786-M8六角头螺栓为例来说明。
..冷镦锻工艺是一种少无切削金属压力加工工艺。
它是一种利用金属在外力作用下所产生的塑性变形,并借助于模具,使金属体积作重新分布及转移,从而形成所需要的零件或毛坯的加工方法。
冷镦锻工艺的特点:1.冷镦然是在常温条件进行的.冷镦锻可使金属零件的机械性能得到改善.2.冷镦锻工艺可以提高材料利率。
它是以塑性变形为基础的压力加工方法,可实现少切削或者无切削加工。
一般材料利用率都在85%以上,最高可达99%以上.3.可提高生产效率.金属产品变形的时间和过程都比较短,特别是在多工位成形机上加工零件,可大大提高生产率.4.冷镦锻工艺能提高产品表面粗糙度、保证产品精度。
二、冷镦锻工艺对原材料的要求1.原材料的化学成份及机械性能应符合相关标准.2.原材料必须进行球化退火处理,其材料金相组织为球状珠光体4—6级。
3.原材料的硬度,为了尽可能减少材料的开裂倾向,提高模具使用寿命还要求冷拔料有尽可能低的硬度,以提高塑性.一般要求原材料的硬度在HB110~170(HRB62—88)。
4.冷拔料的尽寸精度一般应根据产品的具体要求及工艺情况而定,一般来说,对于缩径和强缩尺寸精度要求低一些。
5.冷拔料的表面质量要求有润滑薄膜呈无光泽的暗色,同时表面不得有划痕、折叠、裂纹、拉毛、锈蚀、氧化皮及凹坑麻点等缺陷。
6.要求冷拔料半径方向脱碳层总厚度不超过原材料直径的1-1。
5%(具体情况随各制造厂家的要求而定)。
7.为了保证冷成形时的切断质量,要求冷拔料具有表面较硬,而心部较软的状态。
8.冷拔料应进行冷顶锻试验,同时要求材料对冷作硬化的敏感性越低越好,以减少变形过程中,由于冷作硬化使变形抗力增加.三、紧固件加工工艺简述紧固件主要分两大粪:一类是螺纹类紧固件;另一类是非螺纹类紧固件或联接件。
这里仅针对螺纹类紧固件进行简述。
1. 螺纹类紧固件加工流程一般都是由剪断、冷镦、或者冷挤压、切削、螺纹加工、热处理、表面处理等生产工序组成的.材料改制工艺流程一般为:酸洗→拉丝→退火→磷化皂化→拉丝→(球化磷化)螺纹类紧固件冷加工艺流程订要有以下几种情况:8。
冷镦基础知识和工艺分析冷镦是一种金属加工方法,用于在室温下通过挤压和塑造金属材料,从而使其变为中空或实心形状。
冷镦过程能够在不改变材料的化学或物理属性的情况下,改善材料的强度、硬度和耐磨性。
冷镦工艺广泛应用于汽车、电气、机械和建筑等行业,生产出各种紧固件,如螺钉、螺栓、销钉和肩销等。
1.材料选择:冷镦加工适用于多种金属材料,如碳钢、不锈钢、铜、铝等。
不同材料具有不同的加工性能和机械性能,因此在选择材料时需要考虑到工件的使用环境和要求。
2.冷镦设备:冷镦设备主要包括镦头机、滚压机和冷挤压机。
镦头机用于将材料挤压成所需形状,滚压机用于将材料滚压成螺纹或花纹,冷挤压机用于将材料从材坯中挤出成型。
3.镦钢途径:冷镦过程中,将材料送入镦头机的路径称为镦钢途径。
镦钢途径的设计和选择直接影响到工件的加工效果和形状稳定性。
4.模具设计:模具是冷镦过程中必不可少的工具,用于形成工件的形状。
模具的设计需要考虑到工件的形状、尺寸和材料特性等因素,以确保工件的质量和精度。
冷镦工艺分析:1.工件设计:在冷镦工艺中,工件的设计是关键因素之一、工件的形状和尺寸应该符合冷镦设备和模具的要求,同时考虑到材料的挤压和延展性能。
2.材料预处理:在冷镦加工之前,材料需要进行一些预处理,如清洗、除油和退火等。
这些处理可以减少材料的不均匀性、气泡和应力,提高加工的稳定性和表面质量。
3.加热处理:一些情况下,冷镦工艺需要在加热状态下进行,以提高材料的延展性和塑性。
加热温度和时间的选择需要考虑到材料的特性和工艺要求。
4.加工参数:冷镦过程中的加工参数包括挤压速度、压力和润滑剂的选择等。
这些参数的选择需要经验和试验,以确保加工的稳定性和工件的质量。
5.表面处理:冷镦工艺后,工件的表面需要进行一些处理,如退火、焊接、镀锌等。
这些处理可以进一步改善工件的力学性能和抗腐蚀性能。
总结:冷镦是一种常见的金属加工方法,通过挤压和塑造金属材料,制造出各种紧固件和零部件。
冷镦基础知识和工艺分析冷镦是一种金属加工工艺,用于将金属棒材通过一系列冷镦工序进行变形,并形成不同形状的零件。
冷镦零件广泛应用于各种行业,如汽车制造、机械制造、电子设备等。
1.冷镦工件材料:冷镦工件材料通常为高强度合金钢,因其具有良好的可塑性和机械性能。
常见的冷镦材料有碳素钢、不锈钢、铝合金等。
2.冷镦机械设备:冷镦工艺需要使用专用的机械设备,如冷镦机、冷锻机等。
这些设备通常由电机、冷镦模具、冷却系统等组成。
3.冷镦模具:冷镦模具用于给金属材料施加压力和变形。
模具设计和制造的精度直接影响到冷镦产品的质量。
常见的冷镦模具类型包括直形镦模、曲形镦模、针形镦模等。
4.冷镦工序:冷镦过程主要包括切割、预加工、镦粗、镦细等。
切割是将金属棒材切断合适长度;预加工是通过切割、上锥等工序,将材料准备好进行下一步镦制;镦制则是通过模具施加压力,使金属棒材产生塑性变形,最终形成所需零件。
工艺分析:1.材料分析:在进行冷镦工艺分析前,需要对选定的材料进行分析。
包括材料的化学成分、力学性能、热处理特性等。
这些特性将决定冷镦工艺中的参数选择和工艺优化。
2.模具设计:根据所需零件的形状和尺寸,进行冷镦模具的设计。
模具设计要考虑材料的机械性能和变形特点,确保模具能够施加适当的压力和变形力,形成理想的零件形状。
3.工艺参数确定:确定适当的冷镦工艺参数对于生产高质量零件至关重要。
包括材料温度、镦制速度、润滑剂选择等。
合理的参数选择既能保证产品质量,又能提高生产效率。
4.工艺优化:通过实验和仿真分析,对冷镦工艺进行优化。
例如,使用合适的润滑剂可以减小摩擦阻力,提高工件表面质量;选择合适的冷镦速度可以减小能耗,提高生产效率。
总结:冷镦作为一种重要的金属加工工艺,广泛应用于各个行业。
了解冷镦基础知识和进行工艺分析,能够帮助我们选择适当的材料和工艺参数,优化冷镦工艺,提高零件的生产效率和质量。
冷镦锻工艺与模具设计冷镦锻工艺是一种利用冷变形原理,通过冲击力使材料表面产生塑性变形,通过模具来塑造材料形状的工艺。
冷镦锻工艺主要应用于金属制品的生产中,如螺丝、螺母、铆钉等。
本文将重点介绍冷镦锻工艺的基本原理以及模具设计的要点。
1.材料准备:选择合适的材料进行冷镦锻加工。
通常选择易于塑性变形的材料,如碳钢、合金钢等。
2.材料切割:将材料按照需要的长度进行切割。
切割过程需要注意保持材料的质量和精度。
3.镦头设计:根据产品的需求和形状设计镦头。
镦头是冷镦锻的关键部件,它决定了最终产品的形状和质量。
4.冷镦锻加工:将切割的材料放入冷镦机床中,通过冲击力和挤压力使材料发生塑性变形。
冷镦机床通常由强制进料装置、冷锻头和后处理装置等组成。
5.后处理:对冷镦锻加工后的产品进行去毛刺、清洗、校直等处理。
这些处理过程可以提高产品的表面质量和精度。
1.模具材料选择:模具需要选择耐磨、耐冲击和耐高温的材料,如合金钢、硬质合金等。
2.模具结构设计:模具结构需要合理,能够实现产品的形状要求,并且易于装卸和调整。
模具结构通常包括模具座、模具芯、模具套等组件。
3.模具热处理:模具需要进行适当的热处理,以增加其硬度和耐磨性。
4.模具表面处理:模具表面需要进行适当的涂层处理,以减少摩擦和磨损。
5.模具维护:模具需要定期进行维护和保养,以延长其使用寿命和保持良好的工作状态。
综上所述,冷镦锻工艺与模具设计密不可分。
只有合理选择冷镦锻工艺并设计优化的模具,才能保证产品的质量和生产效率。
冷镦锻工艺与模具设计 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT以GB5786-M8六角头螺栓为例来说明...冷镦锻工艺是一种少无切削金属压力加工工艺。
它是一种利用金属在外力作用下所产生的塑性变形,并借助于模具,使金属体积作重新分布及转移,从而形成所需要的零件或毛坯的加工方法。
冷镦锻工艺的特点:1.冷镦然是在常温条件进行的。
冷镦锻可使金属零件的机械性能得到改善。
2.冷镦锻工艺可以提高材料利率。
它是以塑性变形为基础的压力加工方法,可实现少切削或者无切削加工。
一般材料利用率都在85%以上,最高可达99%以上。
3.可提高生产效率。
金属产品变形的时间和过程都比较短,特别是在多工位成形机上加工零件,可大大提高生产率。
4.冷镦锻工艺能提高产品表面粗糙度、保证产品精度。
二、冷镦锻工艺对原材料的要求1.原材料的化学成份及机械性能应符合相关标准。
2.原材料必须进行球化退火处理,其材料金相组织为球状珠光体4-6级。
3.原材料的硬度,为了尽可能减少材料的开裂倾向,提高模具使用寿命还要求冷拔料有尽可能低的硬度,以提高塑性。
一般要求原材料的硬度在HB110~170(HRB62-88)。
4.冷拔料的尽寸精度一般应根据产品的具体要求及工艺情况而定,一般来说,对于缩径和强缩尺寸精度要求低一些。
5.冷拔料的表面质量要求有润滑薄膜呈无光泽的暗色,同时表面不得有划痕、折叠、裂纹、拉毛、锈蚀、氧化皮及凹坑麻点等缺陷。
6.要求冷拔料半径方向脱碳层总厚度不超过原材料直径的%(具体情况随各制造厂家的要求而定)。
7.为了保证冷成形时的切断质量,要求冷拔料具有表面较硬,而心部较软的状态。
8.冷拔料应进行冷顶锻试验,同时要求材料对冷作硬化的敏感性越低越好,以减少变形过程中,由于冷作硬化使变形抗力增加。
三、紧固件加工工艺简述紧固件主要分两大粪:一类是螺纹类紧固件;另一类是非螺纹类紧固件或联接件。
冷镦锻工艺简介一、冷镦锻工艺简介冷镦锻工艺是一种少无切削金属压力加工工艺。
它是一种利用金属在外力作用下所产生的塑性变形,并借助于模具,使金属体积作重新分布及转移,从而形成所需要的零件或毛坯的加工方法。
冷镦锻工艺的特点:1.冷镦然是在常温条件进行的。
冷镦锻可使金属零件的机械性能得到改善。
2.冷镦锻工艺可以提高材料利率。
它是以塑性变形为基础的压力加工方法,可实现少切削或者无切削加工。
一般材料利用率都在85%以上,最高可达99%以上。
3.可提高生产效率。
金属产品变形的时间和过程都比较短,特别是在多工位成形机上加工零件,可大大提高生产率。
4.冷镦锻工艺能提高产品表面粗糙度、保证产品精度。
二、冷镦锻工艺对原材料的要求1.原材料的化学成份及机械性能应符合相关标准。
2.原材料必须进行球化退火处理,其材料金相组织为球状珠光体4-6级。
3.原材料的硬度,为了尽可能减少材料的开裂倾向,提高模具使用寿命还要求冷拔料有尽可能低的硬度,以提高塑性。
一般要求原材料的硬度在HB110~170(HRB62-88)。
4.冷拔料的尽寸精度一般应根据产品的具体要求及工艺情况而定,一般来说,对于缩径和强缩尺寸精度要求低一些。
5.冷拔料的表面质量要求有润滑薄膜呈无光泽的暗色,同时表面不得有划痕、折叠、裂纹、拉毛、锈蚀、氧化皮及凹坑麻点等缺陷。
6.要求冷拔料半径方向脱碳层总厚度不超过原材料直径的1-1.5%(具体情况随各制造厂家的要求而定)。
7.为了保证冷成形时的切断质量,要求冷拔料具有表面较硬,而心部较软的状态。
8.冷拔料应进行冷顶锻试验,同时要求材料对冷作硬化的敏感性越低越好,以减少变形过程中,由于冷作硬化使变形抗力增加。
三、紧固件加工工艺简述紧固件主要分两大粪:一类是螺纹类紧固件;另一类是非螺纹类紧固件或联接件。
这里仅针对螺纹类紧固件进行简述。
1. 螺纹类紧固件加工流程一般都是由剪断、冷镦、或者冷挤压、切削、螺纹加工、热处理、表面处理等生产工序组成的。
冷镦螺丝成型工艺设计理论
1.工艺参数设计
2.材料选择
3.模具设计
模具是冷镦螺丝成型工艺的核心。
模具的设计应根据产品的尺寸和形
状需求合理选择。
模具的设计原则是满足产品的几何形状要求,确保螺纹
的精度和一致性。
模具的材质也需要考虑耐磨性和耐疲劳性。
4.加工工艺
冷镦螺丝成型工艺的加工过程包括切断、成型和去皮。
切断过程需要
确保切断面的平整度和尺寸精度。
成型过程中需要保持适当的成型力和速度,控制成型温度,避免过度变形和温度过高导致材料的回弹和裂纹。
去
皮过程需要通过合适的方法去除螺纹表面的氧化皮和硬化层,提高表面质量。
5.品质控制
冷镦螺丝成型工艺的品质控制是确保产品达到标准要求的关键。
品质
控制主要包括产品的尺寸精度、螺纹的牙型、外观质量和机械性能等方面。
通过采用先进的检测设备和方法,对每个工序进行检测和控制,可有效提
高产品的质量。
冷镦螺丝成型工艺设计理论是指在实际生产中,根据产品的要求和原
材料的特性,合理地选择工艺参数、材料、模具和加工工艺,确保制造出
满足要求的产品。
通过科学的设计和优化,可以提高生产效率和产品质量,降低成本和能耗,推动工艺的进步和发展。
冷镦螺丝成型工艺的设计理论是一个复杂而重要的课题。
随着技术的不断进步和应用的推广,冷镦螺丝成型工艺将在更多领域得到应用,并为相关行业的发展做出贡献。
因此,在工程实践中不断完善和优化冷镦螺丝成型工艺设计理论,将有助于提高工艺的可操作性和实用性,从而更好地满足市场需求。
极品冷镦模具设计1. 引言冷镦技术是现代制造业中广泛使用的一种金属塑性加工方法。
冷镦模具作为冷镦工艺的重要组成部分,对产品质量和生产效率具有重要影响。
本文将介绍极品冷镦模具设计的一般原则和设计要点。
2. 极品冷镦模具设计原则2.1 合理性原则极品冷镦模具设计应当符合工艺要求,能够实现零件的精确加工,并且具有良好的使用寿命和经济性。
合理性原则包括以下几个方面:•适当尺寸:模具的尺寸应根据零件的设计要求和加工工艺来确定,既要确保零件的精确度,又要控制模具的加工成本。
•合理结构:模具的结构应简单可靠,易于加工制造和操作维护。
关键部件应具有足够的强度和刚度,以抵抗加工过程中的冲击和压力。
•易于装夹:模具应设计为方便装夹和取下,以提高生产效率。
•可调性:模具应具有一定的可调性,以适应不同尺寸和精度要求的加工。
2.2 优化设计原则极品冷镦模具设计应采用优化设计方法,通过对模具结构和工艺参数的优化调整,以达到提高产品质量和生产效率的目的。
优化设计原则包括以下几个方面:•减小冷镦力:通过优化模具工作面的形状和尺寸,减小冷镦力的大小,降低对模具的冲击和磨损。
•减小冷镦变形:通过优化模具的支撑结构和工作面的形状,减小冷镦变形,提高产品的尺寸精度。
•提高工艺稳定性:通过优化冷镦工艺参数,如镦头直径、镦孔尺寸和冷镦速度等,提高工艺的稳定性和可控性。
3. 极品冷镦模具设计要点3.1 模具材料选择极品冷镦模具材料应具有高硬度、高强度、高耐磨性和高热稳定性等特性。
常用的模具材料包括高速钢、硬质合金和工具钢等。
3.2 模具结构设计极品冷镦模具的结构设计应考虑以下几个要点:•工作面设计:工作面应具有光洁度高、硬度高、表面光滑的特点,以提高工件的表面质量。
•支撑结构设计:模具的支撑结构应合理设计,既能提供足够的刚度和稳定性,又能减小变形和振动。
•导向设计:模具的导向设计应考虑工作面的位置和变形情况,以确保工件的尺寸精度。
•冷却系统设计:模具的冷却系统应合理设计,以提高模具的寿命和生产效率。
以GB5786-M8六角头螺栓为例来说明...冷镦锻工艺是一种少无切削金属压力加工工艺。
它是一种利用金属在外力作用下所产生的塑性变形,并借助于模具,使金属体积作重新分布及转移,从而形成所需要的零件或毛坯的加工方法。
冷镦锻工艺的特点:
1.冷镦然是在常温条件进行的。
冷镦锻可使金属零件的机械性能得到改善。
2.冷镦锻工艺可以提高材料利率。
它是以塑性变形为基础的压力加工方法,可实现少切削或者无切削加工。
一般材料利用率都在85%以上,最高可达99%以上。
3.可提高生产效率。
金属产品变形的时间和过程都比较短,特别是在多工位成形机上加工零件,可大大提高生产率。
4.冷镦锻工艺能提高产品表面粗糙度、保证产品精度。
二、冷镦锻工艺对原材料的要求
1.原材料的化学成份及机械性能应符合相关标准。
2.原材料必须进行球化退火处理,其材料金相组织为球状珠光体4-6级。
3.原材料的硬度,为了尽可能减少材料的开裂倾向,提高模具使用寿命还要求冷拔料有尽可能低的硬度,以提高塑性。
一般要求原材料的硬度在HB110~170(HRB62-88)。
4.冷拔料的尽寸精度一般应根据产品的具体要求及工艺情况而定,一般来说,对于缩径和强缩尺寸精度要求低一些。
5.冷拔料的表面质量要求有润滑薄膜呈无光泽的暗色,同时表面不得有划痕、折叠、裂纹、拉毛、锈蚀、氧化皮及凹坑麻点等缺陷。
6.要求冷拔料半径方向脱碳层总厚度不超过原材料直径的1-1.5%(具体情况随各制造厂家的要求而定)。
7.为了保证冷成形时的切断质量,要求冷拔料具有表面较硬,而心部较软的状态。
8.冷拔料应进行冷顶锻试验,同时要求材料对冷作硬化的敏感性越低越好,以减少变形过程中,由于冷作硬化使变形抗力增加。
三、紧固件加工工艺简述
紧固件主要分两大粪:一类是螺纹类紧固件;另一类是非螺纹类紧固件或联接件。
这里仅针对螺纹类紧固件进行简述。
1. 螺纹类紧固件加工流程一般都是由剪断、冷镦、或者冷挤压、切削、螺纹加工、热处理、表面处理等生产工序组成的。
材料改制工艺流程一般为:
酸洗→拉丝→退火→磷化皂化→拉丝→(球化磷化)
螺纹类紧固件冷加工艺流程订要有以下几种情况:
8.8级以下的螺纹紧固件产品加工流程
打头→清洗→搓螺纹→清洗→表面处理→包装
8.8级以下的螺纹紧固件产品加工流程
打头→清洗→切削→热处理→穿垫搓螺纹→清洗→表面处理→包装
8.8-10.9级螺纹紧固件产品加工流程
打头→清洗→切削→搓螺纹→热处理→清洗→表面处理→包装
10.9-12.9级螺纹紧固件产品加工流程
打头→清洗→热处理→切削→滚螺纹→清洗→无损检测→清洗→表面处理→包装
2. 螺纹类紧固件常用材料
螺纹类紧固件常用材料如下表1(含国内外材料对比)
四、冷镦锻工艺设计的基本方法
冷镦锻工艺设计实际上就是冷镦模具的设计,我们所设计的每一个工艺方案最终都是要通过模具设计来实现的。
冷镦锻工艺设计:
首先,根据产品具体的相关参数计算坯长度,此时计算的重量实际是零件的净重,冷镦锻时的坯料长度可根据体积不变原则来确定,即塑性变形坯料的体积等于塑性变形后的零件的体积。
如果还要进行切削加工,那么坯料的体积还应加上相应的切削量。
加上相应的切削余量后计算的重量实际上是零件的毛重。
其次,变形程度及镦锻次数的确定。
如图,当长径比≤2.5时,镦锻一次:
当2.5≤长径比≤4.5时,镦锻二次:
当4.5≤长径比≤6.5时,镦锻三次。
以上数据是在比较理想的条件下才能实现,在实际生产中,还要考虑到产品的几何形状,同时也为了保证质量需要按照上述数据增加一次镦锻变形。
第三,确定加工工艺方案。
根据产品的具体要求确定该产品是采用无切削加工工艺还是采用少切削加工工艺以及采用哪一种生产设备,并设计加工工步图即确定加工工艺方案。
第四,根据以上三个因素确定所有材料的坯径尺寸。
需要说明的是原材料尺寸与产品头部尺寸、产品的杆部尺寸、生产设备以及螺纹精度和表面处理方式都是紧固件密相关的。
例如:以GB5786-M8六角头螺栓为例来说明,这里以表格的形式表达更清楚直观,具体见表2。
第五,根据产品的相关参数计算零件净重,根据不同的加工方式、方法计算零件消耗定额。
第六,根据产品要求确定滚压螺纹坯径尺寸,不同的螺纹标准所要求的滚压螺坯径尺寸是不一样的。
在国家新螺纹标准GB192-81-GB2516-M8中,外螺纹主要有6e、6f、6g、6h四种。
相关螺纹资料介绍请参看TFS-Threads文档。
以GB5786-M8六角头螺栓为例来说明,具体见表3。
第七,冷镦锻加工工艺及模具设计
下面以六角头螺栓切削加工工艺工步图:
K=头部高度
k,=头部扳拧高度
剪料→预成形→终镦→剪切六角→(搓螺纹)
图3六角头螺栓无切削加工工艺工步图:
剪料→预成形→整形→镦六角→(搓螺纹)
1. 送料滚轮的设计
送料轮的外型尺寸、孔径尺寸是冷镦锻设备生产厂家确定的,不需重新设计的。
我们仅需对送料轮工作沟槽尺寸进行设计,沟槽尺寸决于取原材料线直径最大尺寸,其公差取H110-H11即可。
2.切刀刃中直径一般为原材料直径最大尺寸,其公差取H9-H10。
3.切模的直径一般为原材料直径:最大尺寸+(0.05-0.10),其公差取H9-H10。
4.预成形冲模设计
一冲的设计原则是:要求一冲有尽可能大的变形比,为第二次镦锻成形做准备,其次要避免
金属纤维产生纵向弯曲。
一冲模具设计的方法很多,目前主要有两种典型的方法。
一种方法是以美国为代表:
这种方法是依据塑性变形核理论,先确定锥体大端直径Dk值,然后再确定一冲型腔尺寸。
根据塑性变形核理论,如图4,假设锥体大端直径Dk为小端直径dm的1.4倍,锥体角度的α角度定位12°,金属体积不足部分,由圆柱体h部分调节加以补充。
圆中dm=材线直径
这种设计方法也并非完全一成不变的,它是随材料的硬度变化而有所变化。
这种方法锥角α值仅对螺栓的而言,对于其它头部形状来说,α值是有变化的。
另一种方法是以苏联为代表。
这种方法就是由长径比来选择α角,然后再确定其它尺寸。
长径比决定α角大小见表4。
如图5,dm=线材直径
5.终镦锻冲模及主模设计
该冲模设计相对来说较为简单,如图5,其设计原则是以所加工的产品头部形状和尺寸为依据来设计的。
如需切削加工,则要考虑相应的切削加工余量。
如图6:D0=(1.04-1.1)emax,式中emax为六角头螺栓最大的对角尺寸
D=(0.9-0.95)S,式中S为六角头螺栓对边尺寸
H=螺栓头部高度,
h=2H/3,式中h为模具型腔深度。
主模主要依据各工步零件加工工艺要求来设计的,这里仅讲述多层预应力主模的设计方法。
实践证明,多层预应力结构主模是一种解决主模径向开裂比较有效的方法,对于采用硬质合金为模芯的预应力组合主模尤为有效。
多层预应力结构层的数目确定,主要是根据冷镦锻过程中单位压力的大小,内腔尺寸和所用的材料强度来考虑确定的。
这里有两种情况:
一种情况主模模芯允许在拉应力状态下工作,即采用高强度模具钢制作,这时按内压力Pimax的大小来确定:
当Pimax≤kg/mm2时,为整模;
当110kg/mm2≤Pimax≤160kg/ mm2,采用一层预应力套;
当160kg/mm2≤Pimax≤200kg/ mm2,采用两层预应力套;
主模内压力一般按冲模单位压力计算。
另一种情况是主模模芯不允许在拉应力状态下工作,采用硬质合金(俗称钨钢)制作的主模就属此类型,这时按下列Pimax的大小来选取:
当Pimax≤110kg/mm2时,采用一层预应力套;
当110kg/mm2≤Pimax≤190kg/ mm2,采用两层预应力套;
预应力套的外圈直径与主模内腔直径之比取4-6即可。
如图7,如有中间预应力套,其相关尺寸可根据有关冷挤压资料计算得到。
6.切边冲模(Trimming Die)设计。