上海市宝山区2011年中考数学模拟试题
- 格式:doc
- 大小:185.50 KB
- 文档页数:4
宝山区2010学年第一学期期末 九年级数学质量检测试卷(满分150分,考试时间100分钟)一、 选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸的相应题号的选项上用2B 铅笔填涂] 1.下列算式中,正确的是( ▲ ).(A )24±=; (B )532=+; (C )2818=-; (D )2332=-. 2.下列方程中,有实根的是( ▲ ).(A )012=+-x x ; (B )023=+x ; (C )111-=-x x x ; (D )02=-+x x . 3.关于二次函数2)1(+=x a y 的图像,下列说法中,正确的是( ▲ ). (A )是一条开口向上的抛物线; (B )顶点坐标为(1,0);(C )可以由二次函数2ax y =的图像向上平移1个单位得到; (D )可以由二次函数2ax y =的图像向左平移1个单位得到.4.已知一个斜坡的坡角为α,坡度为5.2:1,那么下列结论中,正确的是( ▲ ).(A )5.2tan =α; (B )52tan =α ; (C )52cot =α; (D )52sin =α.5.已知△ABC 与△DEF 相似,且∠A=∠D ,那么下列结论中,一定成立的是( ▲ ).(A )∠B=∠E ; (B )DFAC DE AB =; (C )相似比为DE AB ; (D )相似比为EF BC.6.已知C 是直线AB 上一点,且21=,那么下列结论中,正确的是( ▲ ).(A )-=; (B )=; (C )AC AB 21=; (D )AC AB 21-=.二、 填空题:(本大题共12题,每题4分,满分48分)[将答案直接填在答题纸相应的题号后] 7.计算:=32)2(a ▲ .8.不等式组⎩⎨⎧≥->+01012m m 的解集是 ▲ .9.因式分解:1+--b a ab = ▲ . 10.已知函数1)(+=x xx f ,则=)2(f ▲ . 11.如图1,已知抛物线2x y =,把该抛物线向上平移,使平移后的抛物线经过点A (1,3),那么平移后的抛物线的表达式是 ▲ .12.抛物线1442+++=a ax ax y (0≠a )的顶点坐标是 ▲ .13.已知一个二次函数的图像具有以下特征:(1)经过原点;(2)在直线1=x 左侧的部分,( 图1 )图像下降,在直线1=x 右侧的部分,图像上升.试写出一个符合要求的二次函数解析式. ▲14.已知A 、B 是抛物线122-+=x x y 上的两点(A 在B 的左侧),且AB 与x 轴平行, AB = 4,则点A 的坐标为 ▲ .15.已知△ABC 中,AB =AC =6,31cos =B ,则边BC 的长度为 ▲ .16.如图2,已知平行四边形ABCD , E 是边AB的中点,联结AC 、DE 交于点O . 记向量a AB =,=,则向量OE = ▲ (用向量、17.如图3,已知ABC ∆中,︒=∠90ACB ,D 是边AB 的中点,AB CE ⊥, 垂足为点E ,若53sin =∠DCE ,则=A cot ▲ .18.如图4,平面直角坐标系中,已知矩形OABC ,O 为原点,点A 、C 分别在x 轴、y 轴上,点B 的坐标为(1,2),连结OB ,将△OAB 沿直线OB 翻折,点A 落在点D 的位置. 则点D 的坐标为 ▲ .三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分,满分52分)19.解方程:11)1(212=--+x xx20.图5所示的工件叫燕尾槽,它的横断面是一个等腰梯形, ∠ABC 叫做燕尾角,AD 叫做外口,BC 叫做里口,点A 到 BC 的距离叫做燕尾槽深度. 经测量,AD=10cm ,燕尾角 为50.2°,燕尾槽深度为6cm ,试求里口BC 的长.【备用数据:768.02.50sin =︒,640.02.50cos =︒,20.12.50tan =︒】21.如图6,已知菱形ABCD ,点G 在BC 的延长线上, 联结AG ,与边CD 交于点E ,与对角线BD 交于点F , 求证: FG EF AF ⋅=2.22.如图7,已知梯形ABCD 中,AB ∥CD ,∠ABC =90°,CD =1.C( 图6 )( 图5 )( 图3 )CAD EB( 图4 )( 图2 )(1)若BC =3,AD=AB ,求∠A 的余弦值;(2)联结BD ,若△ADB 与△BCD 相似,设x A =cot ,y AB =, 求y 关于x 的函数关系式.23.如图8,已知正方形网格中每个小正方形的边长为1,点O 、M 、N 、A 、B 、C 都是小正方形的顶点.(1)记向量=,=,试在该网格中作向量22-=; (2)联结AD ,试判断以A 、B 、D 为顶点的三角形与ABC ∆是否相似, (3)联结CD ,试判断BDC ∠与ACB ∠的大小关系,并证明你的结论.24.如图9,小杰在一个智能化篮球场的罚球区附近练习投篮,球出手前,他测得篮框(A )的仰角为16.7°、篮球架底端(B )的俯角为24.2°,又已知篮框距离地面约3米. (1)请在答题纸上把示意图及其相关信息补全,并求小杰投篮时与篮框的水平距离; (2)已知球出手后的运动路线是抛物线的一部分,若球出手时离地面约2.2米,球在空中运行的水平距离为2.5米时,达到距离地面的最大高度为3.45米,试通过计算说明球能否准确落入篮框.【注:篮球架看作是一条与地面垂直的线段,篮框看作是一个点;投篮时球、眼睛看作是在一条与地面垂直的直线上. 备用数据:29.07.16sin =︒, 96.07.16cos =︒, 30.07.16tan =︒;41.02.24sin =︒, 91.02.24cos =︒, 45.02.24tan =︒;】四、(本大题共2题,第25题12分,第26题14分,满分26分)( 图8 )25.(本题满分12分,第(1)小题满分4分,第(2)小题满分8分)如图10,已知抛物线 c bx x y ++-=2过点A (2,0),对称轴为y 轴,顶点为P . (1) 求该抛物线的表达式,写出其顶点P 的坐标,并画出其大致图像;(2) 把该抛物线先向右平移m 个单位,再向下平移m 个单位(m > 0 ),记新抛物线的顶点为B ,与y 轴的交点为C .① 试用m 的代数式表示点B 、点C 的坐标; ② 若∠OBC =45°,试求m 的值.26.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图11,已知2tan =∠MON ,点P 是MON ∠内一点,OM PC ⊥,垂足为点C ,2=PC ,6=OC ,A 是OC 延长线上一点,联结AP 并延长与射线ON 交于点B .(1)当点P 恰好是线段AB 的中点时,试判断△AOB 的形状,并说明理由; (2)当CA 的长度为多少时,△AOB 是等腰三角形;(3)设k ABAP =,是否存在适当的k ,使得k S S OBPC APC =∆四边形,若存在,试求出k 的值;若不存在,试说明理由. 宝山区2010学年第一学期期末九年级数学质量检测评分参考( 图10 )三、 选择题:(本大题共6题,每题4分,满分24分)1. C. 2. B . 3. D . 4. B . 5. D. 6. A .四、 填空题:(本大题共12题,每题4分,满分48分)7. 68a . 8. . 9. ()()11--b a . 10. 22-. 11. 22+=x y . 12. ()1,2-. 13. ()2,3-. 14.x x y 22-=(答案不唯一).15. 4. 16. . 17. 2. 18. .三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分)19. 解:0122=-+x x ……………………3分 ()()0112=+-x x ……………………2分 ……………………2分经检验: 是增根舍去, 是原方程的根。
2011年上海市中考数学试卷一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.2.(2011•上海)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.3.(2011•上海)下列二次根式中,最简二次根式是()A.B.C.D.4.(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.(2011•上海)下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等6.(2011•上海)矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD 为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内二、填空题(本大题共12题,每题4分,共48分)7.(2011•上海)计算:a2•a3=_________.8.(2011•上海)因式分解:x2﹣9y2=_________.9.(2011•上海)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=_________.10.(2011•上海)函数的定义域是_________.11.(2011•上海)如果反比例函数(k是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是_________.12.(2011•上海)一次函数y=3x﹣2的函数值y随自变量x值的增大而_________(填“增大”或“减小”).13.(2011•上海)有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是_________.14.(2011•上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.(2011•上海)如图,AM是△ABC的中线,设向量,,那么向量=_________(结果用、表示).16.(2011•上海)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=_________.17.(2011•上海)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC= _________.18.(2011•上海)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D 逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.三、解答题(本大题共7题,满分78分)19.(2011•上海)计算:.20.(2011•上海)解方程组:.21.(2011•上海)如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若tan∠C=,求弦MN的长.22.(2011•上海)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是_________;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是_________(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_________;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_________名.23.(2011•上海)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.24.(2011•上海)已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.25.(2011•上海)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.2011年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.考点:有理数的除法。
2011年上海市初中毕业统一学业考试数学卷满分150分 考试时间100分钟一、选择题(本大题共6题,每题4分,共24分) 1.下列分数中,能化为有限小数的是( ). (A)13; (B) 15; (C) 17; (D) 19. 2.如果a >b ,c <0,那么下列不等式成立的是( ). (A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D) a bc c> . 3.下列二次根式中,最简二次根式是( ).(A)(B) (C) (D) .4.抛物线y =-(x +2)2-3的顶点坐标是( ). (A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 5.下列命题中,真命题是( ).(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等.6.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.二、填空题(本大题共12题,每题4分,共48分) 7.计算:23a a ⋅=__________.8.因式分解:229x y -=_______________.9.如果关于x 的方程220x x m -+=(m 为常数)有两个相等实数根,那么m =______.10.函数y =_____________. 11.如果反比例函数ky x=(k 是常数,k ≠0)的图像经过点(-1,2),那么这个函数的解析式是__________. 12.一次函数y =3x -2的函数值y 随自变量x 值的增大而_____________(填“增大”或“减小”).13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是__________.14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.如图1,AM 是△ABC 的中线,设向量AB a =,BC b =,那么向量AM =____________(结果用a 、b 表示).16. 如图2, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.17.如图3,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.18.Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD (图4).把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =_________.图1 图2 图3 图4三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:0(3)1-.20.(本题满分10分)解方程组:222,230.x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2,CD 平行于AB ,并与弧AB 相交于点M 、N .(1)求线段OD 的长;(2)若1tan 2C ∠=,求弦MN 的长.图522.(本题满分10分,第(1)、(2)小题满分各2分,第(3)、(4)小题满分各3分)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图6)、扇形图(图7).(1)图7中所缺少的百分数是____________;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是________________(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_____________;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_______________名.10%20%35%25%10%百分数年龄段(岁)25岁以下25~3536~4546~6060岁以上图6 图7赞同31%很赞同39%不赞同18%一般23.(本题满分12分,每小题满分各6分)如图,在梯形ABCD 中,AD //BC ,AB =DC ,过点D 作DE ⊥BC ,垂足为E ,并延长DE 至F ,使EF =DE .联结BF 、CD 、AC . (1)求证:四边形ABFC 是平行四边形;(2)如果DE 2=BE ·CE ,求证四边形ABFC 是矩形.24.(本题满分12分,每小题满分各4分) 已知平面直角坐标系xOy (如图1),一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M . (1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标. 图125.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13EMP ∠=. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图2011年上海市初中毕业统一学业数学卷答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分)题号1 2 3 4 5 6答案B ACD D C 二、填空题 (本大题共12题,每题4分,满分48分)题号 7 8 9 10 11 12 13 14 15 16 17 18 答案a 5(x +3y )(x -3y )1x ≤3y = -x2 增大85 20%a +21b 54680或120三、解答题 (本题共30分,每小题5分) 19. (本题满分10分) [解] (-3)0-27+|1-2|+231+=1-33+2-1+3-2= -23。
上海市宝山区、嘉定区2011学年中考预测数学试卷(测试时间:100分钟,满分150分) 2012.4. 考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.考试不使用计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号填涂在答题纸的相应位置上】 1.下列计算正确的是 ( ).(A )422a a a =+; (B )236a a a =÷; (C )32a a a =⋅; (D )532)(a a =. 2.如果b a <,0<c ,那么下列不等式成立的是( ).(A )c b c a +<+; (B ) c b c a +-<+-; (C )bc ac <; (D )cbc a <. 3.一次函数1-=x y 的图像不.经过( ). (A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.4.在研究反比例函数图像与性质时,由于计算粗心,小明误认为(2-,3)、(2,3-)、(2-,3-)、 (3,2-)、(23-,4)五个点在同一个反比例函数的图像上,后来经检查发现其中有一个点不在, 这个点是( ).(A )(2,3-); (B )(2-,3); (C )(2-,3-); (D )(23-,4). 5.如图1,在编号为错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
的四个三角形中,关于x 轴对称的两个三角形是( ).(A )错误!未找到引用源。
和错误!未找到引用源。
; (B )错误!未找到引用源。
和错误!未找到引用源。
; (C )错误!未找到引用源。
2011年中考模拟试卷数学卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间120分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场号、座位号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,只需上交答题卷。
一、仔细选一选(本题10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确的选项前的字母填在答卷中的相应的格子内,注意可以用多种不同的方法来选取正确的答案。
1.2011年3月5日第十一届全国人民代表大会第四次会议在京召开,会议期间议案560多件,提案5762件,充分体现了广大政协委员为发展社会主义民主、推动科学发展、促进社会和谐建言献策的政治责任感。
用科学计数法表示收到的提案数量(保留2个有效数字)( ▲ ) (原创) A . B . C . D . 2.如图1,给你用一副三角板画角,不可能画出的角的度数是: ( ▲ )(原创)A .105°B .75°C .155°D .165° 3.现给出下列四个命题:①无公共点的两圆必外离②位似三角形是相似三角形③菱形的面积等于两条对角线的积④三角形的三个内角中至少有一内角不小于60⑤对角线相等的四边形是矩形其中选中是真命题的个数的概率是( ▲ )(原创)A .51 B .52 C .53 D .544.一个几何体是由一些大小相同的小正方块摆成的,三视图如图所示,则组成这个几何体的小正方块有( ▲ )(原创) A 、4个 B 、5个 C 、6个 D 、7个5.已知线段a 和锐角α∠ ,求作ABC Rt ∆ ,使它的一边为a ,一锐角为α∠ ,满足上述条件的大小不同的可以画这样的三角形( ▲ )。
(原创)A .1个B .2个C .3个D .4个6.在平行四边形ABCD 中,E 为CD 上一点,DE:EC=1:2,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则=∆∆∆ABF EBF DEF S S S ::( ▲ )(原创) A .1:3:9 B .1:5:9 C .2:3:5 D .2:3:93107.5⨯3108.5⨯41057.0⨯310762.5⨯图1BCAE 1E 2 E 3D 4D 1D 2D 3(第10题图)7. 已知点A 的坐标为(2,3),O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转900得OA 1,再将点A 1作关于X 轴对称得到A 2,则A 2的坐标为( ▲ )(原创) A .(-2,3)B .(-2,-3)C .(-3,2)D .(3, 2)8. 给出下列命题:①反比例函数xy 2=的图象经过一、三象限,且y 随x 的增大而减小;②对角线相等且有一个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图);④相等的弧所对的圆周角相等.其中正确的是( ▲ )(习题摘录改编) (A )③④ (B )①②③ (C )②④ (D )①②③④9.如图,两个反比例函数y = k 1x和y = k 2x在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB的面积为( ▲ )(改编)A .k 1+k 2B .k 1-k 2C .k 1·k 2 D.k 1k 210. 如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则A .n S =14n ABC S △B .n S =13n +ABC S △ C .n S =()121n +ABC S △ D .n S =()211n +ABC S △ ( ▲ )(习题摘录)A 、6B 、62C 、24D 、4 二、认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。
2011学年第一学期期末考试九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含四个大题,共26题;2. 考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是符合题目要求的,请把符合题目要求的选项的代号填涂在答题纸的相应位置上.】 1.下列各式中,正确的是( ▲ ). (A )4222a a a =+; (B )a a a =-23; (C )532a a a =⋅;(D )222)(b a b a +=+.2.下列各数中,是无理数的为( ▲ ).(A )6; (B )38; (C )0π; (D )︒60cos . 3.关于二次函数122+-=x y 的图像,下列说法中,正确的是( ▲ ). (A )对称轴为直线1=x ; (B )顶点坐标为(2-,1);(C )可以由二次函数22x y -=的图像向左平移1个单位得到; (D )在y 轴的左侧,图像上升,在y 轴的右侧,图像下降.4.已知△ABC ∽△DEF ,顶点A 、B 、C 分别与D 、E 、F 对应,若△ABC 和△DEF 的周长 分别为24、36,又BC =8,则下列判断正确的是( ▲ ).(A )12=DE ; (B )12=EF ; (C )18=DE ; (D )18=EF . 5.飞机在空中测得地面上某观测目标A 的俯角为α,且飞机与目标A 相距12千米,那么这时飞机离地面的高度为( ▲ ).(A )αsin 12; (B )αcos 12; (C )αtan 12; (D )αcot 12. 6.下列关于向量的说法中,不.正确..的是( ▲ ). (A )33a a = ; (B )3()33a b a b +=+;(C )若b k a =(k 为实数),则a ∥b ; (D )若b a 3=,则b a 3=或b a 3-=.二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.计算:=-23▲ .8.已知向量a 、x 满足x a x a +=-)(31,则x = ▲ .(用向量a 表示) 9.分解因式:=-+224x x ▲ .10.已知抛物线1)1(2+-=x a y 的顶点是它的最高点,则a 的 取值范围是 ▲ .11.如图1,已知抛物线2x y =,把该抛物线沿y 轴方向平移,若平移后的抛物线经过点A (2,2),那么平移后的抛物线 的表达式是 ▲ .12.已知抛物线222++-=x x y 的顶点为A ,与y 轴交于点B ,C 是其对称轴上的一点,O 为原点,若四边形ABOC 是等腰 梯形,则点C 的坐标为 ▲ .13.如图2,已知平行四边形ABCD ,E 是边AB 的中点,联结AC 、DE 交于点O . 则OCAO的值为 ▲ . 14.已知一个斜坡的坡角为α,坡度为3:1,则αcot 的值为 ▲ .15.如图3,ABC ∆中,点D 、E 、F 分别在边BC 、AC 、AB 上,且DE ∥AB ,DF ∥AC ,若2:1:=DC BD ,ABC ∆的面积为92cm ,则四边形AEDF 的面积为 ▲ 2cm . 16.如图4,已知梯形ABCD 中,AB ∥CD ,AB ⊥BC ,且AD ⊥BD ,若AB =3,CD=1,那么A ∠的正弦值为 ▲ .17.如图5,已知△ABC 中,点D 、E 分别在边AB 、AC 上,且DB AD 2=,EC AE =.若设a AB =,b BC =,则DE = ▲ .(用向量a 、b 表示) 18.已知△ABC 中,∠C=90°,AB=9,32cos =A ,把△ABC 绕着点C 旋转,使得点A 落在点A ’,点B 落在点B ’. 若点A ’在边AB 上,则点B 、B ’的距离为 ▲ . 三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分) 19.先化简,再求值: )111()1112(2+-÷---+a a a a a ,其中2=a . 20.已知432z y x ==, (1) 求zyx 2-的值; (2) 若y z x -=+3,求x 值.ADBCEO(图2)Ay2O 112 3 x(图1)ADBCE (图5)ADBCF E(图3)(图4)ABCD21.已知一个二次函数的图像经过点A (-1,0)、B (0,3),且对称轴为直线1=x , (1) 求这个函数的解析式;(2) 指出该函数图像的开口方向和顶点坐标,并说明图像的变化情况.22.如图6,已知△ABC 中,AB=AC ,点E 、F 在边BC 上, 满足∠EAF=∠C ,求证:BF·CE= AB 2;23.如图7,已知△ABC 的边BC 长15厘米,高AH 为10厘米,长方形DEFG 内接于△ABC ,点E 、F 在边BC 上,点D 、G 分别在边AB 、AC 上. (1) 设x DG =,长方形DEFG 的面积为y ,试求y 关于x 的函数解析式,并写出定义域;(2) 若长方形DEFG 的面积为36,试求这时AB AD 的值.24.据新华社12月13日电,参加湄公河联合巡逻执法的中国巡逻船顺利返航.已知在巡逻过程中,某一天上午,我巡逻船正在由西向东匀速行驶,10:00巡逻船在A 处发现北偏东53.1°方向,相距10海里的C 处有一个不明物体正在向正东方向移动,10:15巡逻船在B 处又测得该物体位于北偏东18.4°方向的D 处.若巡逻船的速度是每小时36海里, (1) 试在图8中画出点D 的大致位置,并求不明物体移动的速度;(2) 假设该不明物体移动的方向和速度保持不变,巡逻船航行的方向和速度也不变, 试问什么时间该物体与我巡逻船之间的距离最近?【 备用数据:8.01.53sin =︒, 6.01.53cos =︒, 75.01.53cot =︒;32.04.18sin =︒, 95.04.18cos =︒, 34.18cot =︒;】ABCEF(图6)GCHDFE AB(图7)北东ACB(图8)四、(本大题共2题,第25题12分,第26题14分,满分26分) 25.(本题共3小题,4分+5分+3分,满分12分)我们知道,互相垂直且有公共原点的两条数轴构成平面直角坐标系.如果坐标系中两条坐标轴不垂直,那么这样的坐标系称为“斜坐标系”.如图9,P 是斜坐标系xOy 中的任意一点,与直角坐标系相类似,过点P 分别作两坐标轴的平行线,与x 轴、y 轴交于点M 、N ,若M 、N 在x 轴、y 轴上分别对应实数a 、b ,则有序数对(a ,b )叫做点P 在斜坐标系xOy 中的坐标.(1) 如图10,已知斜坐标系xOy 中,∠xOy=60°,试在该坐标系中作出点A (-2,2), 并求点O 、A 之间的距离;(2) 如图11,在斜坐标系xOy 中,已知点B (4,0)、点C (0,3),P (x ,y )是线段BC 上的任意一点,试求x 、y 之间一定满足的一个等量关系式;(3) 若问题(2)中的点P 在线段BC 的延长线上,其它条件都不变,试判断上述x 、y 之间的等量关系是否仍然成立,并说明理由.26.(本题共3小题,3分+6分+5分,满分14分)如图12,已知线段AB ,P 是线段AB 上任意一点(不与点A 、B 重合),分别以AP 、BP 为边,在AB 的同侧作等边△APD 和△BPC ,联结BD 与PC 交于点E ,联结CD . (1) 当BC ⊥CD 时,试求∠DBC 的正切值;(2) 若线段CD 是线段DE 和DB 的比例中项,试求这时PBAP的值; (3) 记四边形ABCD 的面积为S ,当P 在线段AB 上运动时,S 与BD 2是否成正比例, 若成正比例,试求出比例系数;若不成正比例,试说明理由.xPy NOM(图9)x-1y1O 1(图10)xP (x ,y )y COB (图11)ABPCDE(图12)ABPCDE(备用图)宝山区2011学年第一学期期末考试九年级数学参考答案一、选择题1.C; 2.A; 3.D; 4.B; 5.A; 6.D. 二、填空题7.91; 8.a 21-; 9.)1)(1)(2(2-++x x x ; 10.1>a ; 11.22-=x y ;12.)1,1(-; 13.21; 14.3; 15.4; 16. 33; 17. b a 2161+-; 18. 54。
宝山区2010年九年级学业模拟考试数学试题(满分: 150 分,考试时间:100分钟)考生注意:1.答题时,考生务必按答题要求在答题纸规定的位置上作答,在本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂] 1.下列运算正确的是( ▲ )(A) 10a ÷52a a = (B) 422a a a =+ (C) 222)(b a b a +=+ (D) 632)(a a =2.1=x 是下列哪个方程的解?( ▲ )(A) 1112-=-x x x (B) x x -=23(C) 01=+x (D) 1=+y x 3.下列不等式组中,解集为12<≤-x 的是( ▲ ) (A) ⎩⎨⎧>-≥+0102x x (B) ⎩⎨⎧<-≥-0102x x (C) ⎩⎨⎧>-≥+0102x x (D) ⎩⎨⎧>-≥-0102x x4.已知0<k ,0>b ,那么一次函数b kx y +=的大致图像是( ▲ )5.已知四边形ABCD ,下列条件中,不.能确定四边形ABCD 是平行四边形的是( ▲ ) (A) AB ∥CD 且AD ∥BC ; (B) AB ∥CD 且 AB = CD ; (C) AB ∥CD 且AD = B C ; (D) AB ∥CD 且C A ∠=∠. 6.已知两个相似三角形的相似比是1︰2,则下列判断中,错误..的是( ▲ ) (A) 对应边的比是1:2; (B) 对应角的比是1:2; (C) 对应周长的比是1:2; (D) 对应面积的比是1:4; 二、填空题:(本大题共12题,每题4分,满分48分)Oyx(A)Oyx(C)Oyx(B)Oyx(D)[请将结果直接填入答题纸的相应位置] 7.计算:=-219▲ .8.因式分解:a a 43-= ▲ .9.用配方法解方程261x x -=时,方程的两边应该同加上 ▲ ,才能使得方程左边 配成一个完全平方式.10.经过点A (2, 1)且与直线y x =-平行的直线表达式为 ▲ . 11.解方程2232=---x x x x 时,如果设y xx =-2,那么原方程可以化为关于y 的整式方程.这个整式方程是 ▲ .12.某公司承担了制作600个上海世博会道路交通指引标志的任务, 原计划x 天完成,实际平均每天多制作了10个,因此提前5天完成任务。
2011年上海市初中毕业统一学业考试数学卷数学注意事项:1. 本试卷共4页,全卷满分150分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2. 请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上. 3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共6题,每题4分,共24分)1.下列分数中,能化为有限小数的是( )(A) 13; (B) 15; (C) 17; (D) 19 .2.如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D) a b c c > . 3.下列二次根式中,最简二次根式是( ).(A)(B) ;(C)(D).4.抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 5.下列命题中,真命题是( ).(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等. 6.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.二、填空题(本大题共12题,每题4分,共28分)12.一次函数y =3x -2的函数值y 随自变量x 值的增大而_____________(填“增大”或“减小”).13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是__________.14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.如图1,AM 是△ABC 的中线,设向量AB a =,BC b =,那么向量AM =____________(结果用a 、b 表示).16. 如图2, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.17.如图3,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.18.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(图4).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC 的边上,那么m=_________.图1 图2 图3 图4三、解答题(本大题共4题,满分48分)21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD 平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若1tan2C∠=,求弦MN的长.图523.(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE 至F,使EF=DE.联结BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数33 4y x=+的图像与y轴交于点A,点M在正比例函数32y x=的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数334y x=+的图像上,且四边形ABCD是菱形,求点C的坐标.图125.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,12sin13EMP∠=.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.图1 图2 备用图2011年上海市初中毕业统一学业数学卷答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分) 题号 1 2 3 4 5 6答案 B A C D D C 二、填空题 (本大题共12题,每题4分,满分48分)题号 7 8 9 10 11 12 13 14 15 16 17 18 答案a 5(x +3y )(x -3y )1x ≤3y = -x2 增大85 20%a +21b 54680或120三、解答题 (本题共30分,每小题5分) 19. (本题满分10分)[解] (-3)0-27+|1-2|+231+=1-33+2-1+3-2= -23。
2011年上海市中考数学真题及答案(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个选项是正确的。
选择正确项的代号并填涂在答题纸的相应位置上.】1.下列各实数中,属有理数的是A .πB .2C .9D .cos 45°2.解方程3)1(2122=-+-x x x x 时,设y x x =-12,则原方程化为y 的整式方程为 A .01622=+-y y B .0232=+-y y C .01322=+-y y D .0322=-+y y 3.α∠在正方形网格中的位置如图一所示,那么αsin 应用哪些 点联结成的线段的比值表示 A .AC AE B .BC BE C .AC AD D .BCBD4.如图二,当圆形桥孔中的水面宽度AB 为8米时,弧ACB 恰 为半圆。
当水面上涨1米时,桥孔中的水面宽度A ’B ’为 A .15米 B .152米 C .172米 D .不能计算 5.下列命题中正确的是A .对角线互相垂直且相等的四边形是正方形B .如果一条直线上有两点到另一条直线上的距离相等,那么这两条直线互相平行C .如果半径分别为3和1的两圆相切,那么两圆的圆心距一定是4D .有一个内角是︒95的两个等腰三角形相似6.如图三,已知AC 平分∠PAQ ,点B 、D 分别在边AP 、AQ 上. 如果添加一个条件后可推出AB =AD ,那么该条件不可以是 A .BD ⊥AC B .BC =DC C .∠ACB =∠ACD D .∠ABC =∠ADC 二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上.】 7.求值:38-= .AB CD E(图一)ABC A ’ B ’ ·(图二)·APQC (图三)8.计算:333226y x y x ÷= . 9.分解因式:22y y x x --+= . 10.函数11-=x y 的定义域是 .11.如图四,原点O 是矩形ABCD 的对称中心,顶点A 、C 在反比例函数图像上,AB 平行x 轴.若矩形ABCD 的面积为8,那么 反比例函数的解析式是 . 12.方程 xx x x -+-22323=1中,如设x x y -=23,原方程可化 为整式方程 . 13.方程13-=++x x 的根是 .14.直角三角形斜边长为6,那么三角形的重心到斜边中点的距离为 .15.如图五△ABC 中,AB=AC ,BC =6,S △ABC =3,那么sin B = . 16.汽车沿坡度为1:7的斜坡向上行驶了100米,升高了 米. 17.如图六,AB 左边是计算器上的数字“5”,若以直线AB 为对称轴,那么它的轴对称图形是数字 .18.如图七,在△ABC 中,∠C =90º,∠A=30º,BC =1,将△ABC 绕点B 顺时针方向旋转,使点C 落到AB 的延长线上,那么点A 所经过的线路长为 .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:︒︒-︒+︒60tan 30tan 260tan 30tan 22.20.(本题满分10分)解不等式组:⎪⎪⎩⎪⎪⎨⎧->+-≥-62334323429x x x x ,并把它的解集表示在数轴上.(图五)AB (图六)ABC(图七)21.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某产品每千克的成本价为20元,其销售价不低于成本价,当每千克售价为50元时,它的日销售数量为100千克,如果每千克售价每降低(或增加)一元,日销售数量就增加(或减少)10千克,设该产品每千克售价为x (元),日销售量为y (千克),日销售利润为w (元).(1) 求y 关于x 的函数解析式,并写出函数的定义域; (2) 写出w 关于x 的函数解析式及函数的定义域;(3)若日销售量为300千克,请直接写出日销售利润的大小.22.(本题满分10分,每小题满分各5分)已知:如图八,在ABC ∆中,BC AD ⊥,D 点为垂足,BE AC ⊥,E 点为垂足,M 点位AB 边的中点,联结ME 、MD 、ED .(1)求证:MED ∆与BMD ∆都是等腰三角形; (2)求证:DAC EMD ∠=∠2.23.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)如图九,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE AB <),连结EG 并延长交DC 于点M ,作MN AB ⊥,垂足为N ,MN 交BD 于点P .设正方形ABCD 的边长为1.(1)证明:△CMG ≌△NBP ;ABCDME(图八)-2 -1 0 1 2 3 4A NB EFGCM DP(图九)(2)设BE x =,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长.24.(本题满分12分,每小题满分各6分)如图十,C 在射线BM 上,在平行四边形ABCD 中,10==BD AC ,43tan =∠CAD ,对角线AC 与BD 相交于O 点.在射线BM 上截取一点E ,使CE OC =,联结OE ,与边CD 相交于点F .(1)求CF 的长;(2)在没有“CE OC =”的条件下,联结DE 、AE ,AE 与对角线BD 相交于P 点,若ADE ∆为等腰三角形,请求出DP 的长.25.(本题满分14分,第(1)、(2)小题满分各5分,第(3)小题满分4分)已知∠MON = 60°,射线OT 是∠MON 的平分线,点P 是射线OT 上的一个动点,射线PB 交射线ON 于点B .(备用图)A BC DOM(1)如图十一,若射线PB 绕点P 顺时针旋转120°后与射线OM 交于A ,求证:PA = PB ; (2)在(1)的条件下,若点C 是AB 与OP 的交点,且满足PC =23PB ,求:△POB 与△PBC 的面积之比;(3)当OB = 2时,射线PB 绕点P 顺时针旋转120°后与直线OM 交于点A (点A 不与点O 重合),直线PA 交射线ON 于点D ,且满足ABO PBD ∠=∠.请求出OP 的长.参考答案:一、选择题(本大题共6题,每题4分,满分24分)1.C 2.B 3.A 4.B 5.D 6.B 二、选择题(本大题共12题,每题4分,满分48分)7.-2; 8.133-x x或; 9.)1)((++-y x y x ; 10.1>x ;11.xy 2=; 12.022=+-y y ; 13.)2(2不得分写--=x ; 14.1; 15.1010; 16.102; 17.2; 18.π34.三、解答题(本大题共7题,满分78分)19.解:原式=2)60tan 30(tan ︒-︒……………………………………………………(4分)=2)333(-……………………………………………………………(7分) =333-=332…………………………………………………………(10分) MO NTPA BC OMNTOMNT(备用图一)(备用图二)(图十一)20.解:由(1)得:x x 432329+-≥- 3≤x …………………………………………………………(3分) 由(2)得:236134->+x x 1->x …………………………………………………………(6分)∴不等式组的解集为:.........31≤<-x ………………………………………………(8分) 在数轴上表示解集正确(图略)………………………………………………(10分)21.解:(1))50(10100x y -+=………………………………………………………(1分)x y 10600-=……………………………………………………………………(2分)定义域为20≤x ≤60……………………………………………………………(3分) (2))20)(10600(--=x x w ………………………………………………………(5分)12000800102-+-=x x w ,定义域为20≤x ≤60…………………………(7分)(3)3000………………………………………………………………………………(9分)答:……………………………………………………………………………………(10分) 22.证明:(1)∵M 为AB 边的中点,AD ⊥BC , BE ⊥AC , ∴12ME AB =,12MD AB =………………………………………………………(2分) ∴ME =MD ………………………………………………………………………………(3分) ∴△MED 为等腰三角形………………………………………………………………(5分) (2)∵12ME AB MA == ∴∠MAE =∠MEA …………………………………………………………………… (6分) ∴∠BME =2∠MAE ……………………………………………………………………(7分) 同理可得:12MD AB MA == ∴∠MAD =∠MDA …………………………………………………………………… (8分) ∴∠BMD =2∠MAD ……………………………………………………………………(9分) ∵∠EMD =∠BME -∠BMD=2∠MAE -2∠MAD =2∠DAC ……………………………………………(10分)23.证明:(1)∵正方形ABCD∴︒=∠=∠90CBA C ,︒=∠45ABD 同理︒=∠45BEG ∵CD //BE∴︒=∠=∠45BEG CMG ………………………………………………………………(2分) ∵AB MN ⊥,垂足为N ∴︒=∠90MNB∴四边形BCMN 是矩形………………………………………………………………(3分) ∴NB CM =又∵︒=∠=∠90PNB C ,︒=∠=∠45NBP CMG∴△CMG ≌△NBP ……………………………………………………………………(5分) (2)∵ 正方形BEFG ∴x BE BG == ∴x CG -=1从而 x CM -=1………………………………………………………………………(6分) ∴21111()(1)(1)2222y BG MN BN x x x =+=+-=-(10<<x )…………(8分) (3)由已知易得 MN //BC ,MG //BP∴四边形BGMP 是平行四边形………………………………………………………(9分) 要使四边形BGMP 是菱形则BG =MG ,∴)1(2x x -=………………………………………………………(10分) 解得22-=x ………………………………………………………………………(11分) ∴22-=BE 时四边形BGMP 是菱形……………………………………………(12分) 24.解:(1)∵ABCD 为平行四边形且AC=BD∴ABCD 为矩形…………………………………………………………………………(1分) ∴∠ACD =90°在RT △CAD 中,tan ∠CAD=43=ADCD 设CD =3k ,AD =4k∴(3k )²+(4k )²=10² 解得k =2∴CD =3k =6 ……………………………………………………………………………(2分) (Ⅰ)当E 点在BC 的延长线上时,过O 作OG ⊥BC 于G …………………………………………………………………(3分)∴21==BD BO CD OG ∴OG =3 同理可得:11==OD BO GC BG ,即BG =GC =4 又∵521===AC CE OC∴EG CE OG CF = ∴4553+=CF 解得35=CF ……………………………………………………………………………(4分)(Ⅱ)当E 点在边BC 上时,易证F 在CD 的延长线上,与题意不符,舍去……(6分) (注:若有考生求出该情况下CF 的长,但没有舍去此解,扣.1.分.) (2)若ADE ∆为等腰三角形,(Ⅰ)8==ED AD (交于BC 的延长线上) 由勾股定理可得:726-8DC -DE 2222===CE ………………………(7分)∵AD ∥BE ∴a PD BP AD BE −→−+=+==令4748728 ∴BP +PD =BD =10=a a a 474++解得57)78(10-=a∴5774032057)78(404-=-==a PD …………………………………………(8分)(Ⅱ)8==ED AD (交于边BC ) 同理可得:a AD BE PD BP −→−-=-==令4748728 ∴a a a BD PD BP 47410+-===+解得57)78(10+=a∴5774032057)78(404+=+==a PD …………………………………………(9分)(Ⅲ)ED AE = 易证:DEC AEB ∆≅∆∴421===BC EC BE ∴同理可得:31=BD BP ,则3110=BP ∴310=BP ,PD =320………………………………………………………………(10分)(Ⅳ)8==AD AE ∴726822=-=BE ∴同理可得:a PDBP AD BE −→−==令47 9)74(101074-==+a a a∴97401604-==a PD …………………………………………………………(11分)∴综上所述,若ADE ∆为等腰三角形,3205774032057740320或或+-=PD 或9740160-…………………………………………………………………………(12分)(注:若考生只详细写出一种情况,其余几种均用了同理,只要答案正确,也给满分....)25.解:(1)证明:作PF ⊥OM 于F ,作PG ⊥ON 于G ………………………………(1分)∵OP 平分∠MON∴PF =PG ………………………………………………………………………………(2分) ∵∠MON = 60°∴∠FPG = 360°– 60°– 90°– 90°= 120°………………………(3分) 又∵∠APB =120° ∴∠APF = ∠BPG∴△PAF ≌△PBG ………………………………………………………………………(4分) ∴PA = PB ………………………………………………………………………………(5分) (2)由(1)得:PA = PB ,∠APB =120°∴∠PAB = ∠PBA = 30°………………………………………………………………(6分) ∵∠MON = 60°,OP 平分∠MON∴∠TON = 30°…………………………………………………………………………(7分) ∴∠POB = ∠PBC ………………………………………………………………………(8分) 又∠BPO = ∠OPB∴△POB ∽△PBC ………………………………………………………………………(9分) ∴34)23()(22===∆∆PB PB PC PB S S PBC POB ∴△POB 与△PBC 的面积之比为4∶3………………………………………………(10分) (3)① 当点A 在射线OM 上时(如图乙1),易求得:∠BPD = ∠BOA = 60°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 75° 作BE ⊥OT 于E∵∠NOT = 30°,OB = 2∴BE =1,OE = 3,∠OBE = 60°∴∠EBP = ∠EPB = 45°∴PE = BE =1∴OP = OE + PE =3+ 1……………………………………………………………(12分) ② 当点A 在射线OM 的反向延长线上时(如图乙2)此时∠AOB = ∠DPB = 120°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 15°作BE ⊥OT 于E∵∠NOT = 30°,OB = 2,∴BE =1,OE = 3,∠OBE = 60°∴∠EBP = ∠EPB = 45°∴PE = BE =1∴OP =3-1…………………………………………………………………………(14分) ∴综上所述,当2=OB 时,1313-+=或OP(注:若考生直接写出结果......,只给一半的分数.......)O MN T图乙1 PBEO M N T 图乙2 P A B E D。
宝山、嘉定2011年学业考试数学模拟卷(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列根式中,与2为同类二次根式的是(▲) (A )21; (B )a 2; (C )2.0; (D )12.2.关于二次函数2)1(2+-=x y 的图像,下列判断正确的是(▲)(A )图像开口向上; (B )图像的对称轴为直线1=x ; (C )图像有最低点; (D )图像的顶点坐标为(1-,2). 3.关于等边三角形,下列说法不.正确的是(▲) (A )等边三角形是轴对称图形; (B )等边三角形是中心对称图形; (C )等边三角形是旋转对称图形; (D )等边三角形都相似.4.把一块周长为20cm ,面积为202cm 的纸片裁成四块形状、大小完全相同的小三角形纸片(如图1),则每块小三角形纸片的周长和面积分别为(▲) (A )10cm ,52cm ; (B )10cm ,102cm ; (C )5cm ,52cm ; (D )5cm ,102cm .5.已知1e 、2e 是两个单位向量,向量12e a =,22e b -=,那么下列结论中正确的是(▲). (A )21e e =; (B )b a -=; (C )b a =; (D )b a -=. 6.图2反映了一辆汽车从甲地开往乙地的过程中,汽车离开甲地的距离s (千米)与所用时间t (分)之间的函数关系.已知汽车在途中停车加油一次,根据图像,下列描述中,不.正确的是(▲) (A )汽车在途中加油用了10分钟; (B )汽车在加油前后,速度没有变化;(C )汽车加油后的速度为每小时90千米; (D )甲乙两地相距60千米.二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7.计算:=⋅-a a 2)( ▲ .8.计算:=---112m mm m ▲ .(图1)S (千米) t (分)6030 553525 0(图2)9.在实数范围内分解因式:222--x x = ▲ . 10.方程x x -=+32的解为: ▲ .11.已知12)(3-=x x f ,且3)(=a f ,则=a ▲ .12.已知函数2-+=k kx y 的图像经过第一、三、四象限,则k 的取值范围是 ▲ . 13.把抛物线x x y 22-=向左平移一个单位,所得抛物线的表达式为: ▲ .14.已知关于x 的方程042=+-m x x ,如果从1、2、3、4、5、6六个数中任取一个数作为方程的常数项m ,那么所得方程有实数根的概率是 ▲ .15.如图3,已知梯形ABCD 中,AB ∥CD ,AB=5,CD=3,AD=BC=4,则=∠DAB cos ▲ . 16.如图4,小芳与路灯相距3米,他发现自己在地面上的影子(DE )长2米,如果小芳的身高为1.6米,那么路灯离地面的高度(AB )是 ▲ 米.17.如图5,已知AB 是⊙O 的直径,⊙O 1、⊙O 2的直径分别是OA 、OB ,⊙O 3与⊙O 、⊙O 1、⊙O 2均相切,则⊙O 3与⊙O 的半径之比为 ▲ .18.已知A 是平面直角坐标系内一点,先把点A 向上平移3个单位得到点B ,再把点A 绕点B 顺时针方向旋转90°得到点C ,若点C 关于y 轴的对称点为(1,2),那么点A 的坐标是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸上]19.(本题满分10分) 计算:1312)23(6)8()13(-+--+-.(图4)CBED A(图5)ABO O 1O 2O 3CD(图3)BA如图6,已知一个正比例函数与一个反比例函数的 图像在第一象限的交点为A (2,4). (1)求正比例函数与反比例函数的解析式; (2)平移直线OA ,平移后的直线与x 轴交于点B , 与反比例函数的图像在第一象限的交点为C (4,n ). 求B 、C 两点的距离.21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)如图7,△ABC 中,AB=AC ,54cos =∠ABC ,点D 在边BC 上,BD =6,CD=AB .(1) 求AB 的长; (2) 求ADC ∠的正切值.A (2,4)yxO(图6)DCBA(图7)如图8,已知B 是线段AE 上一点,ABCD 和BEFG 都是正方形,联结AG 、CE . (1) 求证:AG =CE ; (2) 设CE 与GF 的交点为P ,求证:AG PE CG PG .23.(本题满分12分,每小题各4分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图9所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1) 该班级女生人数是 ▲ ,女生收看“两会”新闻次数的中位数是 ▲ ; (2) 对于某个群体,我们把一周内 收看某热点新闻次数不低于3次的人 数占其所在群体总人数的百分比叫做 该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻 的“关注指数”比女生低5%,试求 该班级男生人数;(3) 为进一步分析该班级男、女生 收看“两会”新闻次数的特点,小明 给出了男生的部分统计量(如表1).根据你所学过的统计知识,适当 计算女生的有关统计量,进而比较该 班级男、女生收看 “两会”新闻次数 的波动大小.统计量 平均数(次) 中位数(次)众数(次)方差…… 该班级男生3 34 2……ABCDEFG P(图8)0 14 23 次数(次)2 3 5 6 7人数(人)O5(图9)1女生 男生4 (表1)如图10,已知抛物线c bx x y ++-=2与x 轴负半轴交于点A ,与y 轴正半轴交于点B ,且OB OA =. (1) 求c b +的值;(2) 若点C 在抛物线上,且四边形OABC 是 平行四边形,试求抛物线的解析式;(3) 在(2)的条件下,作∠OBC 的角平分线, 与抛物线交于点P ,求点P 的坐标.CBAOy x(图10)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知⊙O 的半径长为1,PQ 是⊙O 的直径,点M 是PQ 延长线上一点,以点M 为圆心作圆,与⊙O 交于A 、B 两点,联结PA 并延长,交⊙M 于另外一点C .(1) 若AB 恰好是⊙O 的直径,设OM=x ,AC=y ,试在图12中画出符合要求的大致图形,并求y 关于x 的函数解析式;(2) 联结OA 、MA 、MC ,若OA ⊥MA ,且△OMA 与△PMC 相似,求OM 的长度和⊙M 的半径长;(3) 是否存在⊙M ,使得AB 、AC 恰好是一个正五边形的两条边?若存在,试求OM 的长度和⊙M 的半径长;若不存在,试说明理由.图12Q POM备用图QPOAB图11CQ P O M宝山、嘉定2011年九年级数学模拟测试评分参考标准一、1. A ; 2. D ; 3. B ; 4. A ; 5. C ; 6. B.二、7. 3a ; 8. m ; 9. )31)(31(--+-x x ; 10. 1-=x ;11. 32; 12. 20<<k ; 13. 12-=x y ; 14.32; 15.41; 16. 4; 17. 3:1; 18. )1,2(-. 三、19.解:原式=2362324+--- (5分)=)23(6322--- (2分) =3223322+-- (2分) =232- (1分)20.解(1)设正比例函数的解析式为x k y 1=,反比例函数的解析式为xk y 2= (1分)根据题意得:241⨯=k ,242k = (2分) 解得:21=k ,82=k所以,正比例函数的解析式为x y 2=,反比例函数的解析式为xy 8=. (2分) (2)因为点C (4,n )在反比例函数xy 8=的图像上 所以,248==n ,即点C 的坐标为)2,4( (1分) 因为AO ∥BC ,所以可设直线BC 的表达式为b x y +=2 (1分) 又点C 的坐标为)2,4(在直线BC 上所以,b +⨯=422,解得6-=b ,直线BC 的表达式为62-=x y (1分) 直线BC 与x 轴交于点B ,设点B 的坐标为)0,(m可以得:620-=m ,解得3=m ,所以点B 的坐标为)0,3( (1分) ∴ 5=BC ……………………1分21.解:(1)过点A 作AH ⊥BC ,垂足为H (1分)∵AC AB = ∴BC HC BH 21== (1分)设x CD AC AB === ∵6=BD∴6+=x BC , 26+=x BH (1分)在Rt △AHB 中,ABBH ABC =∠cos ,又54cos =∠ABC∴5426=+x x (2分) 解得:10=x ,所以10=AB (1分)(2)821===BC HC BH2810=-=-=CH CD DH (1分)在Rt △AHB 中,222AB BH AH =+,又10=AB ,∴6=AH (1分) 在Rt △AHD 中,326tan ===∠DHAH ADC∴ADC ∠的正切值是3 (2分)22.证明:(1)∵四边形ABCD 和BEFG 是正方形∴CB AB =,BE BG =,︒=∠=∠90CBE ABG (3分)∴△ABG ≌△CBE (1分) ∴CE AG = (1分) (2)∵PG ∥BE∴CBCG BEPG =,CEPE CB BG = (2分)∵BE BG =,CE AG =∴CBBG CGPG =,AGPE CB BG = (2分)∴AGPE CGPG = (1分)23.(1)20 (2分), 3 (2分);(2)由题意:该班女生对“两会”新闻的“关注指数”为%65%1002013=⨯ (1分) 所以,男生对“两会”新闻的“关注指数”为%60 (1分) 设该班的男生有x 人则 %60)631(=++-x x (1分), 解得:25=x (1分)答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为3202554635221=⨯+⨯+⨯+⨯+⨯, (2分)女生收看“两会”新闻次数的方差为:101320)53(2)43(5)33(6)23(5)13(222222=-+-+-+-+-因为2>1013,所以男生比女生的波动幅度大. (2分)24.解:(1)由题意得:点B 的坐标为),0(c ,其中0>c ,c OB = (1分) ∵OB OA =,点A 在x 轴的负半轴上,∴点A 的坐标为)0,(c - (1分) ∵点A 在抛物线c bx x y ++-=2上,∴c bc c +--=20 (1分) ∴ 1=+c b (因为0>c ) (1分) (2)∵四边形OABC 是平行四边形∴c AO BC ==,又BC ∥x 轴,点B 的坐标为),0(c∴点C 的坐标为),(c c (1分) 又点C 在抛物线上,∴c bc c c ++-=2∴0=-c b 或0=c (舍去) (1分)又 由(1)知:1=+c b ∴21=b ,21=c . 抛物线的解析式为21212++-=x x y . (2分) (3)过点P 作⊥PM y 轴,⊥PN BC ,垂足分别为M 、N ∵ BP 平分CBO ∠ ∴ PN PM = (1分)设点P 的坐标为)2121(2++-x x x ,∴x x x =++--)2121(212 (1分) 解得:23=x 或0=x (舍去) (1分) 所以,点P 的坐标为)21,23(- (1分)25.(1)图画正确 (1分)过点M 作AC MN ⊥,垂足为N∴y NC AN 21== 由题意得:AB PM ⊥, 又AB 是圆O 的直径∴1==OP OA ∴︒=∠45APO , 2=PA∴y PN 212+=(1分) 在Rt △PNM 中,PMPNNPM =∠cos 又x PM +=1,︒=∠45NPM∴ 22121245cos =++=︒x y∴ y 关于x 的函数解析式为22-=x y (1>x ) (2分)(2)设圆M 的半径为r因为 OA ⊥MA ,∴∠OAM=90°,12+=r OM又△OMA 与△PMC 相似,所以△PMC 是直角三角形。
2011学年第二学期期中考试九年级数学参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1、C ; 2、A ; 3、B ; 4、C ; 5、B ; 6、D. 二、填空题:(本大题共12题,每题4分,满分48分) 7、222b ab a --; 8、)1(1+x x ; 9、6±=k ; 10、3=a ;11、22+-=x y 【答案不唯一,如322+-=x y 等】; 12、8; 13、2; 14、91; 15、θcot ⋅=b AB 【答案不唯一,θtan b AB =等等价形式均可】; 16、)(31b a+; 17、2或6; 18、(2,23,).三、解答题:(本大题共7题,满分78分)19.解:13123622127)3(-++⨯+-+--)( 231321231+++-+-= ………………………………5分23321231-++-+-=………………………………2分333-= ………………………………3分20.解:方程①可变形为 0)3)(3(=-+y x y x .得03=+y x 或03=-y x . ………………………1分方程②可变形为 4)(2=-y x . 两边开平方,得2=-y x 或 2-=-y x . ……………………1分因此,原方程组可化为四个二元一次方程组:⎩⎨⎧=-=+;2,03y x y x ⎩⎨⎧-=-=+;2,03y x y x ⎩⎨⎧=-=-;2,03y x y x ⎩⎨⎧-=-=-.2,03y x y x …………………4分 分别解这四个方程组,得原方程组的解是3,21;2x y ⎧=⎪⎪⎨⎪=-⎪⎩⎪⎪⎩⎪⎪⎨⎧=-=;21,23y x ⎩⎨⎧==;1,3y x ⎩⎨⎧-=-=.1,3y x ………………4分21.解:(1)分别过点C 、D 作AB CF ⊥、AB DG ⊥,交AB 于点F 、G (如图3).∵AB ∥CD∴CF DG =. ………1分 ∵AB ∥CD ,DE ∥BC , ∴CD BE =. ∵AB =13,CD =4,∴9413=-=-=BE AB AE . ………1分 ∵CB CE =,BE CF ⊥,∴242121=⨯==BE BF . ………1分 在Rt △BCF 中,由3tan =∠B ,2=BF 得=∠B tan =BFCF 3,即32=CF,6=CF . ………1分∴6==CF DG .∴27692121=⨯⨯=⋅=∆DG AE S ADE . ………1分(2)∵AB ∥CD ,∴DEA CDE ∠=∠. ………1分又∵∠DEC =∠A ,∴△CDE ∽△DEA . ………1分∴ EA DE DE CD =. ………1分 ∵9=AE ,CD =4,∴94DEDE =. ∴362=DE ,6=DE (负值已舍). ………1分 ∵AB ∥CD ,DE ∥BC ,∴6==DE BC . ………1分22.(1)证明:联结1O 2O .∵⊙1O 、⊙2O 外切于点T ,∴点T 在1O 2O 上. …1分过1O 、2O 分别作AT C O ⊥1、BT D O ⊥2,垂足为C 、D (如图4), ∴ C O 1∥D O 2. …1分∴ TO T O DT CT21=. …1分∵⊙1O 、⊙2O 是等圆,∴T O T O 21=. …1分 ∴121==TO T O DT CT ,∴DT CT =. …1分 在⊙1O 中,∵AB C O ⊥1,∴AT CT AC 21==.同理 BT DT BD 21==. … 1分 ABCD E (图3)GF(图4)T BA1O 2O CD∴BT AT 2121=,即BT AT =. … 1分(2)解:线段AT 、BT 与R 、r 之间始终存在的数量关系是=BTATr R . … 3分 23.解:(1) 80 ; … 3分 (2) 成绩位于79.5~89.5的频率为25.015.03.02.01.01=+++-)(. … 1分所以全校所有参赛学生中成绩等第为优良的学生人数为24015.025.0600=+⨯)((人) … 2分(3) 本次随机抽样分析成绩不合格的人数为81.080=⨯(人),成绩优良的人数为324.080=⨯(人), … 1分依据题意,可得方程组⎪⎩⎪⎨⎧=+-=++⨯.15,5.76803240857b a ba ……1分 解得 ⎩⎨⎧==.87,72b a ……1分(4) D . ……3分 24.(本题满分12分,每小题满分各4分) 解:(1)点C 的坐标为(2,1). ……1分 设直线BC 的表达式为y mx n =+.易得3,2 1.n m n =⎧⎨+=⎩ 解得3,1.m n =⎧⎨=-⎩……2分 所以直线BC 的表达式为3+-=x y . 当0=y 时,30+-=x ,3=x .所以点D 的坐标为(3,0). ……1分 (2)设经过A 、B 、D 三点的抛物线的表达式为c bx ax y ++=2(0≠a ) ……1分易得 ⎪⎩⎪⎨⎧=++==++.039,3,324c b a c c b a ……1分解得 ⎪⎩⎪⎨⎧==-=.3,2,1c b a ……1分因此,所求的抛物线的表达式为322++-=x x y . 其顶点E 坐标为 (1,4). ……1分(图7)11 xy BAOC DEF(3)点F 在322++-=x x y 的对称轴(即直线1=x )上,所以设点F 的坐标为(1,m ). 由题意可得 AC AB =,︒=∠90BAC ,∴ ︒=∠45ACB , ︒=∠-︒=∠135180ACB ACD .所以若以A 、E 、F 为顶点的三角形与△ACD 相似,AEF ∆必有一个角的度数为︒135,由此可得点F 必定在点E 的上方,︒=∠=∠135ACD AEF , 4-=m EF ……1分所以当CD EA CA EF =或EACD CA EF =时,以A 、E 、F 为顶点的三角形与△ACD 相似. ……1分 由点D (3,0)、C (2,1)、A (2,3)、E (1,4)易得213=-=AC ,2=CD ,2=AE .∴2224=-m 或2224=-m . 解得 6=m 或5=m . 故符合题意的点F 有两个,其坐标为(1,5)或(1,6). ……2分 25.(本题满分14分,第(1) 、(2)小题满分各5分,第(3)小题满分4分) 解:(1)依题意,点P 既在ACB ∠的平分线上,又在线段AB 的垂直平分线上.如图8—1,作ACB ∠的平分线CP ,作线段AB 的垂直平分线PM ,CP 与PM 的 交点即为所求的P 点。
2011年中考模拟试卷 数学卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。
2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1. 如果)0(1≠-=b ba,那么a ,b 两个实数一定是( ) 【原创】 A. 一正一负 B. 相等的数 C.互为相反数 D.互为倒数2. 下列调查适合普查的是( ) 【原创】 A .调查2011年3月份市场上西湖龙井茶的质量B .了解萧山电视台188热线的收视率情况C .网上调查萧山人民的生活幸福指数D .了解全班同学身体健康状况3. 函数,一次函数和正比例函数之间的包含关系是( ) 【原创】4. 已知下列命题:①同位角相等;②若a>b>0,则11a b<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x 2-2x 与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等。
从中任选一个命题是真命题的概率为( ) 【改编】 A.15 B. 25 C.35 D.455. 已知点A (x ,y )在函数2x y -=的图象上,那么点A 应在平面直角坐标系中的( )A.x 轴上B. y 轴上C. .x 轴正半轴上D.原点 【原创】6. 我校数学教研组有25名教师,将他们的年龄分成3组,在24~36岁组内有8名教师,那么这个小组的频率是( ) 【原创】 A. 0.12 B. 0.32 C. 0.38 D. 3.1257. ( )8. 如图是某几何体的三视图及相关数据,则判断正确的是( ) 【改编】 A . a >c B .b >c C .4a 2+b 2=c 2D .a 2+b 2=c 29. 如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连结PG ,PC 。
例 2011年上海市宝山区中考模拟第25题如图1,已知⊙O的半径长为1,PQ是⊙O的直径,点M是PQ延长线上一点,以点M为圆心作圆,与⊙O交于A、B两点,联结P A并延长,交⊙M于另外一点C.(1) 若AB恰好是⊙O的直径,设OM=x,AC=y,试在图12中画出符合要求的大致图形,并求y关于x的函数解析式;(2) 联结OA、MA、MC,若OA⊥MA,且△OMA与△PMC相似,求OM的长度和⊙M 的半径长;(3) 是否存在⊙M,使得AB、AC恰好是一个正五边形的两条边?若存在,试求OM的长度和⊙M的半径长;若不存在,试说明理由.图1 备用图备用图动感体验请打开几何画板文件名“11宝山25”,双击按钮“A、O、B共线”,再拖动点M运动,从图像中可以看到y是x的一次函数;双击按钮“第(2)题”,拖动点M运动,可以体验到△PMC保持直角三角形,双击按钮“∠P=∠AMO”,可以准确显示两个三角形相似;双击按钮“第(3)题”,先拖动点A,使得点C落在射线P A上,再双击按钮“⊙M过点C”,可以体验到,⊙A与⊙M关于AB对称.请打开超级画板文件名“11宝山25”,思路点拨1.这三道题目强烈地考验大家的画图能力,图形画好了,思路就显示出来了.2.第(1)题先画直径AB与PQ互相垂直平分,等腰直角三角形一目了然.3.第(2)题根据∠OAM=90°画出点M,再画⊙M,△PMC就是直角三角形,如果△OMA与△PMC相似,Rt△OAM的两个锐角的关系就很显然.4.第(3)题没有图不直观,画图更难办.倒行逆施:先画好正五边形ACDEB、外接圆M以及对称轴MD,延长CA与对称轴MD的交点不就是点P?看看图形的对称性吧,思路豁然开朗.满分解答(1)图画:画直径AB垂直PQ;以M为圆心,过点A画圆交射线P A于点C.如图2,过点M作MH⊥AC,垂足为H,那么AH=CH=12y.因为AB 与PQ 互相垂直平分,所以△P AO 、△PMH 都是等腰直角三角形. 由于PO =1,OM =x ,所以P A =2,PH =122y +,PM =1+x . 由PM =2PH ,得1+x =2(122y +). 整理,得y 关于x 的函数解析式为22y x =-.(2)如图3,因为OA ⊥MA ,所以∠1与∠2互余.又因为∠1=∠C ,∠2=∠P ,所以∠C 与∠P 互余,△CMP 为直角三角形. 因为∠3=2∠P ,所以△OMA 与△PMC 相似,只存在∠4=∠P 的情况.在Rt △OAM 中,∠3=2∠4,所以∠4=30°.所以OM =2OA =2,⊙M 的半径AM =3.图2 图3 图4(3)如图4,假设存在⊙M ,使得AB 、AC 恰好是正五边形ACDEB 的两条边, 那么正五边形ACDEB 的对称轴是直线PQ ,∠ADB =36°.由于正五边形ACDEB 的外角等于72°,所以△P AB 的顶角∠APB =36°. 因此点P 与点E 关于直线AB 是对称的.所以⊙M 与是⊙A 等圆,半径为1.如图5,设⊙M 与OM 交于点G ,那么△MAG 与△AQG 都是顶角为36°的等腰三角形.因此AG =AQ =QM .设AQ =m ,那么m 2=1-m .解得51m -=. 所以OM =OQ +QM =51511-++=. 考点伸展第(3)题求OM 的长,关键是求QM 的长.36°的等腰三角形,不由得让人联想起黄金三角形、黄金分割、黄金分割数.如图5,由△MAG ∽△AQG ,得MA AG AG GQ=.通过解方程m 2=1-m ,得51m -=.因此点Q 就是MG 的一个黄金分割点.图5。
例 2011年上海市宝山区中考模拟第24题如图1,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.(1)求b+c的值;(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.图1动感体验请打开几何画板文件名“11宝山24”,拖动点B在y轴正半轴上运动,观察b随c变化的跟踪图像,可以体验到,b+c等于定值1;在运动过程中,△AOB保持等腰直角三角形,四边形OABC保持平行四边形.双击按钮“点C落在抛物线上”,可以看到,此时点B与点C关于抛物线的对称轴对称,△BPM是等腰直角三角形.请打开超级画板文件名“11宝山24”,思路点拨1.数形结合,由抛物线的解析式写出点B的坐标,根据OA=OB写出点A的坐标,将点A的坐标代入抛物线的解析式,就可以得到b+c等于定值1.2.由于△AOB保持等腰直角三角形,当四边形OABC是平行四边形时,点C的坐标可以表示为(c,c).3.第(3)题中,构造等腰直角三角形BPM,根据BM=PM列方程.满分解答(1)因为抛物线y=-x2+bx+c与y轴正半轴交于点B,所以点B的坐标为(0,c).因为OA=OB,所以点A的坐标为(-c,0).将点A(-c,0)代入y=-x2+bx+c,得-c2+bc+c=0.因为c≠0,整理,得b+c=1.(2)如果四边形OABC是平行四边形,那么BC//AO,BC=AO.因此点C的坐标可以表示为(c,c).当点C(c,c)落在抛物线y=-x2+bx+c上时,得-c2+bc+c=c.整理,得b=c.结合第(1)题的结论b+c=1,得12b c==.此时抛物线的解析式为21122y x x =-++. (3)过点P 作PM ⊥y 轴,垂足为M .因为BP 平分∠CBO ,所以△BPM 是等腰直角三角形. 设点P 的坐标为)2121(2++-x x x ,, 由BM =PM ,列方程x x x =++--)2121(212. 解得23=x 或0=x (舍去). 所以,点P 的坐标为3(,1)2-.图2 图3 考点伸展在(2)的条件下,如果点Q 是抛物线上的动点,以A 、B 、C 、Q 为顶点的四边形是梯形,求点Q 的坐标.图4 图5 图6 由21122y x x =-++1(21)(1)2x x =-+-,知1(,0)2A -,1(0,)2B ,11(,)22C . 如图4,当AQ //BC 时,根据对称性,易知点Q 的坐标为(1,0);如图5,当CQ //AB 时,设Q (x ,x ),解方程21122x x x =-++,得Q (-1,-1); 如图6,是否存在BQ //AC 的情况呢?方程组211,221122y x x y x ⎧=-++⎪⎪⎨⎪=+⎪⎩的解为12121,1,2x x y y ==⎧⎪⎨==⎪⎩几何意义就是点B 与点Q 重合.。
2011年上海中考数学二模试题及答案一、 选择题: 1.3的倒数是( )A .-3B .3C .13 D .13- 2.计算232(3)x x ⋅-的结果是( )A .56x - B .56x C .62x - D .62x3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D . 无法确定 4.使分式24xx -有意义的x 的取值范围是( ) A . 2x = B .2x ≠ C .2x =- D .2x ≠-5.不等式组2030x x ->⎧⎨-<⎩的解集是( )A .2x >B .3x <C .23x <<D .无解 6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( )A .80°B . 50°C . 40°D . 20° 7.如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是.( ) A .3 B .4 C . 5 D . 68.观察市统计局公布的“十五”时期重庆市农村居民人均 收入每年比上一年增长率的统计图,下列说法正确的是( ) A .2003年农村居民人均收入低于2002年B .农村居民人均收入比上年增长率低于9%的有2年C .农村居民人均收入最多时2004年OCFG DE俯视图左视图主视图时间:(年)20052004200320022001D .农村居民人均收入每年比上一年的增 长率有大有小,但农村居民人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行春节期间,这三种不同的包装的土特产都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大是( )A .甲B . 乙C .丙D . 不能确定10.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)。
第一章实数一、选择题【第1题】(2011年1月宝山区第一学期期末九年级数学质量检测试卷第1题)下列算式中,正确的是().(A)24±=;(B)532=+;(C)2818=-;(D)2332=-.【答案】C【第2题】(2011年4月宝山嘉定两区学业考试数学模拟卷第1题)下列根式中,与2为同类二次根式的是()(A)21;(B)a2;(C)2.0;(D)12.【答案】【第3题】(2A011年4月长宁区初三数学教学质量检测试卷第1题)已知42=6×7, 6和7都是42的( )A.素因数B.合数C.因数D.倍数【答案】C【第4题】(2011年4月长宁区初三数学教学质量检测试卷第2题)若1<a,化简()21-a=( )A.()1-±a B.a-1C.1-a D.()21-a【答案】B【第5题】(2011年4月长宁区初三数学教学质量检测试卷第4题)已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则实数a的取值范围在数轴上可表示为(阴影部分) ( )A.B.C.D.【答案】C【第6题】(2011年5月上海市初中教学质量抽样分析试卷第1题)(-a)2·a3等于( )(A)-a5;(B)a5;(C)-a6;(D)a6.【答案】B【第7题】(2011年4月奉贤区调研测试数学试卷第1题)计算32a a ⋅的结果是( )A .5a ;B .6a ;C .8a ;D .9a .【答案】A【第8题】 (2011年4月奉贤区调研测试数学试卷第2题)下列运算不正确的是( )A .2(2=;B =C =D = 【答案】D【第9题】 (2011年4月黄浦区初三学业考试模拟考数学卷第1题)数轴上点A 到原点的距离为2.5,则点A 所表示的数是( ).(A )2.5 (B )5.2- (C )2.5或5.2- (D )0【答案】C【第10题】 (2011年4月金山区初三中考模拟数学卷第1题)下列实数中,属于有理数的是 ( )A 、8B 、722C 、2πD 、32【答案】B【第11题】 (2011年4月静安区学习质量调研数学卷第1题) 下列各数中与213-相等的是( )(A )3 (B )3- (C )33(D )33-【答案】C【第12题】 (2011年4月卢湾区初中毕业统一学业模拟考试数学卷第1题)2的倒数是( )A .12-;B .12; C .2-; D .2.【答案】B【第13题】 (2011年4月闵行区九年级质量调研数学卷第1题)数轴上任意一点所表示的数一定是( )(A )整数; (B )有理数; (C )无理数; (D )实数.【答案】D【第14题】 (2011年4月浦东新区中考数学预测卷第2题)下列根式中,属于最简二次根式的是( )(A )x 1; (B )y x 2; (C )x 8; (D )22y x +.【答案】D【第15题】 (2011年5月上海市统一毕业学业考试试运转卷第1题)下列各实数中,属有理数的是( )A .πB .2C .9D .cos 45°【答案】C【第16题】 (2011年4月徐汇区学习能力诊断卷数学卷第2题)汶川地震时温总理曾说:“多么小的问题,乘13亿,都会变得很大;多么大的经济总量,除以13亿,都会变得很小.”预计到2011年年末,我国人口总量约达1 400 000 000人,若每人每天浪费0.5升水,全国每天就浪费水( )A .7×108升;B .7×109升;C .6.5×108升;D . 6.5×109升. 【答案】A【第17题】 (2011年4月杨浦区基础考、崇明二模数学卷第1题)两个连续的正整数的积一定是( )(A)素数; (B)合数; (C)偶数; (D)奇数.【答案】C【第18题】 (2011年5月杨浦区二模数学卷第1题)下列各数:2π3·,cos 60°,227,0.303003…,1 ( ) (A)2个; (B)3个; (C)4个; (D)5个.【答案】C【第19题】 (2011年4月闸北区九年级数学学科期中练习卷第1题)(A ) 53.9710⨯亿元; (B ) 50.3910⨯亿元 ;(C ) 53.9810⨯亿元 ; (D ) 43.9810⨯亿元.【答案】C 【第20题】 (2011年4月松江区初中毕业生学业模拟考试数学卷第2题)下列各式中,最简二次根式是( )(A )a 8; (B )2a ; (C ))2a ; (D )42-a . 【答案】D 【第21题】 (2011年4月虹口区初三年级数学学科中考练习卷第1题)一个数的相反数是2-,则这个数是( )A .12-B .12C .2D .2- 【答案】C二、填空题【第22题】 (2011年1月宝山区第一学期期末九年级数学质量检测试卷第7题)计算:=32)2(a .【答案】68a【第23题】 (2011年4月宝山嘉定两区学业考试数学模拟卷第7题)计算:=⋅-a a 2)( .【答案】3a【第24题】 (2011年4月长宁区初三数学教学质量检测试卷第8题)计算:()()21+-m m = .【答案】22m m +-【第25题】 (2011年4月长宁区初三数学教学质量检测试卷第10题)【答案】61.032710⨯【第26题】 (2011年5月上海市初中教学质量抽样分析试卷第7题) 如果二次根式12-x 有意义,那么x 的取值范围是 . 【答案】12x ≥ 【第27题】 (2011年5月上海市初中教学质量抽样分析试卷第8题)已知地球自转周期约为86164.09秒,那么这个数值用科学记数法表示为 .【答案】48.61640910⨯【第28题】 (2011年4月奉贤区调研测试数学试卷第7题)截止到2010年10月31日,上海世博园共接待游客73 080 000人,用科学记数法表示是 人.【答案】77.30810⨯【第29题】 (2011年4月虹口区初三年级数学学科中考练习卷第7题)= .【第30题】 (2011年4月黄浦区初三学业考试模拟考数学卷第7题)8与12的最大公因数是_______________.【答案】4【第31题】 (2011年4月金山区初三中考模拟数学卷第7题)9的平方根是 .【答案】3±【第32题】 (2011年4月静安区学习质量调研数学卷第7题) 计算:|21|20-+= .【第33题】 (2011年4月卢湾区初中毕业统一学业模拟考试数学卷第7题)x 的取值范围是 .【答案】3x ≥【第34题】 (2011年4月闵行区九年级质量调研数学卷第7题) 计算:32(2)a = .【答案】64a【第35题】 (2011年5月闵行区九年级综合练习数学卷第7题) 9的平方根是 .【答案】64a【第36题】 (2011年4月浦东新区中考数学预测卷第7题)2)3(-的平方根等于 .【答案】64a【第37题】 (2011年4月普陀区初三质量调研数学卷第7题)计算: 312-⎛⎫ ⎪⎝⎭= .【答案】8 【第38题】 (2011年4月普陀区初三质量调研数学卷第10题)【答案】64.2510⨯【第39题】 (2011年4月青浦区初中学业模拟考试数学卷第7题) 求值:=-23 . 【答案】19【第40题】 (2011年5月上海市统一毕业学业考试试运转卷第7题)求值:38-= .【答案】2-【第41题】 (2011年4月杨浦区基础考、崇明二模数学卷第9题)若最简二次根式-是同类二次根式,则x = .【答案】1【第42题】 (2011年4月闸北区九年级数学学科期中练习卷第7题) 计算:124= .【答案】2三、解答题【第43题】 (2011年4月宝山嘉定两区学业考试数学模拟卷第19题) 计算:1312)23(6)8()13(-+--+-.【答案】2-【第44题】 (2011年4月长宁区初三数学教学质量检测试卷第19题) 计算:()12011211245tan 36-⎪⎭⎫ ⎝⎛+-︒-+ 【答案】1【第45题】 (2011年5月上海市初中教学质量抽样分析试卷第19题) 计算:201131)1(1212831-+-⨯+-⎪⎭⎫ ⎝⎛-.【答案】2+【第46题】 (2011年4月黄浦区初三学业考试模拟考数学卷第19题)计算:(()01142011tan 6012-⎛⎫⨯--+︒- ⎪⎝⎭.【答案】322+ 【第47题】 (2011年4月金山区初三中考模拟数学卷第19题) 计算: 60sin )13(2271+-+-°)14.3(--π°【第48题】 (2011年5月闵行区九年级综合练习数学卷第19题)13627-⨯.【答案】4【第49题】 (2011年4月徐汇区学习能力诊断卷数学卷第19题) 127219⎛⎫--+ ⎪⎝⎭tan 60︒【答案】233【第50题】 (2011年5月杨浦区二模数学卷第19题)(1(2)若a b ==1)中代数式的值。
新世纪教育网精选资料版权全部@新世纪教育网例2011年上海市卢湾区中考模拟第24 题已知:抛物线y= ax2+ bx+c 经过点 O(0,0) A( 7, 4),且对称轴l 与 x 轴交于点B (5, 0).( 1)求抛物线的表达式;( 2)如图 1,点 E、F 分别是 y 轴、对称轴 l 上的点,且四边形5 EOBF 是矩形,点 C (5, )2是 BF 上一点,将△ BOC 沿着直线 OC 翻折,点 B 与线段 EF 上的点 D 重合,求 D 点的坐标;( 3)在( 2)的条件下,点 G 是对称轴 l 上的点,直线 DG 交 CO 于点 H ,S△DOH∶S△DHC= 1∶4,求点 G 的坐标.图 1动感体验请翻开几何画板文件名“11 卢湾 24”,拖动点 D 绕着 OC 翻折△ OBC,能够体验到,在翻折的过程中,对应边相等,对应角相等;当点 D 落在 EF 上时,△ OED 与△ DFC 相像,相像比等于两条斜边的比,等于2∶ 1.请翻开超级画板文件名“11 卢湾 24”,思路点拨1.第( 1)题对第( 2)、( 3)题没有影响,第(2)题的结论用于第(3)题.2.图形在翻折的过程中,对应边相等,对应角相等.3.△ DOH 与△ DHC 是同高三角形,面积比等于底边的比.满分解答(1)由于抛物线经过点 O( 0,0)而且对称轴为直线 x= 5,所以抛物线与 x 轴的另一个交点为( 10,0).设抛物线的分析式为y= ax (x-10),代入点 A( 7,4),解得a 4 .21所以抛物线的分析式为y 44240 x(x 10)21x x .2121( 2)如图 2,由于△ DOC ≌△ BOC,所以 OD = OB=5, CD = CB=5,∠ ODC=∠ OBC= 90°.2由于∠ 1+∠ 3=90°,∠ 2+∠ 3=90°,所以∠ 1=∠ 2.新世纪教育网精选资料版权全部@新世纪教育网所以△ OED ∽△ DFC .所以OEED OD 2.DF FC DC设 FC= m, DF =n,那么 ED=2m,OE= 2n.依据矩形的对边相等,列方程组2nm5,解得m3,222m n 5.n 2.所以 ED =2m= 3, OE= 2n= 4.点 D 的坐标为( 3, 4).图2图3(3)如图 3,由于△ DOH 与△ DHC 是同高三角形, S△DOH∶ S△DHC= 1∶ 4,所以 OH ∶ HC= 1∶ 4.过点 H 作 HP⊥ OB,垂足为 P,那么OPPH OH 1 .OB BC OC5所以 OP =1, PH=1.点 H 的坐标为(1,1).22经过点 D ( 3, 4)和点 H (1,1)的直线的分析式为y7 x5 .244当 x= 5 时,y7x515.所以点 G 的坐标为( 5,15).4422考点伸展第( 2)题求点 D 的坐标,也能够在Rt△ODE 中依据勾股定理列方程.解方程(2 m)2(m 5 )252,得 m 2 .2。
2011年学业考试数学模拟卷
(时间:100分钟,满分:150分)
考生注意:
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]
1.下列根式中,与2为同类二次根式的是(▲) (A )
2
1;
(B )a 2; (C )2.0; (D )12.
2.关于二次函数2)1(2+-=x y 的图像,下列判断正确的是(▲)
(A )图像开口向上; (B )图像的对称轴为直线1=x ; (C )图像有最低点; (D )图像的顶点坐标为(1-,2). 3.关于等边三角形,下列说法不.
正确的是(▲) (A )等边三角形是轴对称图形; (B )等边三角形是中心对称图形; (C )等边三角形是旋转对称图形; (D )等边三角形都相似.
4.把一块周长为20cm ,面积为202
cm 的纸片裁成四块形状、大小完全相同的小三角形纸片(如图1),则每块小三角形纸片的周长和面积分别为(▲) (A )10cm ,52
cm ; (B )10cm ,102
cm ; (C )5cm ,52
cm ; (D )5cm ,102
cm .
5.已知1e 、2e 是两个单位向量,向量12e =,22e -=,那么下列结论中正确的是(▲)
(
A )21e e =; (B
)
-=; (C =; (D =. 6.图2反映了一辆汽车从甲地开往乙地的过程中,汽车离开甲地的距离s (千米)与所用时间t (分)之间的函数关系.已知汽车在途中停车加油一次,根据图像,下列描述中,不.
正确的是(▲) (A )汽车在途中加油用了10分钟; (B )汽车在加油前后,速度没有变化;
(C )汽车加油后的速度为每小时90千米; (D )甲乙两地相距60千米.
二、填空题:(本大题共12题,每题4分,满分48分)
[在答题纸相应题号后的空格内直接填写答案] 7.计算:=⋅-a a 2)( ▲ .
8.计算:=---1
12m m m m ▲ .
9.在实数范围内分解因式:222--x x = ▲ . 10.方程x x -=+32的解为: ▲ .
11.已知12)(3-=x x f ,且3)(=a f ,则=a ▲ .
12.已知函数2-+=k kx y 的图像经过第一、三、四象限,则k 的取值范围是 ▲ . 13.把抛物线x x y 22-=向左平移一个单位,所得抛物线的表达式为: ▲ .
14.已知关于x 的方程042=+-m x x ,如果从1、2、3、4、5、6六个数中任取一个数作为
方程的常数项m ,那么所得方程有实数根的概率是 ▲ .
15.如图3,已知梯形ABCD 中,AB ∥CD ,AB=5,CD=3,AD=BC=4,则=∠DAB cos ▲ . 16.如图4,小芳与路灯相距3米,她发现自己在地面上的影子(DE )长2米,如果小芳
的身高为1.6
17.如图5,已知AB 是⊙O 的直径,⊙O 1、⊙O 2
的直径分别是OA 、OB ,⊙O 3与⊙O 、
⊙O 1、⊙O 2均相切,则⊙O 3与⊙O 的半径之比为 ▲ .
18.已知A 是平面直角坐标系内一点,先把点A 向上平移3个单位得到点B ,再把点A 绕
点B 顺时针方向旋转90°得到点C ,若点C 关于y 轴的对称点为(1,2),那么点A 的坐标是 ▲ .
三、解答题:(本大题共7题,满分78分)
[将下列各题的解答过程,做在答题纸上]
19.(本题满分10分) 计算:13
1
2
)23(6)8()13(-+--+-.
20.(本题满分10分,每小题满分5分)
如图6,已知一个正比例函数与一个反比例函数的 图像在第一象限的交点为A (2,4). (1)求正比例函数与反比例函数的解析式; (2)平移直线OA ,平移后的直线与x 轴交于点B , 与反比例函数的图像在第一象限的交点为C (4,n ). 求B 、C 两点的距离.
21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)
如图7,△ABC 中,AB=AC ,
4cos ∠ABC ,点D 在边BC 上,BD =6,CD=AB .
(1) 求AB 的长; (2) 求ADC ∠的正切值.
22.(本题满分10分,每小题各5分)
如图8,已知B 是线段AE 上一点,ABCD 和BEFG 都是正方形,联结AG 、CE . (1) 求证:AG =CE ; (2) 设CE 与GF 的交点为P ,
求证:AG PE CG PG =.
23.(本题满分12分,每小题各4分)
为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图9所示(其中男生收看
3次的人数没有标出).
根据上述信息,解答下列各题:
(1) 该班级女生人数是 ▲ ,女生收看“两会”新闻次数的中位数是 ▲ ; (2) 对于某个群体,我们把一周内 收看某热点新闻次数不低于3次的人 数占其所在群体总人数的百分比叫做 该群体对某热点新闻的“关注指数”.
如果该班级男生对“两会”新闻 的“关注指数”比女生低5%,试求 该班级男生人数;
(3) 为进一步分析该班级男、女生 收看“两会”新闻次数的特点,小明 给出了男生的部分统计量(如表1).
根据你所学过的统计知识,适当 计算女生的有关统计量,进而比较该 班级男、女生收看 “两会”新闻次数 的波动大小.
F
(图8)
(图9)
(表1)
24.(本题满分12分,每小题各4分)
如图10,已知抛物线c bx x y ++-=2与x 轴负半轴交于点A ,与y 轴正半轴交于点B ,且OB OA =.
(1) 求c b +的值;
(2) 若点C 在抛物线上,且四边形OABC 是 平行四边形,试求抛物线的解析式;
(3) 在(2)的条件下,作∠OBC 的角平分线,
与抛物线交于点P ,求点P 的坐标.
25.(本题满分14分,第
(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)
如图11,已知⊙O 的半径长为1,PQ 是⊙O 的直径,点M 是PQ
延长线上一点,以点M 为圆心作圆,与⊙O 交于A 、B 两点,联结P A 并延长,交⊙M 于另外一点C .
(1) 若AB 恰好是⊙O 的直径,设OM=x ,AC=y ,试在图12中画出符合要求的大致图形,并求y 关于x 的函数解析式;
(2) 联结OA 、MA 、MC ,若OA ⊥MA ,且△OMA 与△PMC 相似,求OM 的长度和⊙M 的半径长;
(3) 是否存在⊙M ,使得AB 、AC 恰好是一个正五边形的两条边?若存在,试求OM 的长度和⊙M 的半径长;若不存在,试说明理由.
图12
备用图。