abaqus FSI流固耦合教程 PPT
- 格式:ppt
- 大小:5.34 MB
- 文档页数:108
流固耦合FSI分析分析原理:流场采用CFX12,固体采用ANSYS12分别计算,通过界面耦合。
流体网格:流体部分采用HyperMesh9.0分网,按照流体分网步骤即可,没有特殊要求。
网格导出:CFX可以很好的支持Fluent的.cas格式。
直接导出这个格式即可。
流体的其余设置都在CFX-PRE中设置。
固体网格即设置:HyperMesh9.0划分固体网格。
设置边界条件,载荷选项,求解控制,导出.cdb文件。
实例练习:以CFX12实例CFX tutorial 23作为练习。
为节省时间,将计算时间缩短为2s。
网格划分:提取CFX tutorial 23中的实体模型到hm中,分别划分流体,固体网格。
分别导出为fluent的.cas格式和ansys的cdb格式。
流体网格如下:网格文件见:fluid.cas固体网格为:特别注意:做FSI分析时,ANSYS固体部分必须在BATCH下运行(即将.cdb文件导入ansys不需要任何操作就能直接计算出结果),所以导出的.CDB文件需要添加一个命令,在hm建立FSIN_1的set,以方便在.cdb中手动添加命令SF,FSIN_1,FSIN,1,具体位置在定义了节点集合FSIN_1之后。
另一个set:pressure用于施加压强。
这里还设置了一些控制卡片用于分析,当然也可以直接修改.cdb文件详细.cdb文件请参看plate.cdb将固体部分在ansys中计算一下,以确定没有问题。
通过ansys计算检查最大位移:最上面的点x向变形曲线至此,固体部分的计算文件已经准备好,流体网格需要导入CFX以进一步设置求解选项和耦合选项。
以下在CFX-PRE中进行设置由于固体模型已经生成,故不需要利用workbench,所以不必按照指南的做法。
启动workbench,拖动fluid flow(CFX)到工作区直接双击setup进入CFX-PRE 导入流体网格然后设置分析选项:注意:mechanical input file即是固体部分网格。
Abaqus热流固耦合——围绕圆柱形热源进行固结翻译抖音号abaquser,qq443941211这个问题提出了在圆柱形热源周围饱和土壤中固结的解决方案。
布克和萨维维杜(Booker and Savvidou,1985)对该问题进行了研究,它代表了埋在饱和土壤中的放射性废物罐问题的理想化。
由于来自罐的热辐射而发生的温度变化导致孔隙水的膨胀量大于土壤中的孔隙,导致热源周围的孔隙压力增加。
产生的孔隙压力梯度将孔隙流体驱离热源,导致孔隙压力随时间消散。
Booker和Savvidou开发了针对点热源深埋在饱和土壤中的基本问题的分析解决方案。
随后,他们使用该分析解决方案得出了圆柱热源周围固结问题的近似解决方案。
该问题为Abaqus中的耦合热固结能力提供了验证。
饱和土壤的分析需要耦合应力-扩散方程的解,Abaqus中使用的公式在《Abaqus理论指南》第2.8节“多孔介质分析”中有详细描述。
热固结能力还可以与应力扩散方程完全耦合地求解传热方程(同时考虑传导和对流效应),从而模拟孔隙压力对孔隙流体和管道中温度场的影响。
土壤,反之亦然。
定义几何形状和材料特性的参数的数值是基于Lewis和Schrefler(2000)对这个问题进行的参数研究中给出的细节。
问题描述问题设置如图1.15.7-1所示。
半径为0.1604m,高度为2.5m的圆柱形热源被埋在半径和高度均等于10m的圆柱形土壤中。
实际上,土壤的圆柱形体积代表了围绕热源的无限介质。
重力被忽略了。
由于边界条件(下面将详细讨论),问题基本上是一维的,唯一的梯度是在径向上。
分析的目的是预测整个土壤质量,特别是热源附近的孔隙压力和温度随时间的变化。
几何和模型利用垂直方向的对称性,仅对问题的一半进行建模。
使用三维和轴对称的温度-孔压力元件均可解决此问题。
为了呈现结果,选择了三维元素类型C3D8RPT。
三维分析和轴对称分析均使用基本三维8节点或轴对称4节点元素以及修饰的四面体元素的不同变体(例如,积分和混合)进行。
流固耦合分析(FSI)流固耦合分析(FSI)是涉及流体和固体之间相互作用的问题研究,其理论包括了几个主要方面:流体力学、固体力学、耦合边界条件、求解器等。
以下是流固耦合分析的详细理论讲解,带有相关公式和尽量详细的说明。
一、流体力学1. 守恒定律质量守恒定律:$$ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 $$动量守恒定律:$$ \rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot \tau + \mathbf{f} $$其中,$\rho$是流体密度,$\mathbf{u}$是流体速度,$\tau$是应力张量,$\mathbf{f}$是体力。
2. 纳维-斯托克斯方程$$ \rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot (-p\mathbf{I} + \tau) + \mathbf{f} $$其中,$p$是静压力,$\mathbf{I}$是单位张量。
3. 边界条件(1)速度边界条件:$\mathbf{u} = \mathbf{u}_b$,其中$\mathbf{u}_b$是边界上的速度。
(2)压力边界条件:$p = p_b$,其中$p_b$是边界上的压力。
4. 流体力学求解器常用的流体力学求解器有OpenFOAM、ANSYS Fluent等。
二、固体力学1. 力学基本方程$$ \tau = \sigma\cdot \mathbf{n} $$其中,$\tau$是表面上的接触力,$\sigma$是固体的应力张量,$\mathbf{n}$是表面的单位法向量。
湖南大学先进动力流固耦合过程(仅耦合热边界)准备软件:¾AVL-FIRE¾Hypermesh(用于划分和处理网格)¾ABAQUS(熟悉inp文件结构和语句)¾MSC-Patran湖南大学先进动力以AVL-FIRE安装目录下面简单例子为例,位于以下目录:D(安装盘符):\AVL\FIRE\v(版本号)\exam湖南大学先进动力第一步:CFD计算所有设置与例子中保持一致湖南大学先进动力第一步计算CFD的时候,不需要选上Mesh FEM format,只需指定输出Frequency即可。
湖南大学先进动力第一步计算完之后会产生一个htcc 文件,如下图:湖南大学先进动力第二步:耦合面网格及固体网格获取为了便于统一坐标位置和热边界插值,不用例子中的FEM 网格。
FEM 网格将从CFD 网格(cyl.flm )中“抽取”,如下图,在Fire 中导出.nas 格式文件。
湖南大学先进动力在hypermesh中TOOl>faces 板块中把流体网格的外表面抽取,然后删除两端面的面网格选择全部网格(displayed)即可湖南大学先进动力通过3D>elem offset 来获得实体网格湖南大学先进动力第三步:映射(mapping )热边界条件上一步得到的面网格导出为.nas 文件(如sur_mesh_for_mapping.nas )FIRE 中FEM Interface中设置如下两图湖南大学先进动力保存之后,Start ,next 直到如图所示界面,输入-fem –mode=mapping湖南大学先进动力第四步:查看热边界结果(这一步不是必需的,为了Mapping之后会产生一个包含热边界的inp文件,用于后续的固体温度场计算。
湖南大学先进动力映射距离与用例子比较(用三角形面单元)湖南大学先进动力第五步:在MSC-Patran 中做MPC注意:这里的面网格节点号和单元号要与前面用来mapping 的面网格对应上,可以在patran 或者hypermesh 中通过renumber 来实现,固体网格最好也把节点号和单元号renumber ,记下所有的节点号和单元号,以备后用。