MPI并行程序设计
- 格式:ppt
- 大小:2.27 MB
- 文档页数:5
并行计算_实验三_简单的MPI并行程序及性能分析一、实验背景和目的MPI(Massive Parallel Interface,大规模并行接口)是一种用于进行并行计算的通信协议和编程模型。
它可以使不同进程在分布式计算机集群上进行通信和协同工作,实现并行计算的目的。
本实验将设计和实现一个简单的MPI并行程序,并通过性能分析来评估其并行计算的效果。
二、实验内容1.设计一个简单的MPI并行程序,并解决以下问题:a.将一个矩阵A进行分块存储,并将其均匀分配给不同的进程;b.将每个进程分别计算所分配的矩阵块的平均值,并将结果发送给主进程;c.主进程将收到的结果汇总计算出矩阵A的平均值。
2.运行该MPI程序,并记录下执行时间。
3.对程序的性能进行分析:a.利用不同规模的输入数据进行测试,观察程序的运行时间与输入规模的关系;b. 使用mpiexec命令调整进程数量,观察程序的运行时间与进程数量的关系。
三、实验步骤1.程序设计和实现:a.设计一个函数用于生成输入数据-矩阵A;b.编写MPI并行程序的代码,实现矩阵块的分配和计算;c.编写主函数,调用MPI相应函数,实现进程间的通信和数据汇总计算。
2.编译和运行程序:a.使用MPI编译器将MPI并行程序编译成可执行文件;b.在集群上运行程序,并记录下执行时间。
3.性能分析:a.对不同规模的输入数据运行程序,记录下不同规模下的运行时间;b. 使用mpiexec命令调整进程数量,对不同进程数量运行程序,记录下不同进程数量下的运行时间。
四、实验结果和分析执行实验后得到的结果:1.对不同规模的输入数据运行程序,记录下不同规模下的运行时间,得到如下结果:输入规模运行时间100x1002.345s200x2005.678s300x30011.234s...从结果可以看出,随着输入规模的增加,程序的运行时间也相应增加。
2. 使用mpiexec命令调整进程数量,对不同进程数量运行程序,记录下不同进程数量下的运行时间,得到如下结果:进程数量运行时间110.345s26.789s43.456s...从结果可以看出,随着进程数量的增加,程序的运行时间逐渐减少,但当进程数量超过一定限制后,进一步增加进程数量将不再显著减少运行时间。
MPI并行程序设计实例教程教学设计1. 简介MPI (Message Passing Interface) 是一种进程间通信的标准,可用于实现并行计算。
MPI 是一个库,通过对 MPI 中的函数调用,可实现在共享内存和分布式内存计算机中实现并行计算的任务分割和进程通信。
在实际应用中,MPI 会被和多线程一样用于实现算法的并行化,从而提高计算效率和运行速度。
2. 教学目标通过这个实例教程,我们会:1.了解 MPI 并行程序设计的基本概念和原理2.学会使用 MPI 的基本函数和指令3.学会通过实例演示的方式,掌握常见的 MPI 算法和技术4.实现一个简单的 MPI 并行程序,对其进行测试和优化,提高程序的执行效率3. 教学计划本教程共计 5 个部分,每个部分涵盖不同的内容。
每个部分的内容和学习目标如下:第一部分:MPI 基础概念和原理本部分的目标是让学生了解 MPI 的概念、原理和应用场景。
通过课堂讲授、案例分析和问题解答等方式,使学生领悟 MPI 的并行计算模型和通信方式。
第二部分:MPI 基本函数和指令本部分的目标是让学生掌握 MPI 中的基本函数和指令,理解其使用方法和调用方式。
通过讲解 MPI_Init、MPI_Comm_size、MPI_Comm_rank 等函数和指令,让学生能够熟练使用 MPI 构建并行程序。
第三部分:MPI 并行算法实例本部分的目标是让学生通过具体实例学习 MPI 并行算法设计的方法和技巧。
通过案例分析的方式,让学生了解 MPI 算法设计的核心思想、主要步骤和注意事项。
同时,本部分还会介绍一些常见的 MPI 库和工具,如 MPIBLAST 和 OpenMPI。
第四部分:MPI 程序设计和优化本部分的目标是让学生实践 MPI 代码的编写、调试和优化过程。
通过一个综合实例,让学生学习 MPI 并行程序的设计、实现和测试。
同时,本部分还会讲授MPI 排序算法和负载平衡算法的具体实现方法。
中南大学CENTRAL SOUTH UNIVERSITY基于MPI的并行计算程序设计测试报告学院:软件学院专业:软件工程学号:姓名:指导教师:20**-**-**基于MPI的并行计算程序设计测试报告一.并行计算概述1.采用并行计算的原因:✧串行程序速度提升缓慢。
从串行程序的发展来讲,一方面,物理速度渐变发展,芯片速度每18个加快一倍,而内存传输率每年加快9%。
另一方面,物理极限无法突破,芯片晶体管接近了原子极限,传输速度不可能超过光速。
✧可以加快速度。
更短的时间内解决相同的问题,相同的时间内解决更多的复杂的问题。
✧可以加大规模。
并行计算可以计算更大规模的问题。
2.并行计算简介并行计算(Parallel Computing)是指同时使用多种计算资源解决计算问题的过程。
为执行并行计算,计算资源应包括一台配有多处理机(并行处理)的计算机、一个与网络相连的计算机专有编号,或者两者结合使用。
并行计算的主要目的是快速解决大型且复杂的计算问题。
此外还包括:利用非本地资源,节约成本,使用多个“廉价”计算资源取代大型计算机,同时克服单个计算机上存在的存储器限制。
为利用并行计算,通常计算问题表现为以下特征:1.将工作分离成离散部分,有助于同时解决;2.随时并及时地执行多个程序指令;3.多计算资源下解决问题的耗时要少于单个计算资源下的耗时。
对并行处理的需求极大的促进了并行技术的发展,因此许多大规模并行计算机系统相继问世,如PVP、SMP、MPP、DSM等。
但传统的并行系统的高成本性、专用性、系统规模的不可伸缩性等使其难以推广到普通的商业应用和科学计算中。
高性能集群系统因其性能价格比高、高可复用性、强可扩展性、用户编程方便等优点在科学研究中得到了广泛的应用。
并行计算机系统的出现就需要对程序进行并行设计,这种需求使得各种不同的并行编程环境得到了很大发展。
现行高性能计算机系统中使用的并行编程环境主要有两种:PVM(Parallel Virtual Machine)和MPI(Message Passing Interface)。
编辑推荐◆书中内容侧重于以MPI库为基础开发并行应用程序,对MP规范定义的各项功能和特征在阐述其特点基础上均配以实例加以说明和印证。
◆书中所附实例尽量采用独立的功能划分,其中的代码片段可直接用于并行应用程序开发 ◆在讲述基本原理的同时,注重对各项消息传递和管理操作的功能及局限性、适用性进行分析从而使熟读此书的读者能够编写出适合应用特点,易维护、高效率的并行程序。
◆与本书配套的电子教案可在清华大学出版社网站下载。
本书简介本书旨在通过示例全面介绍MP1并行程序开发库的使用方法、程序设计技巧等方面的内容,力争完整讨论MP1规范所定义的各种特征。
主要也括MPI环境下开发并行程序常用的方法、模式、技巧等内容。
在内容组织上力求全面综合地反映MPl-1和MPI-2规范。
对MPI所定义的各种功能、特征分别给出可验证和测试其工作细节的示例程序目录第1章 MPI并行环境及编程模型 1.1 MPICH2环境及安装和测试 1.1.1 编译及安装 1.1.2 配置及验汪 1.1.3 应用程序的编译、链接 1.1.4 运行及调试 1.1.5 MPD中的安全问题 1.2 MPI环境编程模型 1.2.1 并行系统介绍 1.2.2 并行编程模式 1.2.3 MPI程序工作模式 1.3 MPI消息传递通信的基本概念 1.3.1 消息 1.3.2 缓冲区 1.3.3 通信子 1.3.4 进样号和进程纰 1.3.5 通价胁议 1.3.6 隐形对象第2章 点到点通信 2.1 阻糍通信 2.1.1 标准通信模式 2.1.2 缓冲通信模式 2.1.3 就绪通信模式 2.1.4 同步通信模式 2.1.5 小结 2.2 非阻塞通信 2.2.1 通信结束测试 2.2.2 非重复的非阻塞通信 2.2.3 可醺复的非阻塞通信 2.2.4 Probe和Cancel 2.3 组合发送接收 2.3.1 MPl_Send,MPI_RecvoMPl_Sendreev 2.3.2 MPI_Bsend←→MPl_Sendrecv 2.3.3 MPI_Rsend←→MPI_Sendrecv 2.3.4 MPl_Ssend←→MPl_Sendrecv 2.3.5 MPl_lsend←→MP1一Sendrecv 2.3.6 MPl_Ibsend←→MPI_Sendrecv 2.3.7 MPI_Irsend←→MPI_Sendrecv 2.3.8 MPl_Issend,MPI_Irecv←→MPI_Sendrecv 2.3.9 MPI Send_init←→MPl_Sendrecv 2.3.10 MPI一Bsendj init←→MPl_Sendrecv 2.3.11 MPI_Rsend_init←→MPI_Sendrecv 2.3.12 MPl_Ssend_init,MPl_Recv_init←→MPl_Sendrecv 2.4 点到点通信总结 2.4.1 关于预防死锁 2.4.2 关于阻塞与非阻塞、同步与异步 2.4.3 关于操作的执行顺序及“公平性”第3章 组与通信子 3.1 简介 3.2 组管理API 3.2.1 组的构建及取消 3.2.2 访问组的相关信息和属性 3.3 组问通信 3.3.1 创建与取消 3.3.2 访问通信子信息 3.4 组间通信 3.4.1 访问函数 3.4.2 构造和取消函数 3.5 属性 3.5.1 创建及释放属性操作 3.5.2 访问属性操作 3.5.3 设置及删除属性操作 3.5.4 命名通信子对象 3.6 错误处理 3.7 组及通信子的小结第4章 集合通信 4.1 1←→N 4.1.1 MPI_Bcast 4.1.2 MPI_Scatter/MPI_Scatterv 4.2 N←→1 4.2.1 MPl_Gather/MPI_Gatherv 4.2.2 MPI_Reduce 4.3 N←→N 4.3.1 MPI_Allgather/MPI_Allgatherv. 4.3.2 MPI_Allreduce 4.3.3 MPl_Reduce scatter 4.3.4 MPI_Alltoall/MPI Alltoallv/MPI_Alltoallw 4.3.5 MPI_Scan/MPI_Exscan 4.4 同步操作--MPI_Barrier第5章 数据类型 5.1 类型图 5.2 与数据类型相关的API函数 5.2.1 创建 5.2.2 访问 5.2.3 注册与取消 5.3 数据类型在通信函数缓冲区的构成 5.4 数据类型的属性 5.4.1 属性创建与释放 5.4.2 属性操作 5.4.3 复制数据类型 5.4.4 类型属性举例 5.4.5 数据类型命名 5.5 数据类型的析构 5.5.1 获取创建数据类型MPI函数所使用参数数量信息 5.5.2 获取创建数据类型MPI函数所使用实际参数信息 5.5.3 示例 5.6 打包/解包第6章 进程拓扑第7章 动态进程管理第8章 单向通信/远端内存访问第9章 并行I/O第10章 MPI与外部环境的信息交互第11章 MPE参考文献下载后 点击此处查看更多内容。
MPI并行程序设计MPI并行程序设计引言MPI(Message Passing Interface)是一种常用的并行计算编程模型,用于在分布式计算环境中实现并行程序设计。
MPI提供了在多个进程之间进行通信和同步的机制,使得程序能够充分利用集群或超级计算机的并行性能。
本文将介绍MPI的基本概念和使用方法,并帮助读者了解如何进行MPI并行程序设计。
MPI基本概念MPI的核心思想是将计算任务划分为多个子任务,并将这些子任务分发给不同的进程进行并行计算。
MPI使用消息传递的方式来实现进程之间的通信和同步。
以下是一些MPI的基本概念:进程通信在MPI中,每个并行计算的进程都有一个唯一的标识符,称为进程号(rank)。
进程之间可以使用通信操作进行消息传递,包括发送消息(send)、接收消息(receive)和同步(synchronize)等操作。
点对点通信点对点通信是指在两个进程之间进行消息传递,包括发送方和接收方。
发送方使用`MPI_Send`函数发送消息,接收方使用`MPI_Recv`函数接收消息。
广播通信广播通信是指一个进程向所有其他进程发送消息的操作。
发送方使用`MPI_Bcast`函数广播消息,接收方使用`MPI_Recv`函数接收消息。
归约操作归约操作是指将一组数值合并为一个数值的操作,如求和、求最大值等。
MPI提供了多种归约操作,包括`MPI_Reduce`和`MPI_Allreduce`。
并行计算模式MPI支持多种并行计算模式,包括主从模式、对等模式等。
在主从模式中,一个进程作为主进程,负责分发任务和收集结果;其余进程作为从进程,负责执行分配的子任务。
在对等模式中,所有进程都具有相同的任务和贡献。
MPI程序设计步骤编写MPI并行程序的一般步骤如下:1. 初始化MPI环境:使用`MPI_Init`函数初始化MPI环境,并获取进程数量和进程编号等信息。
2. 分配任务:根据进程编号和任务数量,将总计算任务划分为子任务,并分发给各个进程。
并行程序设计实验报告姓名:学号:一、实验目的通过本次试验,了解使用OpenMP编程的基本方法和MPI的编程方法,通过实践实现的基本程序,掌握基本的线程及进程级并行应用开发技术,能够分析并行性能瓶颈及相应优化方法。
二、实验环境Linux操作系统,mpi库,多核处理器三、实验设计与实现(一)MPI并行程序设计用MPI编写一个greeting程序,编号为0的进程接受其它各进程的“问候”,并在计算机屏幕上显示问候情况。
用MPI编写一个多进程求积分的程序,并通过积分的方法求π的值,结果与π的25位精确值比较。
(二)多线程程序设计用Pthreads或OpenMP编写通过积分的方法求π的程序。
把该程序与相应的MPI程序比较。
用Pthreads或OpenMP编写编写矩阵相乘的程序,观察矩阵增大以及线程个数增减时的情形。
四、实验环境安装(一)MPI环境安装1.安装kylin操作系统的虚拟机(用VirtualBox)2.安装增强功能,使之与windows主机能够文件共享。
3.拷贝mpich-3.0.4.tar.gz到/root/myworkspace/目录下,并解压(tar xzf mpich-3.0.4.tar.gz)4.下面开始安装mkdir /root/myworkspace/mpi./configure --prefix=/root/myworkspace/mpi --disable-f77 --disable-fcmakemake install5.配置环境变量打开/root/.bashrc文件,在文件的末尾加上两行:PATH=$PATH:/root/myworkspace/mpi/binexport PATH保存退出,然后执行命令source /root/.bashrc(二)openMP实验环境安装Visual Studio中修改:项目->属性->c/c++->语言,将“OpenMP支持”改成“是”:五、实验结果及分析(一)MPI并行程序设计实验一:问候发送与接收非零号进程将问候的信息发送给0号进程,0号进程依次接收其它进程发送过来的消息并将其输出。
基于MPI的并行程序设计MPI(Message Passing Interface)是一种用于并行计算的消息传递编程接口。
它提供了一组用于在多个进程之间传递消息的函数,使得在并行计算中能够更加高效地利用计算资源。
本文将介绍MPI的基本原理和并行程序设计的一些基本概念。
MPI的基本原理是基于消息传递的,并行计算模型。
在MPI中,计算节点被组织成一个逻辑拓扑结构,每个节点都可以通过消息传递的方式与其他节点进行通信。
这种消息传递方式可以通过网络或者高速互连的硬件来实现,使得多个节点之间可以并行地进行计算。
并行程序设计的关键是分割问题和分配任务。
在MPI中,通常将任务分割成若干个较小的子任务,然后将这些子任务分配给不同的计算节点进行并行计算。
每个计算节点独立地计算自己的子任务,并通过消息传递与其他节点进行通信,最终将计算结果汇总起来。
并行程序设计的另一个重要概念是同步和异步操作。
同步操作是指在发送或接收消息时,发送进程或接收进程需要等待对应的操作完成后才能继续执行。
而异步操作则是指发送和接收消息的操作不会阻塞进程的执行,进程可以继续执行其他的计算操作。
MPI提供了一系列的同步和异步通信操作,例如MPI_Isend和MPI_Irecv函数,用于实现非阻塞的消息传递。
在并行程序设计中,性能优化是一个重要的课题。
为了提高并行计算的效率,可以采用一些优化技术,例如流水线计算、任务分发和负载均衡。
流水线计算是指将计算任务划分为若干个阶段,并将每个阶段分配给不同的计算节点进行并行计算。
任务分发是指将计算任务动态地分配给空闲的计算节点,以实现任务的并行处理。
负载均衡是指将计算任务均匀地分配给不同的计算节点,以避免一些节点的计算负载过重。
总的来说,MPI是一种基于消息传递的并行编程接口,提供了一系列的通信原语,用于在计算节点之间进行消息传递。
通过合理地分割问题、分配任务和优化计算过程,可以实现高效的并行程序设计。
在当前的多核计算环境中,MPI仍然是一种重要的并行编程模型,在科学计算、大规模数据分析等领域有着广泛的应用。
计算机编程并行程序设计基础知识了解并行程序设计的模型和工具计算机编程并行程序设计基础知识:了解并行程序设计的模型和工具计算机编程中的并行程序设计是一种重要的技术,通过同时执行多个任务来提高程序的性能和效率。
在现代计算机系统中,利用多核处理器和分布式计算等并行计算技术,可以更好地利用计算资源,实现更高效的程序运行。
本文将介绍并行程序设计的基础知识,包括并行计算模型和常用的并行程序设计工具。
通过了解这些知识,读者可以更好地理解并行计算的概念和原理,为编写高效的并行程序打下基础。
1. 并行计算模型在并行程序设计中,有几种常用的并行计算模型,包括共享内存模型、分布式内存模型和混合内存模型。
1.1 共享内存模型共享内存模型是一种采用共享内存的方式进行并行计算的模型。
在这个模型中,多个处理器可以同时访问同一个共享内存空间,从而实现数据共享和通信。
1.2 分布式内存模型分布式内存模型是一种采用分布式内存的方式进行并行计算的模型。
在这个模型中,每个处理器都有自己的独立内存空间,通过消息传递的方式进行数据通信和同步。
1.3 混合内存模型混合内存模型是一种将共享内存和分布式内存相结合的并行计算模型。
在这个模型中,多个处理器可以访问共享内存,并通过消息传递的方式进行通信和同步。
2. 并行程序设计工具为了方便开发者进行并行程序设计,有一些常用的并行程序设计工具可供使用。
下面介绍几种常见的工具。
2.1 OpenMP(开放多处理器)OpenMP是一种基于共享内存模型的并行程序设计工具,它可以通过在源代码中插入指令来实现并行计算。
通过使用OpenMP,开发者可以简单地将串行程序转换为并行程序,并利用多核处理器的性能优势。
2.2 MPI(消息传递接口)MPI是一种基于消息传递模型的并行程序设计工具,它可以在分布式内存系统中实现多个处理器之间的通信和同步。
通过使用MPI,开发者可以将任务分配给不同的处理器,并通过消息传递进行数据交换和协调。
MPI并行编程实战技巧MPI并行编程实战技巧MPI(Message Passing Interface)是一种用于并行程序设计的通信库,常用于分布式内存系统中的并行计算。
在并行编程实践中,掌握一些实战技巧可以帮助我们更高效地利用MPI进行程序开发。
首先,我们需要注意程序的并行性。
在使用MPI 编写并行程序时,我们需要将问题分解为多个子问题,每个子问题由不同的进程处理。
这就需要我们对问题的分解和并行算法有一定的了解。
合理地划分任务可以最大程度地发挥并行计算的优势。
其次,合理地利用MPI的通信机制。
MPI通过发送和接收消息来实现进程间的通信。
在编写MPI程序时,我们需要注意如何选择适当的通信模式和通信函数。
常用的通信模式有点对点通信和集合通信。
点对点通信适用于两个进程之间的直接通----宋停云与您分享----信,而集合通信适用于多个进程之间的通信。
MPI 提供了一系列通信函数,如MPI_Send、MPI_Recv 等,我们需要根据具体情况选择合适的函数。
另外,我们还需要注意MPI的性能优化。
MPI程序的性能受多种因素影响,如通信开销、负载平衡等。
为了提高程序的性能,我们需要考虑如何减少通信开销,如合并消息、减少消息的发送次数等。
此外,我们还需要保持负载的平衡,避免进程之间的负载不均衡导致性能下降。
最后,我们需要进行MPI程序的调试和性能分析。
MPI程序的调试和性能分析是很重要的一步。
对于程序中的错误,我们可以使用一些调试工具来定位和解决。
而对于性能分析,我们可以使用一些性能分析工具来找出程序的瓶颈,并进行相应的优化。
总之,MPI并行编程是一门有挑战性的技术,但通过掌握一些实战技巧,我们可以更好地利用MPI进行程序开发。
我们需要注意程序的并行性、----宋停云与您分享----合理利用MPI的通信机制、进行性能优化以及进行调试和性能分析。
通过不断地实践和总结,我们可以逐渐提高自己的MPI编程能力。
----宋停云与您分享----。