使用Python Pandas处理亿级数据_光环大数据Python培训
- 格式:pdf
- 大小:303.21 KB
- 文档页数:6
pythonpandas库用法Pandas是一个用于数据分析和处理的强大库,它在Python中广泛使用。
Pandas提供了一个易于使用的API,用于读取、清理、分析和可视化大型数据集。
本篇文章将详细介绍Pandas库的基本用法和常见操作。
一、安装Pandas库要使用Pandas库,首先需要在Python环境中安装该库。
可以通过pip命令在终端或命令提示符中安装Pandas库。
例如,在命令行中输入以下命令即可安装最新版本的Pandas库:```shellpipinstallpandas```二、Pandas库的基本用法1.导入Pandas库:在Python脚本或交互式环境中,需要导入Pandas库才能使用其功能。
可以使用以下语句导入Pandas库:```pythonimportpandasaspd```2.创建数据帧(DataFrame):Pandas库的核心是数据帧,它是一个二维标签化的数据结构,可以存储不同类型的数据。
可以使用DataFrame()函数创建数据帧,并指定数据类型和列名等参数。
例如:```pythondf=pd.DataFrame({'姓名':['张三','李四','王五'],'年龄':[25,30,35]})```这将创建一个包含姓名和年龄两列的数据帧。
3.数据帧的读取和写入:Pandas库提供了多种方法来读取和写入数据帧,包括从CSV文件、Excel文件、数据库等不同格式的数据源中读取数据。
可以使用read_csv()、read_excel()、read_sql()等方法读取数据,并使用to_csv()、to_excel()等方法将数据帧写入文件。
例如:```python#读取CSV文件df=pd.read_csv('data.csv')#将数据帧写入CSV文件df.to_csv('output.csv',index=False)```4.数据帧的筛选和操作:Pandas数据帧提供了丰富的筛选和操作功能,可以使用条件表达式筛选数据帧中的行和列,并进行各种数学运算、统计分析和可视化操作。
使用Python进行大数据分析和处理一、引言随着大数据时代的到来,数据分析和处理技术愈发重要。
Python作为一种简单易学、功能强大的编程语言,被广泛应用于数据科学领域。
本文将介绍如何使用Python进行大数据分析和处理,并分为以下几个部分:数据获取、数据清洗、数据分析、数据可视化和模型建立。
二、数据获取在进行大数据分析和处理之前,我们需要从各种数据源中获取数据。
Python提供了丰富的库和工具,可以轻松地从数据库、API、Web页面以及本地文件中获取数据。
比如,我们可以使用pandas库中的read_sql()函数从数据库中读取数据,使用requests库从API获取数据,使用beautifulsoup库从Web页面获取数据,使用csv库从本地CSV文件中获取数据。
三、数据清洗获取到原始数据之后,通常需要进行数据清洗。
数据清洗是指对数据进行预处理,包括处理缺失值、处理异常值、处理重复值、数据格式转换等。
Python提供了丰富的库和函数来帮助我们进行数据清洗,如pandas库中的dropna()函数用于处理缺失值,使用numpy库中的where()函数用于处理异常值,使用pandas库中的duplicated()函数用于处理重复值。
四、数据分析数据分析是大数据处理的核心环节之一。
Python提供了强大的库和工具来进行数据分析,如pandas库和numpy库。
使用这些库,我们可以进行数据聚合、数据筛选、数据排序、数据计算等。
例如,我们可以使用pandas库中的groupby()函数进行数据聚合,使用pandas库中的query()函数进行数据筛选,使用pandas库中的sort_values()函数进行数据排序,使用numpy库中的mean()函数进行数据计算。
五、数据可视化数据可视化是将数据以图形化的方式展现出来,帮助我们更好地理解数据的分布和趋势。
Python提供了多种库和工具来进行数据可视化,如matplotlib库和seaborn库。
python pd库用法pandas(简称pd)是一个强大的数据分析和处理库,它为Python提供了许多用于数据操作和分析的工具。
下面我将从多个角度来介绍pandas库的用法。
1. 数据结构:pandas主要有两种数据结构,Series和DataFrame。
Series是一维标记数组,类似于Python中的列表,而DataFrame是二维的表格型数据结构,类似于Excel表格。
你可以使用pd.Series()和pd.DataFrame()来创建这两种数据结构。
2. 数据导入和导出:pandas可以轻松地从各种数据源导入数据,包括CSV文件、Excel文件、数据库等。
你可以使用pd.read_csv()、pd.read_excel()、pd.read_sql()等函数来导入数据,而使用to_csv()、to_excel()、to_sql()等函数来导出数据。
3. 数据操作:pandas提供了丰富的数据操作功能,包括数据的选取、过滤、排序、合并、拆分等。
你可以使用类似于SQL的语法来进行数据的筛选和操作,比如使用loc[]和iloc[]来进行数据的选取和切片,使用merge()和concat()来进行数据的合并和拼接。
4. 数据分析:pandas提供了许多用于数据分析的函数,包括描述性统计、数据聚合、透视表等。
你可以使用mean()、sum()、groupby()等函数来进行数据的统计和分析,也可以使用pivot_table()来创建透视表进行数据分析。
5. 数据可视化:pandas结合了Matplotlib库,可以轻松地进行数据可视化。
你可以使用plot()函数来绘制折线图、柱状图、散点图等各种图表,也可以使用seaborn库来进行更加复杂的数据可视化。
总之,pandas库是Python数据分析领域中不可或缺的重要工具,它提供了丰富的功能和灵活的操作方式,能够帮助你高效地处理和分析各种类型的数据。
pandas库用法Pandas库是一个数据分析工具包,提供了快速、灵活和富有表现力的数据结构用于处理和分析数据。
它是Python编程语言的一个开源库,因其广泛使用和良好的文档而受到欢迎。
本文将详细介绍Pandas库的用法,以及如何使用它来处理和分析数据。
一、安装Pandas库在使用Pandas库之前,您需要先通过以下命令在Python中安装这个库:```python !pip install pandas ```请注意,`!`符号是为了在Jupyter Notebook中安装库而不是在Python本身中安装库。
如果您不使用Jupyter Notebook,则不需要使用此符号。
二、创建Pandas DataFramePandas库最重要的数据结构是DataFrame和Series。
DataFrame是二维表格数据结构,其中每个列可以是不同的数据类型(例如数字、字符串和布尔值)。
Series是一维标记数组,可以保存任何数据类型的数据,并且有一个与之相关联的标签或索引。
要创建一个Pandas DataFrame,您可以使用以下Python代码:```python import pandas as pddata = {'country': ['China', 'USA', 'Japan','Germany'], 'population': [1439, 331, 126, 83], 'GDP': [14.34, 21.44, 4.97, 3.95], 'area': [9597, 9834, 377, 357]} df =pd.DataFrame(data) print(df) ```上述代码将创建一个名为“data”的字典,其中包含四个键和值对。
通过传递此字典来创建数据框。
“country”列包含四个国家的名称,而“population”列包含它们的人口。
pythonpandas库用法Pandas是一个强大的数据分析工具,提供了灵活高效的数据结构和数据分析功能。
以下是Pandas库的用法的详细介绍。
一、Pandas的基本概念1. 数据结构:Pandas提供了两种主要的数据结构:Series和DataFrame。
Series是一维数组,可保存任何数据类型;DataFrame是二维表格数据结构,可保存多种类型的列。
这两种数据结构非常类似于Numpy的ndarray。
2. 索引:Pandas的数据结构都有一个索引,它提供了对数据的快速访问。
索引可以是整数、字符串或任何自定义数据类型的值。
Series的索引由默认生成,DataFrame的索引通常是由行名称和列名称组成。
4. 缺失数据处理:Pandas提供了方法处理缺失数据,如删除或填充缺失值。
可以使用isnull(和notnull(方法来检查数据是否为缺失值。
二、Series的用法1. 创建Series:可以将列表、字典或Numpy数组传递给Series(函数来创建Series对象。
可以指定索引,也可以使用默认索引。
2. 访问数据:可以使用索引或位置访问Series对象中的数据,也可以使用切片选择多个元素。
还可以使用布尔索引根据条件选择数据。
3. Series的运算:可以对Series对象进行算术运算、元素级运算、使用numpy函数或apply(方法应用自定义函数。
4. 数据对齐:在多个Series对象之间进行运算时,Pandas会自动根据索引对齐数据。
三、DataFrame的用法3. DataFrame的操作:可以对DataFrame对象进行转置、重命名列、添加新列或删除列。
还可以对行或列进行排序。
4. DataFrame的运算:可以对DataFrame对象进行算术运算、元素级运算、使用numpy函数或apply(方法应用自定义函数。
还可以对多个DataFrame对象进行合并或连接。
四、数据清洗和预处理1. 处理缺失数据:可以使用dropna(方法删除包含缺失值的行或列,也可以使用fillna(方法填充缺失值。
pandas的数据处理基本功能Pandas是Python中一个非常强大的数据处理库,提供了许多数据处理的工具和功能。
以下是Pandas的一些基本功能:
1. 数据导入和导出:Pandas提供了读取和写入各种数据格式的功能,如CSV、Excel、SQL等。
2. 数据清洗:Pandas提供了许多数据清洗工具,如处理缺失值、重复值、异常值等。
3. 数据转换:Pandas提供了许多数据转换的工具,如数据类型转换、数据排序、数据分组等。
4. 数据聚合:Pandas提供了许多数据聚合的工具,如求和、求平均值、求最大值、最小值等。
5. 数据连接:Pandas提供了数据连接的功能,可以将多个数据集连接在一起。
6. 时间序列处理:Pandas对时间序列数据的处理提供了强大的支持,可以轻松地创建、切片和转换时间序列数据。
7. 可视化:虽然Pandas本身不提供可视化功能,但它可以和matplotlib等可视化库一起使用,将数据处理的结果可视化。
8. 高效性能:Pandas使用了C语言进行优化,因此其性能相对较高,可以处理大规模的数据集。
总的来说,Pandas是一个非常强大的数据处理库,提供了许多功能来帮助用户处理和分析数据。
从入门到精通pandas操作Pandas简介:Python Data Analysis Library(数据分析处理库)或pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
pandas的数据结构:Series:一维数组,与Numpy中的一维ndarray类似。
二者与Python基本的数据结构List也很相近,其区别是:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率。
Time- Series:以时间为索引的Series。
DataFrame:二维的表格型数据结构,可以理解为Series的容器。
Panel :三维的数组,可以理解为DataFrame的容器。
本文主要介绍DateFrame数据结构。
本文中用到的数据集为food_info.csv,若有需要,在留言区留言即可获得。
本文只是介绍pandas的基本使用,若要详细深入学习,请参阅pandas官方文档。
1.读取.csv格式的数据文件food_info.csv文件的局部预览图:每一行:代表一种食品所包含的各种营养成分#导包import pandas#读取数据文件,并将数据赋值成一个变量..food_info = pandas.read_csv("food_info.csv")#将数据赋值成一个变量后,打印此变量的类型为Dataframe ..print(type(food_info))#打印文件中数据的类型。
object类型即string类型print(food_info.dtypes)#若对pandas中的某函数不了解,可以通过help()来查看..print(help(pandas.read_csv)).运行结果:补充:DataFrame结构中的dtype类型object————for string valuesint————for integer valuesfloat————for float values datetime————for time valuesbool————for Boolean values2. DataFrame类型的变量拥有的操作在第一步中,将要处理的数据文件读取出来并赋值给一个变量food_info,此变量的类型为DataFrame类型,下边将会对这个变量进行操作。
Python与大数据处理使用PySpark和Pandas进行大规模数据处理随着数字化时代的发展,数据量的爆炸式增长让传统的数据处理方式变得如鸡肋。
为了更好地应对大规模数据的处理需求,Python提供了两个强大的工具,即PySpark和Pandas。
本文将介绍如何使用PySpark和Pandas来处理大规模数据,包括数据的读取、清洗、转换、计算和存储等方面。
一、PySpark简介PySpark是Spark的Python API,是一个基于内存的集群计算系统。
相比传统的数据处理工具,PySpark具有以下优势:1. 分布式计算:PySpark能够并行处理大规模数据,并且可以利用多台机器的计算资源,提高数据处理的效率。
2. 内存计算:PySpark将数据加载到内存中进行计算,大大减少了磁盘IO的开销,提高了数据处理的速度。
3. 弹性扩展:PySpark可以根据数据量的增长,动态地扩展集群的计算资源,以应对不同规模的数据处理需求。
二、Pandas简介Pandas是Python中用于数据处理和分析的开源库。
相比PySpark,Pandas更适合处理中小规模的数据,具有以下特点:1. 快速高效:Pandas使用NumPy来存储和处理数据,可以对数据进行快速的向量计算和操作。
2. 数据清洗:Pandas提供了丰富的数据清洗和转换功能,可以处理缺失值、重复值等常见的数据问题。
3. 数据可视化:Pandas结合Matplotlib和Seaborn等库,可以方便地对数据进行可视化展示,便于数据分析和探索。
三、数据读取与存储在大规模数据处理中,数据的读取和存储是非常重要的一环。
PySpark和Pandas都支持各种数据源的读取和存储操作。
1. 数据读取:PySpark可以从HDFS、数据库、本地文件等数据源读取数据。
通过SparkSession的read方法,可以方便地加载不同格式的数据,如CSV、JSON、Parquet等。
学习Python实现数据处理与分析Python是一种开源的编程语言,具备简洁、高效的特点,并且在数据处理与分析领域有着广泛的应用。
本文将从数据清洗、数据分析和数据可视化三个方面,介绍如何使用Python进行数据处理与分析。
一、数据清洗数据清洗是数据处理的第一步,也是非常重要的一步。
下面介绍几个常用的数据清洗方法。
1. 去除重复值在处理大量数据时,常常会遇到重复的数据。
可以使用Python 的pandas库中的drop_duplicates()函数去除重复值。
例如,我们可以使用以下代码去除data中的重复值:data = data.drop_duplicates()2. 缺失值处理在数据中,经常会遇到缺失值的情况。
可以使用Python的pandas库中的fillna()函数对缺失值进行处理。
例如,我们可以使用以下代码将data中的所有缺失值替换为0:data = data.fillna(0)3. 数据类型转换数据在导入时,可能会出现数据类型不一致的情况,影响后续的数据分析。
可以使用Python的pandas库中的astype()函数将数据类型进行转换。
例如,我们可以使用以下代码将data中的数据转换为整数类型:data = data.astype(int)二、数据分析Python具备强大的数据分析能力,下面介绍几个常用的数据分析方法。
1. 描述性统计描述性统计是对数据进行初步分析的一种方法,可以使用Python的pandas库中的describe()函数来得到数据的基本统计量,如均值、中位数、标准差等。
例如,我们可以使用以下代码计算data的描述性统计量:data.describe()2. 相关性分析相关性分析用来研究两个变量之间的相关关系,可以使用Python的pandas库中的corr()函数来计算变量之间的相关系数。
例如,我们可以使用以下代码计算data中各个变量之间的相关系数:data.corr()3. 数据建模数据建模是数据分析的重要环节,可以使用Python的scikit-learn库进行数据建模。
使用Spyder进行Python的科学计算和数据分析Spyder是一个基于Python的强大的集成开发环境(IDE),广泛用于科学计算和数据分析。
本文将介绍如何使用Spyder进行Python的科学计算和数据分析,并按以下几个章节进行具体内容的阐述:安装Spyder、Spyder界面介绍、Python科学计算库的使用、数据分析的基础操作和高级技巧。
## 第一章安装Spyder在使用Spyder之前,首先需要安装Anaconda,这是一个Python的科学计算包管理器。
通过Anaconda,我们可以很方便地安装和管理Python科学计算所需的各种库。
在Anaconda官网上下载对应操作系统的安装包,并按照提示完成安装。
## 第二章 Spyder界面介绍安装完成后,打开Anaconda Navigator,点击启动Spyder。
Spyder的界面分为四个主要区域:编辑器、变量资源管理器、IPython控制台和文件浏览器。
编辑器可以编写和运行Python脚本,变量资源管理器可以查看当前运行环境中的变量,IPython控制台可以交互地执行Python代码,文件浏览器则可以管理项目文件。
## 第三章 Python科学计算库的使用Python拥有丰富的科学计算库,其中最为常用的包括NumPy、SciPy和matplotlib。
NumPy提供了高性能的多维数组操作功能,SciPy则提供了科学计算中常用的数值计算和优化算法,matplotlib 则是用于绘图和数据可视化的库。
在Spyder中,我们可以直接导入这些库并使用其提供的函数和类。
例如,通过导入NumPy库,我们可以使用其提供的ndarray 对象来进行数组运算和操作;通过导入matplotlib库,我们可以使用其提供的绘图函数来可视化数据。
## 第四章数据分析的基础操作数据分析是通过对大量数据的收集、处理和分析,以提取有价值信息和进行决策支持的过程。
在Spyder中,我们可以使用Pandas库来进行数据分析。
使用Python Pandas处理亿级数据_光环大数据Python培训
#玩转大数据#在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择。
这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据:
硬件环境
CPU:3.5 GHz Intel Core i7
内存:32 GB HDDR 3 1600 MHz
硬盘:3 TB Fusion Drive
数据分析工具
Python:2.7.6
Pandas:0.15.0
IPython notebook:2.0.0
源数据如下表所示:
Table Size Desc ServiceLogs 98,706,832 rows x 14 columns 8.77 GB 交易日志数据,每个交易会话可以有多条交易 ServiceCodes 286 rows × 8 columns 20 KB 交易分类的字典表
数据读取
启动IPython notebook,加载pylab环境:
ipython notebook --pylab=inline
Pandas提供了IO工具可以将大文件分块读取,测试了一下性能,完整加载
9800万条数据也只需要263秒左右,还是相当不错了。
import pandas as pdreader = pd.read_csv('data/servicelogs', iterator=True)try: df = reader.get_chunk(100000000)except StopIteration: print "Iteration is stopped."
1百万条 1千万条 1亿条 ServiceLogs 1 s 17 s 263 s
使用不同分块大小来读取再调用pandas.concat 连接DataFrame,chunkSize设置在1000万条左右速度优化比较明显。
loop = TruechunkSize = 100000chunks = []while loop: try: chunk = reader.get_chunk(chunkSize) chunks.append(chunk) except StopIteration: loop = False print "Iteration is stopped."df = pd.concat(chunks, ignore_index=True)
下面是统计数据,Read Time是数据读取时间,Total Time是读取和Pandas
进行concat操作的时间,根据数据总量来看,对5~50个DataFrame对象进行合
并,性能表现比较好。
Chunk Size Read Time (s) Total Time (s) Performance 100,000 224.418173
261.358521 200,000 232.076794 256.674154 1,000,000 213.128481
234.934142 √√ 2,000,000 208.410618 230.006299 √√√ 5,000,000
209.460829 230.939319 √√√ 10,000,000 207.082081 228.135672 √√
√√ 20,000,000 209.628596 230.775713 √√√ 50,000,000 222.910643
242.405967 100,000,000 263.574246 263.574246
如果使用Spark提供的Python Shell,同样编写Pandas加载数据,时间会短25秒左右,看来Spark对Python的内存使用都有优化。
数据清洗
Pandas提供了 DataFrame.describe 方法查看数据摘要,包括数据查看(默认共输出首尾60行数据)和行列统计。
由于源数据通常包含一些空值甚至空列,会影响数据分析的时间和效率,在预览了数据摘要后,需要对这些无效数据进行处理。
首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False作为结果进行填充,如下图所示:
Pandas的非空计算速度很快,9800万数据也只需要28.7秒。
得到初步信息之后,可以对表中空列进行移除操作。
尝试了按列名依次计算获取非空列,和DataFrame.dropna() 两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下, dropna() 会移除所有包含空值的行。
如果只想移除全部为空值的列,需要加上 axis 和 how 两个参数:
df.dropna(axis=1, how='all')
共移除了14列中的6列,时间也只消耗了85.9秒。
接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万 x 6列也只省下了200M的空间。
进
一步的数据清洗还是在移除无用数据和合并上。
对数据列的丢弃,除无效值和需求规定之外,一些表自身的冗余列也需要在这个环节清理,比如说表中的流水号是某两个字段拼接、类型描述等,通过对这些数据的丢弃,新的数据文件大小为4.73GB,足足减少了4.04G!
数据处理
使用 DataFrame.dtypes 可以查看每列的数据类型,Pandas默认可以读出int和float64,其它的都处理为object,需要转换格式的一般为日期时间。
DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。
df['Name'] = df['Name'].astype(np.datetime64)
对数据聚合,我测试了 DataFrame.groupby 和 DataFrame.pivot_table 以及 pandas.merge ,groupby 9800万行 x 3列的时间为99秒,连接表为26秒,生成透视表的速度更快,仅需5秒。
df.groupby(['NO','TIME','SVID']).count() # 分组fullData = pd.merge(df, trancodeData)[['NO','SVID','TIME','CLASS','TYPE']] # 连接actions = fullData.pivot_table('SVID', columns='TYPE', aggfunc='count') # 透视表
根据透视表生成的交易/查询比例饼图:
将日志时间加入透视表并输出每天的交易/查询比例图:
total_actions = fullData.pivot_table('SVID', index='TIME',
columns='TYPE', aggfunc='count')total_actions.plot(subplots=False, figsize=(18,6), kind='area')
除此之外,Pandas提供的DataFrame查询统计功能速度表现也非常优秀,7秒以内就可以查询生成所有类型为交易的数据子表:
tranData = fullData[fullData['Type'] == 'Transaction']
该子表的大小为 [10250666 rows x 5 columns]。
在此已经完成了数据处理的一些基本场景。
实验结果足以说明,在非“>5TB”数据的情况下,Python的表现已经能让擅长使用统计分析语言的数据分析师游刃有余。
为什么大家选择光环大数据!
大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请大数据领域具有多年经验的讲师,提高教学的整体质量与教学水准。
讲师团及时掌握时代的技术,将时新的技能融入教学中,让学生所学知识顺应时代所需。
通过深入浅出、通俗易懂的教学方式,指导学生较快的掌握技能知识,帮助莘莘学子实现就业梦想。
光环大数据启动了推进人工智能人才发展的“AI智客计划”。
光环大数据专注国内大数据和人工智能培训,将在人工智能和大数据领域深度合作。
未来三年,光环大数据将联合国内百所大学,通过“AI智客计划”,共同推动人工智能产业人才生态建设,培
养和认证5-10万名AI大数据领域的人才。
参加“AI智客计划”,享2000元助学金!
【报名方式、详情咨询】
光环大数据网站报名:
手机报名链接:http:// /mobile/。