高一数学值域的求法1精品PPT课件
- 格式:ppt
- 大小:347.50 KB
- 文档页数:12
高一数学《函数的值域》的求法函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点。
本文介绍高一数学中求函数值域的几种常见方法:1.直接法:从自变量$x$的范围出发,推出$y$的取值范围;2.二次函数法:利用换元法,将函数转化为二次函数求值域(或最值);3.反函数法:将求函数的值域转化为求它反函数的定义域;4.判别式法:使用方程思想,依据二次方程有实根,求出$y$的取值范围;5.单调性法:利用函数的单调性求值域;6.图象法:当一个函数图象可作时,通过图象可求其值域(或最值)。
例如,对于函数$y=x^2-2x-3$,我们可以通过以下几种方法求其值域:1.直接法:当$x=-1$时,$y=0$;当$x=0$时,$y=-3$;当$x=1$时,$y=-4$。
因此,所求值域为$\{0,-3,-4\}$。
2.二次函数法:将函数转化为$y=(x-1)^2-4$,然后求出最值。
当$y=-3$时,$y_{\max}=12$;当$x=1$时,$y_{\min}=-4$。
因此,所求值域为$[-4,12]$。
3.反函数法:将函数转化为$y=(x-1)^2-4\geq -4$。
因此,所求值域为$[-4,+\infty)$。
4.判别式法:将函数转化为$y=-x^2+2x+3$,然后求出判别式的取值范围。
由于判别式为$4-4\times (-1)\times 3=16>0$,因此$y$的取值范围为$(-\infty,-4]\cup [1,+\infty)$。
5.单调性法:当$x1$时,函数单调递增。
因此,所求值域为$[-4,+\infty)$。
6.图象法:函数$y=x^2-2x-3$的图象是一个开口向上的抛物线,顶点坐标为$(1,-4)$。
因此,所求值域为$[-4,+\infty)$。
除了以上这些方法,我们还可以通过改变$x$的范围来求函数的值域。
例如,将$x\in R$改为$x\in [-3,2]$或$x\in [-3,+\infty)$等。
高一数学《函数的值域》的求法《新形势下教育管理理论与实践指导全书》函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点,下面介绍高一数学中求函数值域的几种常见方法。
(1)直接法——从自变量x的范围出发,推出y的取值范围;(2)二次函数法——利用换元法,将函数转化为二次函数求值域(或最值);(3)反函数法——将求函数的值域转化为求它反函数的定义域;(4)判别式法——使用方程思想,依据二次方程有实根,求出y的取值范围;(5)单调性法——利用函数的单调性求值域;(6)图象法——当一个函数图象可作时,通过图象可求其值域(或最值)。
例1、求下列函数的值域:(直接法)(1)y=x2-2x-3,x∈{-1,0,1}解:当x=-1时,y=0当x=0时,y=-3当x=1时,y=-4∴所求值域{0,-3,-4}(2)y=x2-2x-3,x∈[-3,4]解:y=(x-1)2-4当y=-3时,y max=12当x=1时,y min=-4所求值域为[-4,12](3)y=x2-2x-3,x∈R解:y=(x-1)2-4≥-4∴所求值域为[-4,+∞)可改变x的范围,求函数的值域。
如将“x∈R”改为“x∈[-3,2]”;将“x∈R”再改为“x∈[-3,+∞)(4)y=4解:要使原函数有意义,则3+2x-x2≥0-1≤x≤3y=4当x=1时,y min=0当x=-1或3时,y max=4∴所求值域为[0,4](5)y=25243 x x-+解:y=252(2)3 x x-+=252(1)1x -+ ∵2(x -1)2≥0∴2(x -1)2+1≥1∴0<212(1)1x -+≤1 ∴0<252(1)1x -+≤5 ∴所求值域为(0,5]上试中“>0”这个条件很容易被漏掉,讲课时应注意强调。
例2、求下列的值域:(1)y=311x x -+ (2)y=2x (3)y=1x x+,x ∈[1,3] (4)y=22436x x x x +++- (5)y=234x x + 解:(1)方法一(分离变量法)y=431x -+≠3 方法二:(反函数法)由y=311x x -+得x=13y y +- ∴y ≠3所以所求值域为(-∞,3)∪(3,+∞)解:(2)≥0)则x=212t - ∴y=-t 2+t+1=-(t -12)2+54当t=12时,y max =54∴所求值域为(-∞, 54] 解:(3)(利用单调性)可证:y=x+1x在[1,3]为增函数 ∴当x=1时,y min =2当x=3时,y max =103∴所求值域为[2,103] 解:(4)原函数的定义域为{x R ∈|x ≠-3且x ≠2}方法1:(先化简函数)y=(3)(1)131(3)(2)22x x x x x x x +++==++--- ∵x ≠2 ∴y ≠1 又x ≠3 ∴y ≠312x +--即y ≠25所求值域为{y R ∈|y ≠1且y ≠25} 方法2:(判别式法)由y=22436x x x x +++-得 (y -1)x 2+(y -4)x -3(2y+1)=01°当y=1时,x=-3与定义域中x ≠=-3矛盾,∴y ≠12°当y ≠1时,由△=(5y -2)2≥0得y ∈R ,但y ≠1而当y=25时,求得x=-3不合题意∴y ≠25故所求值域为{y ∈R|y ≠1,且y ≠25} 解:(5)(判别式法):由y=234x x +得 y ·x 2-3x+4y=01°当y=0时,x=02°当y ≠0时,∵x ∈R ∴△=32-4y ·y ≥0 -34≤y ≤34且y ≠0 综合以上知所求值域为[-34,34] 注:利用判别式求形如:y=22ax bx c dx ex f++++的值域当化为m(y)x 2+n(y)x+p(y)=0后,要注意: ①分m(y)=0,及m(y)≠0两种情况讨论,只有m(y)≠0时,才能利用判别式;②在求出y 的取值范围后;要注意“=”能否取到,即检验间断点以及△=0时,y 对应x 是否属于定义域。