新一代压力无关线型温度调节阀介绍
- 格式:ppt
- 大小:4.54 MB
- 文档页数:2
调节阀的特性及选择调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。
调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。
电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。
本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。
1.调节阀工作原理从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。
对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为()()21221242P P D P P AQ -=-=ρζπρζ式中:Q——流体流经阀的流量,m 3/s ;P1、P2——进口端和出口端的压力,MPa ;A——阀所连接管道的截面面积,m 2; D——阀的公称通径,mm ;ρ——流体的密度,kg/m 3; ζ——阀的阻力系数。
可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。
阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。
调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。
阀开得越大,ζ将越小,则通过的流量将越大。
2.调节阀的流量特性调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即⎪⎭⎫⎝⎛=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。
一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。
但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。
为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。
因此,流量特性有理想流量特性和工作流量特性之分。
自力式压力调节阀的分类、原理、特点及安装注意事项自力式调节阀是一种无需外来能源,依靠被测介质自身压力或温度或流量变化,按预先设定值,进行自动调节的控制装置,是一种节能型仪表。
它集控制、执行诸多功能于一身。
自成一个独立的仪表控制系统。
集变送器、控制器及执行机构的功能于一体。
不同于一般含义上的控制阀。
自力式调节阀有自力式压力(微压)调节阀、自力式(压差)流量调节阀、自力式温度调节阀等几类。
自力式压力调节阀是其家族成员之一,由于它无需外来能源,产品结构简单,使用方便,维护工作量少等优点,特别适用于城市供热、供暧及没有供电、供气又需控制的场合。
自力式压力调节阀的组成自力式压力调节阀是自成一体的压力控制器阀门。
一般来讲,介质压力随着介质流量的变化而变化。
当介质流量发生变化时,为保证压力恒定,则需要自力式调节阀来控制。
自力式压力调节阀由三大组成元素构成,分别为:1.限流元素:阀门等;2.测量元素:压力表,阀膜,活塞等;3.荷载元素:弹簧,重物,人力等。
自力式压力调节阀的分类1.按阀后、阀前控制分为:自力式阀后(减压)控制阀、自力式阀前(泄压)控制阀。
2.按是否带指挥器分为:a.直接作用型自力式调节阀直接作用式调压阀就是通过介质本身直接控制阀门,达到调压的作用。
直接作用式调压阀有阀后取压形式与阀前取压形式。
阀后取压,保持阀后的压力在设定范围内,达到阀后减压的功效。
阀前取压,保持阀前的压力在设定范围内,达到阀前泄压的功效。
b.指挥器操作型自力式调节阀指挥器操作型调节阀是通过两个阀门之间的相互控制,来达到自动调压的作用。
工作原理1.自力式阀后压力调节的工作原理(见下图)阀前压力P₁经过阀芯、阀座的节流后,变为阀后压力P₂。
P₂经过管线输入上膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀后压力。
当P₂增加时,P₂作用在顶盘上的作用力也随之增加。
此时,顶盘上的作用力大于弹簧的反作用力,使阀芯关向阀座的位置。
调节阀的分类
调节阀可以按照不同的分类方式进行分类,常见的分类如下:
1. 根据控制方式分类:
- 手动调节阀:需要人工操作来调节阀门开度。
- 自动调节阀:根据外部信号或自身传感器感知的参数来自
动调节阀门开度。
2. 根据结构形式分类:
- 直线式调节阀:阀芯直线运动,通过改变阀门开度来调节
流量。
- 角式调节阀:阀芯通过旋转角度来调节流量,可实现快速
响应和精确的调节。
3. 根据工作原理分类:
- 压力调节阀:根据压力变化来调节流量,如安全阀、减压
阀等。
- 温度调节阀:根据温度变化来调节流量,如温度控制阀等。
- 流量调节阀:根据流量变化来调节阀门开度,如流量调节阀、节流阀等。
4. 根据阀门用途分类:
- 水力控制阀:用于调节水力系统中的流量和压力。
- 气动控制阀:通过气压信号来调节阀门开度,用于气动系
统中的流量和压力调节。
- 电动控制阀:通过电动信号来调节阀门开度,用于电动系
统中的流量和压力调节。
需要注意的是,由于调节阀种类繁多,上述分类方式并不一定包含所有的调节阀类型,实际使用中还会根据具体应用和工艺要求进行更加细致的分类。
调节阀特点调整阀(controlvalve)用于调整介质的流量、压力和液位。
依据调整部位信号,自动掌握阀门的开度,从而达到介质流量、压力和液位的调整。
调整阀分电动调整阀、气动调整阀和液动调整阀等。
调整阀由电动执行机构或气动执行机构和调整阀两部分组成。
调整并通常分为直通单座式和直通双座式两种,后者具有流通力量大、不平衡办小和操作稳定的特点,所以通常特殊适用于大流量、高压降和泄漏少的场合。
流通力量Cv是选择调整阀的主要参数之一,调整阀的流通力量的定义为:当调整阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调整阀的流量数,称为流通力量,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。
依据流通力量Cv值大小查表,就可以确定调整阀的公称通径DN。
调整阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调整阀的相对流量与它的开度之间关系。
调整阀的流量特性有线性特性,等百分比特性及抛物线特性三种。
三种注量特性的意义如下:(1)等百分比特性(对数)等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。
所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调整精度。
(2)线性特性(线性)线性特性的相对行程和相对流量成直线关系。
单位行程的变化所引起的流量变化是不变的。
流量大时,流量相对值变化小,流量小时,则流量相对值变化大。
(3)抛物线特性流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。
从上述三种特性的分析可以看出,就其调整性能上讲,以等百分比特性为最优,其调整稳定,调整性能好。
而抛物线特性又比线性特性的调整性能好,可依据使用场合的要求不同,选择其中任何一种流量特性。
调整阀(controlvalve)用于调整介质的流量、压力和液位。
依据调整部位信号,自动掌握阀门的开度,从而达到介质流量、压力和液位的调整。
1概述:Phoenix 控制公司的Accel ®Ⅱ型文丘里阀将机械的、压力无关的调节阀与高速度的位置/气流控制器结合在一起,满足了气流控制的独特需求。
这些阀门可以被用于定风量控制、双稳态控制或者变风量控制的应用场合。
在设计中要使气流发挥最大的功效,同时要减小有关的噪声。
●压力无关操作:所有类型的阀门都包括一个可以即刻响应的机械组件,该组件用于在静压变化时保持风量设定点。
●气流控制:通过气流速度控制器组件定位,风量可以得到调整。
Accel ®Ⅱ型阀门可用于以下应用场合: ● 定风量控制(CVV 系列):用于在静压变化的情况下维持设定风量。
● 双稳态控制(PEV/PSV 系列):用于高/低风量控制。
● 本机可升级(BEV/BSV 系列):用于高/低风量控制,带反馈选件可升级为变风量控制阀。
●变风量控制(EXV/MAV 系列):用于闭环反馈变风量控制。
特点:特点/选件定风量控制(CVV )双稳态控制(PEV/PSV )本机可升级控制(BEV/BSV ) 变风量控制(EXV/MAV ) 控制类型 C定风量 P 气动 B本机可升级 A 或 D模拟量或数字量气流反馈信号 — — 选件 √ 失效保险固定件 √ √ √ 出厂阀体保温(仅对送风) — √ √ √ 现场可调整气流 √ √ √ √ 通过反馈电路气流报警 — — — √ 通过压力开关气流报警 选件 选件 选件 选件 低噪声扩散结构√√√√所有的阀门都包括压力无关控制器。
厂家标定的定位控制器,用于流量在60~1000m 3/hr 范围内的场合。
Accel ®Ⅱ型阀门在设计要求在所有的频率段内减小噪音,特别是要以低频段(125~500Hz )为目标,这有助于消除对静音器的需要。
V A V 单元的Accel ®Ⅱ阀门技术特性:结构:♦焊缝连续的16#的离心浇筑铝制阀体。
♦阀体采用不镀膜铝或者带耐腐蚀烘干酚醛涂层。
1概述:Phoenix 控制公司的Accel ®Ⅱ型文丘里阀将机械的、压力无关的调节阀与高速度的位置/气流控制器结合在一起,满足了气流控制的独特需求。
这些阀门可以被用于定风量控制、双稳态控制或者变风量控制的应用场合。
在设计中要使气流发挥最大的功效,同时要减小有关的噪声。
● 压力无关操作:所有类型的阀门都包括一个可以即刻响应的机械组件,该组件用于在静压变化时保持风量设定点。
● 气流控制:通过气流速度控制器组件定位,风量可以得到调整。
Accel ®Ⅱ型阀门可用于以下应用场合:● 定风量控制(CVV 系列):用于在静压变化的情况下维持设定风量。
● 双稳态控制(PEV/PSV 系列):用于高/低风量控制。
● 本机可升级(BEV/BSV 系列):用于高/低风量控制,带反馈选件可升级为变风量控制阀。
● 变风量控制(EXV/MAV 系列):用于闭环反馈变风量控制。
特点:特点/选件定风量控制(CVV ) 双稳态控制(PEV/PSV )本机可升级控制(BEV/BSV ) 变风量控制(EXV/MAV ) 控制类型 C定风量 P 气动 B本机可升级 A 或 D 模拟量或数字量气流反馈信号 — — 选件 √ 失效保险固定件 √ √ √ 出厂阀体保温(仅对送风) — √ √ √ 现场可调整气流 √ √ √ √ 通过反馈电路气流报警 — — — √ 通过压力开关气流报警 选件 选件 选件 选件 低噪声扩散结构√√√√所有的阀门都包括压力无关控制器。
厂家标定的定位控制器,用于流量在60~1000m 3/hr 范围内的场合。
Accel ®Ⅱ型阀门在设计要求在所有的频率段内减小噪音,特别是要以低频段(125~500Hz )为目标,这有助于消除对静音器的需要。
V A V 单元的Accel ®Ⅱ阀门技术特性:结构:♦焊缝连续的16#的离心浇筑铝制阀体。
♦阀体采用不镀膜铝或者带耐腐蚀烘干酚醛涂层。
详解一下调节阀的那些技术参数调节阀是工业自动化控制系统中常用的控制元件之一,它能够准确地调节流体的流量、压力、温度等参数,使其符合工艺过程的要求。
而一个好的调节阀,除了要具备优异的调节性能外,还需要满足一系列的技术参数。
阀门大小阀门大小是指阀门的口径大小,通常用英寸(inch)来表示。
在选择调节阀时,首先需要根据管道的内径和流量计算出所需的阀门口径大小。
如果阀门的口径太小,会造成流量过小,甚至无法满足工艺要求;而如果阀门口径太大,不仅造成浪费,还可能会增加系统的功耗和成本。
阀门材质阀门材质是指阀门主要构件所选用的材料,通常选择的主要考虑因素有介质的性质、温度、压力、流量等。
不同材质的阀门具有不同的耐腐蚀性、耐高温性和耐压性等特点,比如常见的阀门材质有铸铁、碳钢、不锈钢、合金钢等。
阀门压差阀门压差是指流体通过阀门时,前后两侧液压力差的大小。
在调节阀的设计中,需要根据工艺过程的要求,预设一定的阀门压差范围,保证流体流通畅通、稳定,防止压力过高或者过低造成工艺故障。
最大流量最大流量是指在工作压力下,阀门所能通过的最大流量。
通常以升/秒(l/s)或立方米/小时(m³/h)来表示。
这个参数在选择调节阀时非常重要,因为它直接影响到阀门的调节范围和可操作范围,如果选择的最大流量过小,阀门的调节能力就会受到限制。
耐温范围耐温范围是指阀门可以承受的最高和最低温度范围。
这个参数在选择调节阀时非常重要,因为阀门所处的工艺环境和介质决定了它所能承受的温度范围。
如果阀门的材质和结构不符合工艺环境和介质的特性,就会出现温度失控的现象。
适用介质适用介质是指阀门的材质和结构可以承受的介质类型,通常根据介质的酸碱性、腐蚀性、粘度、压力和温度等因素进行选择。
介质的特性和选择对于阀门的使用寿命和稳定性有着重要的影响,如果选择不当,可能会导致阀门失效,从而影响工艺流程的稳定性。
流体性质流体性质是指介质的流体特性,如液体或气体的密度、粘度、压力、温度、流量等参数。