《高等数学A习题》PPT课件
- 格式:ppt
- 大小:942.00 KB
- 文档页数:4
《高等数学A》课程教学大纲(216 学时,12 学分)一、课程的性质、目的和任务高等数学A 是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。
通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学;5、无穷级数(包括傅立叶级数);6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。
在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。
二、总学时与学分本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54 ,学分为5+4+3 。
三、课程教学基本要求及基本内容说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。
高等数学A(一)一、函数、极限、连续、1.理解函数的概念及函数奇偶性、单调性、周期性、有界性。
2.理解复合函数和反函数的概念。
3.熟悉基本初等函数的性质及其图形。
4.会建立简单实际问题中的函数关系式。
5.理解极限的概念,掌握极限四则运算法则及换元法则。
6.理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。
7.理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy) ,审敛原理、区间套定理、致密性定理)。
会用两个重要极限求极限。
8.理解无穷小、无穷大、以及无穷小的阶的概念。
会用等价无穷小求极限。
9.理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。
10.了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。
09高等数学A(上)习题册《高等数学A》习题册姓名:班级:学号: 1第一章函数与极限第一节映射与函数1、下列各题中,函数f(x)和g(x)是否相同?为什么?(1)f(x)?lgx2,g(x)?2lgx;f(x)?x,g(x)?x2.2、求函数y?3?x?arctan1x 的自然定义域。
3、已知f(x)?11?x,求f[f(x)]的定义域。
4、设f(x)??lgx,x?0?;g(x)??1,x?0?x?1,x?0?,求f[g(x)]。
1,x?05、已知f(x)?3x?5,且f[g(x)]?2x,求g(x)。
第二节数列的极限1、观察一般项xn如下的数列{xn}的变化趋势,判断它们是否存在极限。
如果存在极限,写出它们的极限,如果不存在极限,请写出原因:xn1n?(?1)n x1n?2?n2xn=(?1)n?1 xn?n=sin2(5)xn?n?1n x?1n?nn?1nxn?2?13nxn=(?1)n?1?n《高等数学A》习题册姓名:班级:学号: 2n2、证明数列354n?(?1)2,23,4,5?,的极限是1n3.根据数列极限的定义证明:limn2?9.n??n?1第三节函数的极限1、根据函数极限的定义证明:lim(3x?1)?8.x?32、根据函数极限的定义证明:lim1?x3??2x3?12. x3、求f(x)?xxx,g(x)?x当x?0时的左、右极限,并说明它们在x?0时的极限是否存在。
《高等数学A》习题册姓名:班级:学号: 34、证明:若limf(x)?A,则limf(x)?A,但反之不真。
第五节极限运算法则x?x0x?x0第四节无穷小与无穷大1、两个无穷小的商是否一定是无穷小?举例说明之。
2、求下列极限并说明理:lim5x?10 x??xlim4?x2x?22?x3、函数y?xcosx在内是否有界?这个函数是否为x 时的无穷大?为什么?1、计算下列极限:(1)lim(x?h)2?x2h?0h(2)lim(1?1?11n??24)2n(3)lim1?2?3(n?1)n??n2limxxxxx??《高等数学A》习题册姓名:班级:学号: 4limx2sin1x?0xlimn?3nx??(?2)n?1?3n?17)lim??1?1?x1?22?3??1?n(n?1)?? ?8)lim?xn?3n?n?n???第六节极限存在准则两个重要极限1、计算下列极限: limsin5xx?04xlimx?0cotxlimsinx3x?0(sinx)2lim(1?1x??x)kxlim?x?0?1?x?x?1?x?1、利用极限存在准则证明:limn(1?11)?n??n2??n2?2?n21。