光学基础-色度
- 格式:doc
- 大小:450.50 KB
- 文档页数:3
1.5 色度色度学中所应用的方法和工具,都是以目视颜色匹配定律和国际上一致采用的标准为基础的。
国际照明委员会(CIE ),通过其色度学委员会,推荐了色度学方法和基本的标准。
1.5.2 三原色三原色:(红R 、绿G 、兰B )或(品红、绿、兰)三原色不能由其他色混合得到,三原色的波长如下:红:700nm ,绿:546.1nm ,兰:435.8nm由RGB 构成白光,得亮度比为L R =L G :L B =1:4.5907:0.0601 Lm/(s r ·m 2)色度坐标和色品坐标三原色坐标:R ,G ,B ,是三维色度坐标。
色品坐标(归一化坐标):r=R R+G+B , g= G R+G+B ,b= B R+G+B, 并有 r+g+b=1光谱三刺激值(色匹配函数) )(λr ,)(λg ,)(λb 代表匹配一种颜色,需要R 、G 、B 的比例。
即取 )(λc = B b G g R r )()()(λλλ++,就可以匹配出所要求的)(λc 颜色.并且)(λr ,)(λg ,)(λb 是有表可查的,其规律可参见图1.5-1。
图1.5-1 色匹配函数(6)色度图及色品图三原色坐标见图1.5-2a,色品坐标见图1.5-2b,实际色谱的色品则示于图1.5-2c 中。
由图1.5-2c 可见,三原色系统的色品图中有很大部分出现负值,使用很不方便,为此,国际照明委员会建立了CIE 标准色度系统,解决了这一问题。
图1.5-2 色度及色品图1.5.4 CIE 标准色度系统设立标准光源和标准观察者,建立假想色度坐标 ),,(Z Y X ,归一化坐标),,(z y x 和色匹配函数),,(z y x ,以此来建立CIE 标准色度系统。
1) CIE1931标准色度系统这一色度系统是在观测视场为2°的情况下制订出来的。
(1)标准色度坐标的变换CIE1931标准色度系统的变换关系为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡B G R B G R Z Y X 5943.50565.000601.05907.40002.11302.17517.17689.299.001.000106.08124.01770.02.03100.04900.06508.5 及⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡Z Y X Z Y X B G R 1786.00025.00009.00157.02524.00912.00828.01587.04185.00092.10144.00052.00888.04264.15152.04681.08966.03646.26508.512) CIE1964标准色度系统 因为CIE1931标准色度系统的观测视场为2°,不能概括所有情况,所以又制订出CIE1964标准色度系统,它的观测视场是10°,其定义式、数据及曲线略有变化。
光学基础知识:白光、颜色混合、RGB、色彩空间1665年,牛顿(Isaac Newton)进行了太阳光实验,让太阳光通过窗板的小圆孔照射在玻璃三角棱镜上,光束在棱镜中折射后,扩散为一个连续的彩虹颜色带,牛顿称之为光谱,表示连续的可见光谱。
而可见光谱只是所有电磁波谱中的一小部分。
牛顿认为白光(太阳光)使复杂的,由无数种不同的光线混合,各种光线在玻璃中受到不同程度的折射。
棱镜没有改变白光而只是将它分解为简单的组成部分,把这些组成部分混合,能够重新恢复原来的白色。
利用第二块棱镜可以将扩散的光再次合成为白光。
在重新合成之前,通过屏蔽部分光谱,可以产生各种颜色。
Young在1802年的实验表明:如果在红、绿、蓝区域选择部分光谱,这三者适当的混合可以再现白光。
后来,Helmholtz成功地定量分析了这种现象。
混合物中红、绿、蓝比例的变化可以产生多种颜色,几乎可以产生任何颜色,红色、绿色、蓝色三者等量的混合可以再现白色。
所以:红、绿、蓝这三种颜色就称为“三原色”(RGB)。
红色(Red)绿色(Green)蓝色(Blue)红、绿、蓝光的混合结果暗示了人眼也拥有三种颜色的灵敏读,分别对应于红、绿、蓝。
这种三灵敏度理论称之为Young-Helmholtz颜色视觉理论。
它可以对三原色合成颜色作出非常简单的解释。
三原色理论被广泛应用于各种涉及视觉的场合。
补色的概念:从白色中减去颜色A所形成的颜色,称之为颜色A的补色(complementary color)。
补色的形成:(白色减掉三原色,就是黑色)补色的特点:当使用某个补色滤镜时,该补色对应的原色会被过滤掉:原色以及所对应补色的名称:原色红色(Red)绿色(Green)蓝色(Blue)补色青色(Cyan)洋红色(Magenta)黄色(Yellow)颜色再现有两种方式:1、原色加法:三原色全部参与叠加形成白色,任意其中两种原色相加形成不参与合成的颜色的补色。
这是合成的示意图:加色法2、原色减法:三补色全部参与叠加形成黑色,任意其中两种补色相加形成不参与合成的颜色的原色。
()λe 光度学和色度学简介§1 光度学基本概念一、辐射通量设光源表面S(图3-1)向所有方向辐射出各种波长的光。
此光源表面一个面积元dS 的辐射情况,可以用单位时间内该面积元dS 辐射出来的所有波长的光能量(也就是通过该面积的辐射功率)来表示,这就是面积元dS 的辐射通量。
可用ε来表示,单位为瓦特。
于光源上任一面积元的辐射通量,不同波长的光在其中所占的相对数值是不同的。
为了表示光源面积元所辐射的不同波长的光的相对辐射通量,我们引入分布函数e(λ)的概念。
它就是在单位时间内通过光源面λ积的某一波长附近的单位波长间隔内的光能量。
是波长`λ的函数,它又称谱辐射通量密度。
从光源面积元dS 辐射出来的波长在λ到λ+d间的光辐射通量为 于是,从面积元dS 发出的各种波长的光的总辐射通量为二、视见函数辐射通量ε代表的是光源面积元在单位时间内辐射的总能量的多少,而我们感兴趣的只是其中能够引起视觉的部分,相等的辐射通量,由于波长不同,人眼的感觉也不相同。
为了研究客观的辐射通量与它们在人眼所引起的主观感觉强度之间的关系,首先必须了解眼睛对各种不同波长的视觉灵敏度。
人眼对黄绿色光最灵敏;对红色和紫色光较差;而对红外光和紫外光,则无视觉反应。
在引起强度相等的视觉情况下,若所需的某一单色光的辐射通量愈小,则说明人眼对该单色光的视觉灵敏度愈高。
设任一波长为λ的光和波长为5550的光,产生相同亮暗视觉所需的辐射通量分别为Δελ和Δε5550,则比值称为视见函数。
图3-2是明视觉和暗视觉的相对视见函数实验图线,其纵坐标为视见函数。
明视觉以v(λ)表示,暗视觉以v ′(λ)表示。
暗视见函数曲线的峰值向短波移动约500 oA ,当不同的单色光辐射通量能够产生相等强度的视觉时,v(λ)与这些单色光的辐射通量成反比。
根据多次对正常眼的测量,当波长为5550时,曲线具有最0302,+90mm 。
85mm ,BP 图3-2大值。
1.5 色度
色度学中所应用的方法和工具,都是以目视颜色匹配定律和国际上一致采用的标准为基础的。
国际照明委员会(CIE ),通过其色度学委员会,推荐了色度学方法和基本的标准。
1.5.2 三原色
三原色:(红R 、绿G 、兰B )或(品红、绿、兰)
三原色不能由其他色混合得到,三原色的波长如下:
红:700nm ,绿:546.1nm ,兰:435.8nm
由RGB 构成白光,得亮度比为L R =L G :L B =1:4.5907:0.0601 Lm/(s r ·m 2
)
色度坐标和色品坐标
三原色坐标:R ,G ,B ,是三维色度坐标。
色品坐标(归一化坐标):r=R R+G+B , g= G R+G+B ,b= B R+G+B
, 并有 r+g+b=1
光谱三刺激值(色匹配函数) )(λr ,)(λg ,)(λb 代表匹配一种颜色,需要R 、G 、B 的比例。
即取 )(λc = B b G g R r )()()(λλλ++,
就可以匹配出所要求的)(λc 颜色.并且)(λr ,)(λg ,)(λb 是有表可查的,其规律可参见图1.5-1。
图1.5-1 色匹配函数
(6)色度图及色品图
三原色坐标见图1.5-2a,色品坐标见图1.5-2b,实际色谱的色品则示于图1.5-2c 中。
由图1.5-2c 可见,三原色系统的色品图中有很大部分出现负值,使用很不方便,为此,国际照明委员会建立了CIE 标准色度系统,解决了这一问题。
图1.5-2 色度及色品图
1.5.4 CIE 标准色度系统
设立标准光源和标准观察者,建立假想色度坐标 ),,(Z Y X ,归一化坐标),,(z y x 和色匹配函数),,(z y x ,以此来建立CIE 标准色度系统。
1) CIE1931标准色度系统
这一色度系统是在观测视场为2°的情况下制订出来的。
(1)标准色度坐标的变换
CIE1931标准色度系统的变换关系为:
[]⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡B G R B G R Z Y X 5943.50565.000601.05907.40002.11302.17517.17689.299.001.000106.08124.01770.02.03100.04900.06508.5 及
⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡Z Y X Z Y X B G R 1786.00025.00009.00157.02524.00912.00828.01587.04185.00092.10144.00052.00888.04264.15152.04681.08966.03646.26508.51
2) CIE1964标准色度系统 因为CIE1931标准色度系统的观测视场为2°,不能概括所有情况,所以又制订出CIE1964标准色度系统,它的观测视场是10°,其定义式、数据及曲线略有变化。
CIE1964标准色度系统的定义式如下:
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010101010038878.20375154.00073588.0837182.0138972.0390202.0188273.0341427.0b g r z y x 光谱三原色值()λ10r 、10g 、10b 示于图1.5-3中,10x 、10y 、 示于图1.5-4中,而数据则列于表1.5-2 中。
图1.5-3 CIE 1964的归一化三原色值
在上述CIE 1931和CIE 1946标准色度系统中,各种颜色的允许公差如图1.5-5所示,可见在不同的颜色区域,允许的公差差别很大,这给工程应用带来很大困难。