生物医学电子学
- 格式:docx
- 大小:18.63 KB
- 文档页数:4
生物医学工程专业(医学仪器方向)生物医学工程专业培养具备生命科学、电子技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力,能在生物医学工程领域、医学仪器以及其它电子技术、计算机技术、信息产业等部门从事研究、开发、教学及管理的高级工程技术人才。
生物医学工程专业属于电子信息大类的专业,本专业学生主要学习生命科学、电子技术、计算机技术和信息科学的基本理论和基本知识,受到电子技术、信号检测与处理、计算机技术在医学中的应用的基本训练,具有生物医学工程领域中的研究和开发的基本能力。
由于生物医学工程学科在疾病的预防、诊断、治疗、康复以及相关产业等方面起着巨大作用,世界各个主要国家均将它列入高技术领域,重点投资优先发展,本学科也将始终是朝阳学科。
本专业修业年限为4年,毕业生授予工学学士学位。
中南民族大学生物医学工程专业始建于1994年,1995年开始招收本科生;1997年,该专业获一级学科硕士学位授予权;2001年生物医学工程学科被国家民委确定为重点学科,其所属的脑认知实验室和生物医学工程综合实验室为国家民委重点实验室。
本专业现有教授8人,副教授15人;其中国家级“百千万人才工程”一二层次入选者1人,校学科带头人和骨干教师8人;硕士生导师13人。
十几年来该专业为国家和民族地区培养1500多名各层次专门技术人才,其中本科生1300多人、硕士研究生150余人。
该专业毕业生具有较强的就业竞争力和宽广的就业领域,受到了用人单位的普遍好评。
本专业主要学习的课程包括:生物医学工程概论;电路原理、模拟电子技术基础、数字电子技术基础、生物医学电子学、微机原理与应用、DSP/EDA技术、嵌入式系统;计算机基础、高级语言程序设计、计算机网络与通信技术;信号与系统、数字信号处理、计算机图形学、医学图像处理、自动控制原理、医学模式识别;生物医学检测与传感技术、人体运动信息检测与处理;医用电子仪器、医学仪器设计;生物学导论、医用化学、生化与分子生物学、解剖生理学、生物学专题。
生物医学电子学
一.教学计划中的地位和作用:
生物医学电子学是应用电子技术、计算机技术解决生物医学问题的,它是生物医学工程学科的一个重要的组成部分。
由于现代微电子技术的和计算机技术的飞速发展,生物医学与电子技术的关系越来越密切。
生物医学电子学日益显示出它的重要性。
本课程的先修课是模拟电子技术和数字电子技术,它建立起一般的电子学的基本概念和方法。
为了适应生物医学检测技术、现代医学一起的设计,尚须学习、掌握针对生物医学特点、要求而又带有基础理论性的电子学内容。
生物医学电子学课程就是为这一目的而设置的。
二.课程的基本要求:
本课程是在模拟电子技术和数字电子技术的基础上,阐述生物医学领域的电子学内容。
鉴于生物医学电子技术的迅速发展、生物医学仪器的不断更新,本课程以突出生物医学电子技术中的电子学方法为主,而不广集目前尚未定型的各种具体电路。
三.课程内容和学时分配:
第一章:生物医学信号测量的特殊性2学时
第二章:信号测量的基本条件4学时
第三章:信号放大4学时
第四章:信号预处理6学时
第五章:生物遥测4学时
第六章:锁相技术基础4学时
第七章:锁定放大原理4学时
第八章:电刺激4学时。
医学院生物医学工程专业(电子信息类)本科培养方案一、培养目标生物医学工程是工程学与生命科学、医学深入交叉融合的学科,致力于研制用于预防、诊断、治疗疾病及促进人类健康的创新型医疗设备、生物制剂、生物材料、生物过程、植入设备等。
本专业既培养能够推进工程学与生命科学、医学交叉领域前沿创新的学术精英,也培养能够推进相关产业创新的领军人才。
生物医学工程专业(电子信息大类)致力于用电子、信息科学原理与技术,探索生命、医学与健康的新奥秘,研制创新型的医学仪器、设备与系统。
生物医学工程专业(电子信息大类)的学生,应具有优秀的思想道德素质和身心素质,打下扎实的数理、电子与信息科学基础,掌握现代生命科学与医学的核心知识,受过系统的科学实验和研究训练,具备创新精神和国际视野,能够胜任生物医学工程领域偏重电子、信息方向的科学研究、技术开发、系统设计、创新创业及管理等工作。
二、培养成效生物医学工程专业的本科毕业生应达到如下的知识、能力和素质的要求:1.运用数学、科学和工程知识的能力;2.设计和实施实验,以及分析和解释数据的能力;3.设计系统、部件或过程,以满足实际需求的能力;4.在团队中从多学科角度发挥作用的能力;5.发现、阐述和解决工程问题的能力;6.对职业责任和职业伦理的理解;7.有效沟通的能力;8.具备足够的知识面,能够在全球化和社会背景下理解工程解决方案的效果;9.对终生学习的认识,以及终生学习的能力;10.理解当代社会和科技热点问题;11.综合运用技术、技能和现代工程工具,开展工程实践的能力;12.理解生物学、生理学知识,并能够应用高等数学(包括微分方程和统计学)、科学和工程知识,解决工程与生命科学交叉的问题;13.具备测量生命系统并阐释测量数据的能力,以及解决生命系统与非生命材料/系统相互作用方面问题的能力。
三、学制与学位授予学制:按本科四年学制进行课程设置及学分分配。
本科最长学习年限为专业学制加两年。
学位授予:工学学士学位。
生物医学电子学的新技术发展随着现代科技的不断发展,生物医学电子学作为一门交叉学科,在医学领域中发挥着越来越重要的作用。
这一学科融合了生物学、电子学和信息技术等多种学科,利用各种工具、设备和技术手段来研究人体器官的结构与功能,为人类疾病的防治提供了全新的思路和方法。
下面就生物医学电子学的新技术发展进行探讨。
一、生物医学成像技术生物医学成像技术是指利用各种成像设备,通过放射性标记剂、超声波、磁共振、计算机等手段对人体或动物进行高分辨率、高质量的影像检查,以达到辅助医学诊断的目的。
近年来,生物医学成像技术得到了大力发展,成为了现代医学中诊断与治疗的必不可少的手段。
其中,核医学成像技术、磁共振成像技术和计算机断层扫描技术是近期发展速度最快的三种成像技术。
核医学成像技术可以通过注射放射性标记剂,来揭示疾病的病理过程。
磁共振成像技术可以通过通过产生磁场,使人体内的水分子达到特定磁共振。
而计算机断层扫描技术则是通过将立体结构分成多个薄层,再将每层的图像叠加起来,构建出相应器官的三维影像。
二、生物传感器技术生物传感器技术是一种能够将生物信号转换为电信号的技术,可以检测和测量微小而复杂的生理或生化变化,例如血糖水平、蛋白质浓度、细胞分泌的代谢产物等等。
目前,生物传感器技术已经得到广泛的应用,在疾病的早期诊断和治疗等方面发挥着重要的作用。
生物传感器技术的进步主要体现在两个方面:一是使用更高效更灵敏的材料,并对传感器进行微型化和集成化;二是引入先进的计算和数据处理技术,以处理大量数据,并使用机器学习等方法进行数据分析和预测。
生物传感器技术的发展,将会进一步推进精准医疗的实现,为大众提供更好的医疗保障。
三、生物医学数据分析技术随着生物医学领域数据量的增长和复杂性的提高,生物医学数据分析技术的发展也越来越重要。
生物医学数据分析技术是将大量的生物医学数据进行整合和分析,从而更加深入的研究人类健康和疾病。
目前的数据分析技术主要有机器学习、大数据分析和生物信息学,通过这些技术手段对生物医学数据得出数据结论。
生物医学工程专业研究生培养方案一、培养目标⏹培养有爱国主义、敬业精神和德、智、体全面发展的人才。
⏹掌握生物医学工程的基本理论和实验技能,并在电子信息技术、计算机技术及医学等方面得到培养和训练。
了解本领域的研究动态,具有一定的分析问题和解决问题的能力,学位论文应具有一定的创新性或应用前景。
二、研究方向1.生物医学电子学研究课题有:(1)生物医学信息检测与处理。
(2)生命活动的非线性现象(混沌与分形等)及其非线性模型的研究。
(3)生物功能反馈机理及其临床应用研究(其中包括自主神经功能、脑功能和肛直肠肌功能等)。
(4)心外(内)膜mapping对心脏外科手术评价系统的研究。
(5)基于神经网络的生物医学信息的分析及其研究。
(6)调强放疗优化与手术导航的研究及脑功能核磁共振信息分析处理及其生理机制的研究。
(7)生物识别研究(主要研究自动指纹识别系统的核心技术)。
2.生物医学超声主要研究方向有(1)研究生物医学超声使用的频率及强度下的非线性现象和规律及其对医学超声诊断和治疗的影响。
(2)医用超声成像新参量、新方法和新技术的研究,例如非线性参量超声成像、高频超声成像及其在生物组织定征中的应用。
(3)新型医用超声换能器的研究,例如PVDF高频压电薄膜超声换能器和PVDF/PZT复合结构换能器等。
(4)含微气泡超声造影剂非线性声学特性的研究及其在医用B超、超声基因工程等方面的应用。
(5)高强度聚焦超声对生物体的作用及无损测温的研究。
3.医学仪器及图像处理主要研究内容有:(1)医学图像如CT、B超及MRI图像的处理、图像的压缩和检索。
(2)远程医学诊断系统。
(3)生物医学工程智能仪器的开发。
三、招生对象报考硕士研究生者为大学本科毕业及具有同等学历的在职人员。
四、学习年限硕、博连读研究生学习期限一般为5年。
分阶段培养的博士生学制为3年,硕士生学制为3年。
五、课程设置(一)硕士阶段A类:科学社会主义理论与实践2学分自然辩证法概论2学分英语4学分B类:现代数字信号处理3学分信号处理中的数学方法3学分C类:近代生物医学电子学3学分医学超声及生物效应3学分固体中声传播理论和应用2学分生命活动的非线性分析2学分生物医学工程进展2学分近代生物医学工程实验3学分D类:近代电子学3学分声学基础2学分医学成像原理3学分生物医学传感器3学分高频超声成像3学分人体生理学3学分人体解剖学4学分组织胚胎学3学分细胞生物学3学分微生物学3学分遗传学3学分六、培养方式硕士研究生入学后三个月内进行师生双向选择,确定导师,制定培养计划,导师负责全部培养工作。
生物医学电子学
关于生物医学电子学三篇
生物医学电子篇一:生物医学电子学
生物医学电子学题目
1.什么是声致发光?声致发光的过程是怎么样的?(《声致发光》)
声致发光即液体中的蒸汽气泡经声波轰炸迅速内爆,其内部产生热和闪光。
当强大的声波作用于液体的时候,液体中会产生一种“声空化”现象——在液体中产生气泡,气泡随即坍塌到一个非常小的体积,内部的温度可以超过10万摄氏度,过程中会发出瞬间的闪光。
2.简述荧光产生机制。
(《生物医学光子测量》)
光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。
第一激发单线态或第二激发单线态是不稳定的,所以会返回到基态。
当电子由第一激发单线态回到基态时,能量会以光的形式释放,产生荧光。
3.简述激光扫描共聚焦荧光成像的基本原理及其优缺点。
(《生物医学光子测量》)采用电光源照射标本,在焦平面上形成一个光电,该点被照射后发出的荧光被物镜收集,并沿原照射光路回送到由双向色镜构成的分光器。
分光器将荧光直接送到探测器。
光源和探测器前方各有一个针孔,分别称为照明针孔和探测针孔,相对于焦平面上的光点,两者是共轭的,即光点通过一系列透镜,最终可同时聚焦于照明针孔和探测针孔。
这样,来自焦平面的光,可以会聚在探测孔范围之内,而来自焦平面上方或下方的散射光都被挡在探测孔之外而不能成像。
以激光逐点扫描样品,探测针孔后的光电倍增管也逐点获得对应光点的共聚焦图像,转为数字信号传输至计算机,最终在屏幕上聚合成清晰的整个焦平面的共聚焦图像。
主要缺点包括1.标记染料的光漂白:为了获得足够的信噪比必须提高激光的强度;而高强度的激光会使染料在连续扫描过程中迅速褪色。
2.光毒作用:在激光
照射下,许多荧光染料分子会产生单态氧或自由基等细胞毒素,限制扫描时间、激发光强度,以保持样品的活性。
4.简述锁相环的组成及基本工作过程。
(《锁相环》)
锁相环由鉴相器、环路滤波器和压控振荡器组成。
鉴相器用来鉴别输入信号与输出信号之间的相位差,并输出误差电压,误差电压的噪声和干扰成分被低通性质的环路滤波器滤除,形成压控振荡器的控制电压,该电压作用于压控振荡器的结果是把它的输出振荡频率拉向环路输入信号频率,当两者相等时,环路被锁定,称为入锁。
5.电疗的种类、作用机理及临床应用有哪些?(《电疗与电刺激》)
电疗可以分为直流电疗法,低频脉冲电疗法,中频电疗法,高频电疗法,静电疗法等。
人体内除含有大量水分,还有很多能导电的电解质和非电解质,因此人的机体实际上是一个既有电阻又有电容性质的复杂导体,这是电疗的物质基础。
电能作用于人体引起体内的理化反应,并通过神经-体液作用,影响组织和器官的功能,从而达到消除病因、调节功能、提高代谢、增强免疫、促进病损组织修复和再生的目的。
临床上使用直流电来镇痛、止痒、软化瘢痕、消肿、促进组织再生、改善中枢和周围神经功能等。
临床上低频脉冲电疗法可以用于刺激神经肌肉,引起肌肉收缩,从而促进动脉供血,静脉和淋巴回流,改善局部营养代谢,消退水肿,提高肌肉张力等,也可用于止痛。
中频电疗法可用于镇痛、刺激肌肉收缩、促进血液循环等。
6.多谐振荡器有哪几种,它们的特点各是什么?(《信号发生器》)
多谐振荡器可划分为双稳态、非稳态和单稳态三种。
在双稳态多谐振荡器中,两种状态都是稳定的,因此只能借助外部指令将电路强制到一个指定的状态。
一个
非稳态多谐振荡器可以不需外部指令而自动地在两种状态之间转换,所以也被称为自振荡多谐触发器,通常用一个电容器和一个石英晶体构成某一个合适的网络来对它进行定时控制。
一个单稳态多谐振荡器仅在它的两个状态之一是稳定的,若要通过外部指令强制它进入
另一个状态,那么在经过一段时间延迟后它还会自动地返回到它的稳定状态,延迟时间是由适当的定时网络设定。
7.信号发生器的功能是什么,信号发生器一般是怎么实现的,最主要的.两类信号发生器是什么?(《信号发生器》)
信号发生器的功能是产生具有指定特征,例如频率、幅度、形状以及占空比的波形。
一
般来说,信号发生器是利用某些反馈形式以及像电容那样其特性与时间有关的器件一起来实现的,最主要的两类信号发生器是正弦振荡器和张弛振荡器。
8.非线性电路的分析方法有哪些?这些方法的具体内容是什么?应用范围如何?(《非线性电路》)
非线性电路的分析方法有直接分析法、数值分析法、图形分析法、分段线性分析方法、小信号分析法等。
①直接分析法,这种方法一般应用于对非线性二端元件的函数关系较简单时使用,结合并运用线性元件电路的分析方法和一些定理,同时列出非线性的补充方程,最后通过求解数学问题并结合电路实际解答的方法。
这类方法很有局限性,通常只适用于函数关系较简单的非线性求解问题。
②数值分析法:当所求非线性的函数关系不是简单的函数关系时,已经不能用已有的公式去求解,这时就需要在误差精度允许的范围内,运用计算方法学的知识寻求所需的解。
其中包括常用的前向欧拉法、后向欧拉法、梯形法等。
③图形分析法:许多非线性电路无法用直接分析法求解,而又不需要具体的数据做支持时,需要在计算机上用尝试并求误差的方法求解这样的问题。
这种解法可以提供答案,但通常不能对电路的性能和设计给出深入的分析,另一方面,虽然图形法牺牲了一定的精度,但可得到对电路的深刻理解和认识。
④分段线性分析方法:实际生产和应用中,有些非线性的研究不可能或没必要达到百分之百的精确,也找不出它的具体函数表达式,因此不能列写出非线性电路方程,也就不能求解析解。
这时可以采用
分段线性分析法或折线法,在误差允许范围值和要求精度之内可将端口非线性关系在局部近似地看作线性的来处理,在每一个讨论区间中进行线性分析,然后对所得出的解进行筛选和取舍。
⑤小信号分析法:小信号分析法也称为增量分析法,在电子电路的许多应用场合中,非线性元件仅在很小的电压电流范围内运行,在这种情况下,需要确定一种分段线性的模型以确保能够在很窄的范围内获得很大的精度。
这种很窄运行范围内线性化模型的过程被称作增量分析或小信号分析。
小信号分析的好处是小信号变量满足KVL/KCL 以及窄范围内线性v-i关系。
生物医学电子篇二:生物医学电子学
滤波器设计实验要求:1、构造一个二阶低通滤波器,截止频率为100Hz,增益为10。
参数设计:选择巴特沃斯低通滤波器的二阶设计令C=0.1uF;
得到:K=100/f*C=10;
得R1=14.22K;R2=53.99K;R3=∞*K;R4=0K;
依据K值得到各电阻阻值:R=1.422KΩ;R2=5.399KΩ;R3=∞KΩ;R4=0KΩ。
生物医学电子篇三:生物医学工程是医学和电子技术
生物医学工程是医学和电子技术、计算机技术、信号处理技术相结合的新型交叉学科,主要是学习工科方面的知识,因此生医的优势在于了解一些基础医学方面的知识,另外具有医学电子的工科背景,因此具有其他医学专业无法比拟的利用工科知识解决现实的医学问题的能力!。