算法分析与设计习题集整理
- 格式:doc
- 大小:793.00 KB
- 文档页数:21
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
习题2-1 求下列函数的渐进表达式:3n^2+10n; n^2/10+2n; 21+1/n; logn^3; 10 log3^n 。
解答:3n^2+10n=O(n^2),n^2/10+2^n=O(2^n),21+1/n=O(1),logn^3=O(logn),10log3^n=O(n).习题2-3 照渐进阶从低到高的顺序排列以下表达式:n!,4n^2,logn,3^n,20n,2,n^2/3。
解答:照渐进阶从高到低的顺序为:n!、3^n、4n^2 、20n、n^2/3、logn、2习题2-4(1)假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成该算法的时间为t秒。
现有另外一台计算机,其运行速度为第一台计算机的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?(2)若上述算法的计算时间改进为T(n)=n^2,其余条件不变,则在新机器上用t秒时间能解输入规模多大的问题?(3)若上述算法的计算时间进一步改进为,其余条件不变,那么在新机器上用t秒时间能解输入规模多大的问题?解答:(1)设能解输入规模为n1的问题,则t=3*2^n=3*2^n/64,解得n1=n+6(2)n1^2=64n^2得到n1=8n(3)由于T(n)=常数,因此算法可解任意规模的问题。
习题2-5 XYZ公司宣称他们最新研制的微处理器运行速度为其竞争对手ABC公司同类产品的100倍。
对于计算复杂性分别为n,n^2,n^3和n!的各算法,若用ABC公司的计算机能在1小时内能解输入规模为n的问题,那么用XYZ公司的计算机在1小时内分别能解输入规模为多大的问题?解答:n'=100nn'^2=100n^2得到n'=10nn'^3=100n^3得到n'=4.64nn'!=100n!得到n'<n+log100=n+6.64习题2-6对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=θ(g(n)),并简述理由。
《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。
A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。
《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?2.算法分析的目的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述二分检索(折半查找)算法的基本过程。
7.背包问题的目标函数和贪心算法最优化量度相同吗?8.采用回溯法求解的问题,其解如何表示?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么用分治法设计的算法一般有递归调用?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。
14.二分检索算法最多的比较次数?15.快速排序算法最坏情况下需要多少次比较运算?16.贪心算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束一般指什么?18.阐述归并排序的分治思路。
19.快速排序的基本思想是什么。
20.什么是直接递归和间接递归?消除递归一般要用到什么数据结构?21.什么是哈密顿环问题?22.用回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。
二、复杂性分析1、MERGESORT(low,high)if low<high;then mid←(low,high)/2;MERGESORT(low,mid);MERGESORT(mid+1,high);MERGE(low,mid,high);endifend MERGESORT2、procedure S1(P,W,M,X,n)i←1; a←0while i≤ n doif W(i)>M then return endifa←a+ii←i+1 ;repeatend3.procedure PARTITION(m,p)Integer m,p,i;global A(m:p-1)v←A(m);i←mlooploop i←i+1 until A(i) ≥v repeatloop p←p-1 until A(p) ≤v repeatif i<pthen call INTERCHANGE(A(i),A(p))else exitendifrepeatA(m) ←A(p);A(p) ←vEnd PARTITION4.procedure F1(n)if n<2 then return(1)else return(F2(2,n,1,1))endifend F1procedure F2(i,n,x,y)if i≤nthen call F2(i+1,n,y,x+y)endifreturn(y)end F25.procedure MAX(A,n,j)xmax←A(1);j←1for i←2 to n doif A(i)>xmax then xmax←A(i); j←i;endif repeatend MAX6.procedure BINSRCH(A,n,x,j)integer low,high,mid,j,n;low←1;high←nwhile low≤high domid←|_(low+high)/2_|case:x<A(mid):high←mid-1:x>A(mid):low←mid+1:else:j ←mid; returnendcase repeat j ←0 end BINSRCH三、算法理解1、写出多段图最短路经动态规划算法求解下列实例的过程,并求出最优值。
算法设计与分析基础习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[] 4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
一、假设有7个物品,它们的重量和价值如下表所示。
若这些物品均不能被分割,且背包容量M=150,使用回溯方法求解此背包问题。
请写出状态空间搜索树(20分)。
答:按照单位效益从大到小依次排列这7个物品为:FBGDECA 。
将它们的序号分别记为1~7。
则可生产如下的状态空间搜索树。
其中各个节点处的限界函数值通过如下方式求得:【排序1分】5x =6x =7x =17分,每个节点1分】a .1501154040305035190.62540-++++⨯= 7(1,1,1,1,,0,0)8b. 1501154040305030177.560-++++⨯=7(1,1,1,1,0,,0)12c .4040305010170++++=(1,1,1,1,0,0,1)d. 1501054040303530167.560-++++⨯= 3(1,1,1,0,1,,0)4e. 150130404050353017560-++++⨯=1(1,1,0,1,1,,0)3f. 1501304040503510170.7135-++++⨯=4(1,1,0,1,1,0,)7g. 40405030160+++=(1,1,0,1,0,1,0)h. 1501404040353010146.8535-++++⨯= 2(1,1,0,0,1,1,)7i.1501254030503530167.560-++++⨯=5(1,0,1,1,1,,0)12 j. 1501454030503530157.560-++++⨯=1(0,1,1,1,1,,0)12在Q 1处获得该问题的最优解为(1,1,1,1,0,0,1),背包效益为170。
即在背包中装入物品F 、B 、G 、D 、A 时达到最大效益,为170,重量为150。
【结论2分】一、已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序。
算法设计与分析常见习题及详解⽆论在以后找⼯作还是⾯试中,都离不开算法设计与分析。
本博⽂总结了相关算法设计的题⽬,旨在帮助加深对贪⼼算法、动态规划、回溯等算法的理解。
1、计算下述算法执⾏的加法次数:输⼊:n =2^t //t 为整数输出:加法次数 k K =0while n >=1 do for j =1 to n do k := k +1 n = n /2return k解析:第⼀次循环执⾏n次加法,第⼆次循环执⾏1/2次加法,第三次循环执⾏1/次加法…因此,上述算法执⾏加法的次数为==2n-12、考虑下⾯每对函数 f(n) 和 g(n) ,如果它们的阶相等则使⽤Θ记号,否则使⽤ O 记号表⽰它们的关系解析:前导知识:,因为解析:,因为解析:,因为解析:解析:3、在表1.1中填⼊ true 或 false解析:利⽤上题的前导知识就可以得出。
2=21/4n +n +21n +41...+1n +n −n +21n −21n +41....−1f (n )=(n −2n )/2,g (n )=6n1<logn <n <nlogn <n <2n <32<n n !<n ng (n )=O (f (n ))f (n )=Θ(n ),g (n )=2Θ(n )f (n )=n +2,g (n )=n n 2f (n )=O (g (n ))f (n )=Θ(n ),g (n )=Θ(n )2f (n )=n +nlogn ,g (n )=n nf (n )=O (g (n ))f (n )=Θ(nlogn ),g (n )=Θ(n )23f (n )=2(log ),g (n )=n 2logn +1g (n )=O (f (n ))f (n )=log (n !),g (n )=n 1.05f (n )=O (g (n ))4、对于下⾯每个函数 f(n),⽤f(n) =Θ(g(n))的形式,其中g(n)要尽可能简洁,然后按阶递增序排列它们(最后⼀列)解析:最后⼀个⽤到了调和公式:按阶递增的顺序排列:、、、、、、、、、(n −2)!=Θ((n −2)!)5log (n +100)=10Θ(logn )2=2n Θ(4)n 0.001n +43n +31=Θ(n )4(lnn )=2Θ(ln n )2+3n logn =Θ()3n 3=n Θ(3)n log (n !)=Θ(nlogn )log (n )=n +1Θ(nlogn )1++21....+=n1Θ(logn )=∑k =1nk 1logn +O (1)1++21....+n 15log (n +100)10(lnn )2+3n logn log (n !)log (n )n +10.001n +43n +313n 22n (n −2)!5、求解递推⽅程前导知识:主定理前导知识:递归树:例⼦:递归树是⼀棵节点带权的⼆叉树,初始递归树只有⼀个结点,标记为权重W(n),然后不断进⾏迭代,最后直到树种不再含有权为函数的结点为⽌,然后将树根结点到树叶节点的全部权值加起来,即为算法的复杂度。
算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。
答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。
其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。
2. 什么是动态规划算法?请给出一个动态规划算法的示例。
答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。
它的特点是具有重叠子问题和最优子结构性质。
以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。
3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。
而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。
DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。
4. 请简述贪心算法的特点及其应用场景。
答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。
然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。
序号项目名称任务描述设计要求1. C语言词法分析算法设计与实现编制一个读单词过程,从输入的源程序中,识别出各个具有独立意义的单词,即基本保留字、标识符、常数、运算符、分隔符五大类。
输入:一段C语言程序输出:每个单词以及每个单词所在行号比如:输入如下一段C程序main(){int a,b;}输出为:( mian, ”line=1”);( ( , ”line=1“);( ) , ”line=1”);({ , ”line=2”);( int, “line=2”);……………用Java语言,或者C语言,推荐用Java语言。
完成所要有的C语言词法分析器。
要求:读文件,或者命令行的形式读取C源程序,输出源程序中每个单词以及每个单词所在行号。
要求:开发出图形化界面,读文件,把结果输出到界面上。
2.行程编码的设计与实现Run-Length Encoding(RLE)行程长度的原理是将一扫描行中的颜色值相同的相邻像素用一个计数值和那些像素的颜色值来代替。
例如:aaabccccccddeee,则可用3a1b6c2d3e来代替。
对于拥有大面积,相同颜色区域的图像,用RLE压缩方法非常有效。
算法输入:图像算法输出:图像行程编码序列利用C语言,或者Java语言,完成算法对图像的行程编码.设计一个GUI界面,能够接受图像,输出图像的形成编码序列3.特征权重排序信息增益算法的设计与实现在文本分类领域中,信息增益IG是一种常用的特征排序算法的标准。
要求利用信息增益公式计算每个特征的信息增益值,并根据信息增益值从大到小输出。
举例如下:假设文本中包括的特征:outlook {sunny, overcast, rainy}// 晴天、多云、下雨temperature {hot, mild, cool} // 热、温和的、冷humidity {high, normal} // high表示潮湿、normal表示正常windy {Strong, weak} // TRUE表示有风、FALSE表示无风play {yes, no} yes表示打网球,no表示不打网球假设有14个样本如下:1 , Sunny , Hot , High , Weak , No2 , Sunny , Hot , High , Strong , No3 , Overcast , Hot , High , Weak , Yes利用Java语言实现样本中特征信息增益的计算,然后根据信息增益值从大到小排序。
算法分析与设计习题集整理第一章算法引论一、填空题:1、算法运行所需要的计算机资源的量,称为算法复杂性,主要包括时间复杂度和空间复杂度。
2、多项式10()mm A n a n a n a =+++L 的上界为O(n m)。
3、算法的基本特征:输入、输出、确定性、有限性 、可行性 。
4、如何从两个方面评价一个算法的优劣:时间复杂度、空间复杂度。
5、计算下面算法的时间复杂度记为: O(n 3) 。
for(i=1;i<=n;i++)for(j=1;j<=n;j++) {c[i][j]=0; for(k=1;k<=n;k++) c[i][j]= c[i][j]+a[i][k]*b[k][j]; }6、描述算法常用的方法:自然语言、伪代码、程序设计语言、流程图、盒图、PAD 图。
7、算法设计的基本要求:正确性 和 可读性。
8、计算下面算法的时间复杂度记为: O(n 2) 。
for (i =1;i<n; i++){ y=y+1; for (j =0;j <=2n ;j++ ) x ++; }9、计算机求解问题的步骤:问题分析、数学模型建立、算法设计与选择、算法表示、算法分析、算法实现、程序调试、结果整理文档编制。
10、算法是指解决问题的 方法或过程 。
二、简答题:1、按照时间复杂度从低到高排列:O( 4n 2)、O( logn)、O( 3n )、O( 20n)、O( 2)、O( n 2/3), O( n!)应该排在哪一位答:O( 2),O( logn),O( n 2/3),O( 20n),O( 4n 2),O( 3n),O( n!)2、什么是算法算法的特征有哪些答:1)算法:指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。
通俗讲,算法:就是解决问题的方法或过程。
2)特征:1)算法有零个或多个输入;2)算法有一个或多个输出; 3)确定性 ; 4)有穷性3、给出算法的定义何谓算法的复杂性 计算下例在最坏情况下的时间复杂性for(j=1;j<=n;j++) (1)for(i=1;i<=n;i++) (2) {c[i][j]=0; (3) for(k=1;k<=n;k++) (4) c[i][j]= c[i][j]+a[i][k]*b[k][j]; } (5)答:1)定义:指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。
2)算法的复杂性:指的是算法在运行过程中所需要的资源(时间、空间)多少。
所需资源越多,表明算法的复杂性越高3)该算法的主要元操作是语句5,其执行次数是n 3次。
故该算法的时间复杂度记为O(n 3).4、算法A 和算法B 解同一问题,设算法A 的时间复杂性满足递归方程⎩⎨⎧>+===1n , n )2/n (T 4)n (T1n , 1)n (T , 算法B 的时间复杂性满足递归方程⎩⎨⎧>+===1n , n )4/n (aT )n (T 1n , 1)n (T ,若要使得算法A 时间复杂性的阶高于算法B 时间复杂性的阶,a 的最大整数值可取多少答:分别记算法A 和算法B 的时间复杂性为)n (T A 和)n (T B ,解相应的递归方程得:)n (O )n (T 2A =⎪⎩⎪⎨⎧>=<=4a , )n(O 4a , )n log n (O 4a , )n (O )n (T alog B 4依题意,要求最大的整数a 使得)n (T B 〈)n (T A 。
显然,当a<=4时,)n (T B 〈)n (T A ;当a>4时,)n (T B 〈(n)T A ⇔2a log 4< ⇔a<24=16。
所以,所求的a 的最大整数值为15。
5、算法分析的目的答:1)为了对算法的某些特定输入,估算该算法所需的内存空间和运行时间;2)是为了建立衡量算法优劣的标准,用以比较同一类问题的不同算法。
6、算法设计常用的技术(写5种)答: ①分治法; ②回溯法; ③贪心法; ④动态规划法 ⑤分治限界法 ; ⑥蛮力法; ⑦倒推法三、算法设计题1、蛮力法:百鸡百钱问题2、倒推法:穿越沙漠问题第二章分治算法(1)----递归循环一、填空题:1、直接或间接地调用自身的算法称为递归算法,用函数自身给出定义的函数称为递归函数。
2、递归方程和约束函数(递归终止条件)是递归函数的两个要素。
二、判断题:1、所有的递归函数都能找到对应的非递归定义。
(√)2、定义递归函数时可以没有初始值。
( X )三、简答题:1、什么是递归算法递归算法的特点答:1 )递归算法:是一个模块(函数、过程)除了可调用其它模块(函数、过程)外,还可以直接或间接地调用自身的算法。
2) 递归算法特点:①每个递归函数都必须有非递归定义的初值;否则,递归函数无法计算;(递归终止条件)②递归中用较小自变量函数值来表达较大自变量函数值;(递归方程式)2、比较循环与递归的异同答:1)相同:递归与循环都是解决“重复操作”的机制。
2)不同:就效率而言,递归算法的实现往往要比迭代算法耗费更多的时间(调用和返回均需要额外的时间)与存贮空间(用来保存不同次调用情况下变量的当前值的栈栈空间),也限制了递归的深度。
每个迭代算法原则上总可以转换成与它等价的递归算法;反之不然。
递归的层次是可以控制的,而循环嵌套的层次只能是固定的,因此递归是比循环更灵活的重复操作的机制。
3、递归算法解题通常有三个步骤答: 1)分析问题、寻找递归:找出大规模问题与小规模问题的关系,这样通过递归使问题的规模逐渐变小。
2)设置边界、控制递归:找出停止条件,即算法可解的最小规模问题。
3)设计函数、确定参数:和其它算法模块一样设计函数体中的操作及相关参数。
四、算法设计题:1、楼梯上有n个台阶,上楼时可以上1步,也可以上2步,设计一递归算法求出共有多少种上楼方法F(n)。
①写出F(n)的递归表达式②并写出其相应的递归算法解:①写出F(n)的递归表达式分析:到n阶有两种走法:1)n-1阶到n阶;2)n-2阶到n阶;1 n=1F(n) = 2 n=2F(n-1) + F(n-2) n>2②写出其相应的递归算法Int F(int n){if(n=1) return 1;else if(n=2)return 2;elsereturn F(n-1)+ F(n-2);}2、设a,b,c是3个塔座。
开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。
各圆盘从小到大编号为1,2,…,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。
在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。
①写出该问题的解题步骤②并写出其相应的递归算法解:①第一步:将n-1个盘子看成一个整体,从A移到C;第二步:将第n个盘子移到B;第三步:将n-1个盘子看成一个整体,从C移到B;②写出其相应的递归算法:void hanoi(int n, int a, int b, int c){if (n > 0){hanoi(n-1, a, c, b);move(a,b);hanoi(n-1, c, b, a);} }第二章分治算法(2)分治算法一、填空题:1、在快速排序、插入排序和合并排序算法中,插入排序算法不是分治算法。
2、合并排序算法使用的是分治算法设计的思想。
3、二分搜索算法是利用分治算法思想设计的。
二、简答题:1、适合用分治算法求解的问题具有的基本特征答:1)该问题的规模缩小到一定的程度就可以容易解决;2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;3)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
4)利用该问题分解出子问题解可以合并为该问题解;2、分治算法基本思想,解题步骤三、算法设计题:1、改写二分查找算法:设a[1…n]是一个已经排好序的数组,改写二分查找算法,使得当搜索元素x不在数组中时,返回小于x的最大元素位置i,和大于x的最小元素位置j;当搜索元素x在数组中时,i和j相同,均为x在数组中的位置。
并分析其时间复杂度解:int binsearch( int a[n], int x ,)3)回溯时将分解的两组解大者取大,小者取小,合并为当前问题的解。
②、③第三章动态规划算法一、填空题:1、动态规划算法中存储子问题的解是为了避免重复求解子问题。
2、(最优子结构)是问题能用动态规划算法求解的前提。
3、矩阵连乘问题的算法可由(动态规划)算法设计实现。
二、判断题:1、动态规划算法基本要素的是最优子结构。
(√)2、最优子结构性质是指原问题的最优解包含其子问题的最优解。
(√)3、动态规划算法求解问题时,分解出来的子问题相互独立。
( X)三、简答题:1、动态规划算法解题步骤答:①找出最优解的性质,并刻划其结构特征;(即原问题的最优解,包含了子问题的最优解)②递归地定义最优值;(即子问题具有重叠性,由子问题定义原问题)③以自底向上的方式计算出最优值;④根据计算最优值时得到的信息,构造最优解;2、动态规划算法基本思想答:动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题;但是经分解得到的子问题往往不是互相独立的。
不同子问题的数目常常只有多项式量级。
在用分治法求解时,有些子问题被重复计算了许多次;如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。
3、动态规划与分治算法异同点4、动态规划算法的基本要素四、算法设计与计算题:1、{}12,,,m X x x x =L 和{}12,,,n Y y y y =L 的最长公共子序列为{}12,,,k Z z z z =L 。
问:若用[][]c i j 记录序列{}12,,,i i X x x x =L 和{}12,,,j j Y y y y =L 公共子序列长度。
求:①用动态规划法求解时,计算最优值的递归公式②设计计算最优值的算法以及构造最优解的算法2、长江游艇俱乐部在长江上设置了n 个游艇出租站1,2…n.游客可在这些游艇出租站租用游艇,并在下游的任何一个游艇出租站归还游艇。
游艇出租站i 到游艇出租站j 之间的租金为r(i ,j),其中1<=i<j<=n ; 求:①用动态规划法求解时,计算最优值(最少租金)的递归公式②设计计算最优值(最少租金)的算法 ③并分析其时间复杂度 解:①②计算最优值算法public static void matrixChain(int [] p, int [][] m, int [][] s) {int n=;for (int i = 1; i <= n; i++) m[i][i] = 0;要求:给出Dijkstra 算法的迭代过程,计算源到给个顶点的最短路径(用表表示)解:见课本123页 表4-2⎪⎩⎪⎨⎧<++==<≤j i j k r k i r j i j i r ]},1[],[{m in 0],[j k i解:迭代过程:第5章回溯算法一、填空题1、回溯法与分支限界法搜索方式不同,回溯法按深度优先搜索解空间,分支限界法按广度优先或最小耗费优先搜索解空间。