北京市海淀区2011年高三上学期期末考试文科数学试卷
- 格式:doc
- 大小:848.50 KB
- 文档页数:13
2011年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•北京)已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1]B.[1,+∞)C.[﹣1,1]D.(﹣∞,﹣1)∪(1,+∞)【考点】补集及其运算.【专题】集合.【分析】先求出集合P中的不等式的解集,然后由全集U=R,根据补集的定义可知,在全集R中不属于集合P的元素构成的集合为集合A的补集,求出集合P的补集即可.【解答】解:由集合P中的不等式x2≤1,解得﹣1≤x≤1,所以集合P=[﹣1,1],由全集U=R,得到C U P=(﹣∞,1)∪(1,+∞).故选D【点评】此题属于以不等式的解集为平台,考查了补集的运算,是一道基础题.2.(5分)(2011•北京)复数=()A.i B.﹣i C.D.【考点】复数代数形式的混合运算.【专题】数系的扩充和复数.【分析】将分子、分母同乘以1﹣2i,再按多项式的乘法法则展开,将i2用﹣1代替即可.【解答】解:==i故选A【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数;再按多项式的乘法法则展开即可.3.(5分)(2011•北京)如果那么()A.y<x<1 B.x<y<1 C.1<x<y D.1<y<x【考点】对数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】本题所给的不等式是一个对数不等式,我们要先将不等式的三项均化为同底根据对数函数的单调性,即可得到答案.【解答】解:不等式可化为:又∵函数的底数0<<1故函数为减函数∴x>y>1故选D【点评】本题考查的知识点是对数函数的单调性与特殊点,其中根据对数函数的性质将对数不等式转化为一个整式不等式是解答本题的关键.4.(5分)(2011•北京)若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.﹁p是真命题D.﹁q是真命题【考点】复合命题的真假.【专题】简易逻辑.【分析】根据题意,由复合命题真假表,依次分析选项即可作出判断.【解答】解:∵p是真命题,q是假命题,∴p∧q是假命题,选项A错误;p∨q是真命题,选项B错误;¬p是假命题,选项C错误;¬q是真命题,选项D正确.故选D.【点评】本题考查复合命题的真假情况.5.(5分)(2011•北京)某四棱锥的三视图如图所示,该四棱锥的表面积是()A.32 B.16+16 C.48 D.16+32【考点】由三视图求面积、体积.【专题】立体几何.【分析】根据所给的三视图得到四棱锥的高和底面的长和宽,首先根据高做出斜高,做出对应的侧面的面积,再加上底面的面积,得到四棱锥的表面积.【解答】解:由题意知本题是一个高为2,底面是一个长度为4的正方形的四棱锥,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,∴四个侧面积是,底面面积是4×4=16,∴四棱锥的表面积是16+16,故选:B.【点评】本题考查有三视图求表面积和体积,考查由三视图得到几何图形,考查简单几何体的体积和表面积的做法,本题是一个基础题.6.(5分)(2011•北京)执行如图所示的程序框图,若输入A的值为2,则输入的P值为()A.2 B.3 C.4 D.5【考点】循环结构.【专题】算法和程序框图.【分析】根据输入A的值,然后根据S进行判定是否满足条件S≤2,若满足条件执行循环体,依此类推,一旦不满足条件S≤2,退出循环体,求出此时的P值即可.【解答】解:S=1,满足条件S≤2,则P=2,S=1+=满足条件S≤2,则P=3,S=1++=满足条件S≤2,则P=4,S=1+++=不满足条件S≤2,退出循环体,此时P=4故选:C【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断.7.(5分)(2011•北京)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件【考点】函数模型的选择与应用.【专题】函数的性质及应用.【分析】若每批生产x件,则平均仓储时间为天,可得仓储总费用为,再加上生产准备费用为800元,可得生产x件产品的生产准备费用与仓储费用之和是=元,由此求出平均每件的生产准备费用与仓储费用之和,再用基本不等式求出最小值对应的x值【解答】解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是=这样平均每件的生产准备费用与仓储费用之和为(x为正整数)由基本不等式,得当且仅当时,f(x)取得最小值、可得x=80时,每件产品的生产准备费用与仓储费用之和最小故答案为B【点评】本题结合了函数与基本不等式两个知识点,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案.8.(5分)(2011•北京)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1【考点】抛物线的应用.【专题】函数的性质及应用.【分析】本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.【解答】解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A【点评】本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2011•北京)在△ABC中.若b=5,,sinA=,则a=.【考点】正弦定理.【专题】解三角形.【分析】直接利用正弦定理,求出a 的值即可.【解答】解:在△ABC中.若b=5,,sinA=,所以,a===.故答案为:.【点评】本题是基础题,考查正弦定理解三角形,考查计算能力,常考题型.10.(5分)(2011•北京)已知双曲线(b>0)的一条渐近线的方程为y=2x,则b=2.【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用双曲线的标准方程写出其渐近线方程是解决本题的关键,根据已知给出的一条渐近线方程对比求出b的值.【解答】解:该双曲线的渐近线方程为,即y=±bx,由题意该双曲线的一条渐近线的方程为y=2x,又b>0,可以得出b=2.故答案为:2.【点评】本题考查根据双曲线方程求解其渐近线方程的方法,考查学生对双曲线标准方程和渐近线方程的认识和互相转化,考查学生的比较思想,属于基本题型.11.(5分)(2011•北京)已知向量=(,1),=(0,﹣1),=(k,).若与共线,则k=1.【考点】平面向量共线(平行)的坐标表示.【专题】平面向量及应用.【分析】利用向量的坐标运算求出的坐标;利用向量共线的坐标形式的充要条件列出方程,求出k的值.【解答】解:∵与共线,∴解得k=1.故答案为1.【点评】本题考查向量的坐标运算、考查向量共线的坐标形式的充要条件:坐标交叉相乘相等.12.(5分)(2011•北京)在等比数列{a n}中,a1=,a4=﹣4,则公比q=﹣2;a1+a2+…+a n=.【考点】等比数列的性质;等比数列.【专题】等差数列与等比数列.【分析】根据等比数列的性质可知,第4项比第1项得到公比q的立方等于﹣8,开立方即可得到q的值,然后根据首项和公比,根据等比数列的前n项和的公式写出此等比数列的前n项和S n的通项公式,化简后即可得到a1+a2+…+a n的值.【解答】解:q3==﹣8∴q=﹣2;由a1=,q=﹣2,得到:等比数列的前n项和S n=a1+a2+…+a n==.故答案为:﹣2;【点评】此题考查学生掌握等比数列的性质,灵活运用等比数列的前n项和公式化简求值,是一道基础题.13.(5分)(2011•北京)已知函数若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是(0,1).【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】要求程f(x)=k有两个不同的实根是数k的取值范围,根据方程的根与对应函数零点的关系,我们可以转化为求函数y=f(x)与函数y=k交点的个数,我们画出函数的图象,数形结合即可求出答案.【解答】解:函数的图象如下图所示:由函数图象可得当k∈(0,1)时方程f(x)=k有两个不同的实根,故答案为:(0,1)【点评】本题考查的知识点是根的存在性及根的个数判断,其中根据方程的根与对应函数零点的关系,将方程问题转化为函数问题是解答的关键.14.(5分)(2011•北京)设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=6,N(t)的所有可能取值为6、7、8.【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t=0时,平行四边形ABCD内部的整点有(1,1);(1,2);(2,1);(2,2);(3,1);(3,2)共6个点,所以N(0)=6作出平行四边形ABCD将边OD,BC变动起来,结合图象得到N(t)的所有可能取值为6,7,8故答案为:6;6,7,8【点评】本题考查画可行域、考查数形结合的数学思想方法.三、解答题(共6小题,满分80分)15.(13分)(2011•北京)已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.【考点】三角函数的周期性及其求法;两角和与差的余弦函数;三角函数的最值.【专题】三角函数的图像与性质.【分析】(Ⅰ)利用两角和公式和二倍角公式对函数的解析式进行化简整理后,利用正弦函数的性质求得函数的最小正周期.(Ⅱ)利用x的范围确定2x+的范围,进而利用正弦函数的单调性求得函数的最大和最小值.【解答】解:(Ⅰ)∵,=4cosx()﹣1=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+),所以函数的最小正周期为π;(Ⅱ)∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=,即x=时,f(x)取最大值2,当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的最值.解题的关键是对函数解析式的化简整理.16.(13分)(2011•北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(注:方差,其中的平均数)(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.【考点】茎叶图;众数、中位数、平均数;极差、方差与标准差.【专题】概率与统计.【分析】(1)根据所给的这组数据,利用求平均数的公式,把所有的数据都相加,再除以4,得到平均数,代入求方差的公式,做出方差.(2)本题是一个等可能事件的概率.分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,可以列举出共有4种结果,根据等可能事件的概率公式得到结果.【解答】解:(1)当X=8时,由茎叶图可知乙组同学的植树棵树是8,8,9,10,∴平均数是,方差是+=.(2)由题意知本题是一个等可能事件的概率.若X=9,分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,包括:(9,10),(11,8),(11,8),(9,10)共有4种结果,∴根据等可能事件的概率公式得到P=.【点评】本题考查一组数据的平均数和方差,考查等可能事件的概率,考查利用列举法来列举出符合条件的事件数和满足条件的事件数,本题是一个文科的考试题目.17.(14分)(2011•北京)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G 分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【专题】空间位置关系与距离;立体几何.【分析】(Ⅰ)根据两个点是两条边的中点,得到这条线是两条边的中位线,得到这条线平行于PC,根据线面平行的判定定理,得到线面平行.(Ⅱ)根据四个点是四条边的中点,得到中位线,根据中位线定理得到四边形是一个平行四边形,根据两条对角线垂直,得到平行四边形是一个矩形.(Ⅲ)做出辅助线,证明存在点Q到四面体PABC六条棱的中点的距离相等,根据第二问证出的四边形是矩形,根据矩形的两条对角线互相平分,又可以证出另一个矩形,得到结论.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE⊄平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG=EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=EG,∴Q为满足条件的点.【点评】本题考查直线与平面平行的判定,考查三角形中位线定理,考查平行四边形和矩形的判定及性质,本题是一个基础题.18.(13分)(2011•北京)已知函数f(x)=(x﹣k)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(I)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据(I),对k﹣1是否在区间[0,1]内进行讨论,从而求得f(x)在区间[0,1]上的最小值.【解答】解:(Ⅰ)f′(x)=(x﹣k+1)e x,令f′(x)=0,得x=k﹣1,f′(x)f(x)随x的变化情况如下:x (﹣∞,k﹣1)k﹣1 (k﹣1,+∞)f′(x)﹣0 +f(x)↓﹣e k﹣1↑∴f(x)的单调递减区间是(﹣∞,k﹣1),f(x)的单调递增区间(k﹣1,+∞);(Ⅱ)当k﹣1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(0)=﹣k;当0<k﹣1<1,即1<k<2时,由(I)知,f(x)在区间[0,k﹣1]上单调递减,f(x)在区间(k﹣1,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(k﹣1)=﹣e k﹣1;当k﹣1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减,∴f(x)在区间[0,1]上的最小值为f(1)=(1﹣k)e;综上所述f(x)min=.【点评】此题是个中档题.考查利用导数研究函数的单调性和在闭区间上的最值问题,对方程f'(x)=0根是否在区间[0,1]内进行讨论,体现了分类讨论的思想方法,增加了题目的难度.19.(14分)(2011•北京)已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)根据椭圆离心率为,右焦点为(,0),可知c=,可求出a的值,再根据b2=a2﹣c2求出b的值,即可求出椭圆G的方程;(Ⅱ)设出直线l的方程和点A,B的坐标,联立方程,消去y,根据等腰△PAB,求出直线l方程和点A,B的坐标,从而求出|AB|和点到直线的距离,求出三角形的高,进一步可求出△PAB的面积.【解答】解:(Ⅰ)由已知得,c=,,解得a=,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.【点评】此题是个中档题.考查待定系数法求椭圆的方程和椭圆简单的几何性质,以及直线与椭圆的位置关系,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.20.(13分)(2011•北京)若数列A n:a1,a2,…,a n(n≥2)满足|a k+1﹣a k|=1(k=1,2,…,n﹣1),则称A n为E数列,记S(A n)=a1+a2+…+a n.(Ⅰ)写出一个E数列A5满足a1=a3=0;(Ⅱ)若a1=12,n=2000,证明:E数列A n是递增数列的充要条件是a n=2011;(Ⅲ)在a1=4的E数列A n中,求使得S(A n)=0成立得n的最小值.【考点】数列的应用.【专题】点列、递归数列与数学归纳法.【分析】(Ⅰ)根据题意,a2=±1,a4=±1,再根据|a k+1﹣a k|=1给出a5的值,可以得出符合题的E数列A5;(Ⅱ)从必要性入手,由单调性可以去掉绝对值符号,可得是A n公差为1的等差数列,再证充分性,由递增数列的性质得出不等式,再利用同向不等式的累加,可得a k+1﹣a k=1>0,A n是递增数列;(Ⅲ)由|a k+1﹣a k|=1,可得a k+1≥a k﹣1,再结合已知条件a1=4,可得n的最小值.【解答】解:(Ⅰ)0,1,0,1,0是一个满足条件的E数列A5(答案不唯一,0,﹣1,0,﹣1,0或0,±1,0,1,2或0,±1,0,﹣1,﹣2或0,±1,0,﹣1,0都满足条件的E数列A5)(Ⅱ)必要性:因为E数列A n是递增数列所以a k+1﹣a k=1(k=1,2, (1999)所以A n是首项为12,公差为1的等差数列.所以a2000=12+(2000﹣1)×1=2011充分性:由于a2000﹣a1999≤1a1999﹣a1998≤1…a2﹣a1≤1,所以a2000﹣a1≤1999,即a2000≤a1+1999又因为a1=12,a2000=2011所以a2000≤a1+1999故a k+1﹣a k=1>0(k=1,2,…,1999),即A n是递增数列.综上所述,结论成立.(Ⅲ)对首项为4的E数列A n,由于a2≥a1﹣1=3a3≥a2﹣1≥2…a8≥a7﹣1≥﹣3…所以a1+a2+…+a k>0(k=2,3,…,8),所以对任意的首项为4的E数列A n,若S(A n)=0,则必有n≥9,又a1=4的E数列A9:4,3,2,1,0,﹣1,﹣2,﹣3,﹣4满足S(A9)=0,所以n的最小值是9.【点评】本题以数列为载体,考查了不等式的运用技巧,属于难题,将题中含有绝对值的等式转化为不等式是解决此题的关键.。
海淀区2011年高三年级第一学期文科数学期末练习第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.sin 240的值为A .12-B . 12C .32-D .322. 若等差数列{}n a 的前n 项和为n S ,且236a a +=,则4S 的值为 A. 12 B.11 C.10 D. 93. 设,αβ为两个不同的平面,直线l α⊂,则“l β⊥”是“αβ⊥”成立的 A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件4. 某部门计划对某路段进行限速,为调查限速60 km/h 是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按[40,50),[50,60),[60,70),[70,80]分组,绘制成如图所示的频率分布直方图.则这300辆汽车中车速低于限速的汽车有A.75辆B.120辆C.180辆D.270辆 5.点(2,)P t 在不等式组4030x y x y --≤⎧⎨+-≤⎩表示的平面区域内,则点(2,)P t 到直线34100x y ++=距离的最大值为 A.2 B. 4 C. 6 D.8 6. 一空间几何体的三视图如图所示,则该几何体的体 积为A .12B .6C . 4D .27. 已知函数1()sin ,[0,π]3f x x x x =-∈,01cos 3x =(0[0,π]x ∈),那么下面结论正确的是A .()f x 在0[0,]x 上是减函数 B. ()f x 在0[,π]x 上是减函数 C. [0,π]x ∃∈, 0()()f x f x > D. [0,π]x ∀∈, 0()()f x f x ≥车速O40506070800.0100.0350.030a频率组距正视图左视图俯视图222112218. 已知椭圆E :1422=+y m x ,对于任意实数k ,下列直线被椭圆E 所截弦长与l :1+=kx y 被椭圆E 所截得的弦长不可能...相等的是 A .0kx y k ++= B .01=--y kx C .0kx y k +-= D .20kx y +-=二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 若直线l 经过点(1,2)且与直线210x y +-=平行,则直线l 的方程为__________.10.某程序的框图如图所示,执行该程序,若输入4, 则输出的S 为 .11.椭圆2212516x y +=的右焦点F 的坐标为 .则顶点在原点的抛物线C 的焦点也为F ,则其标准方程为 .12.在一个边长为1000米的正方形区域的每个顶点处设有一个监测站,若向此区域内随机投放一个爆破点,则爆破点距离监测站200米内都可以被检测到.那么随机投入一个爆破点被监测到的概率为_______.13已知向量(1,),(1,)t t ==-a b .若-2a b 与b 垂直, 则||___=a .14.在平面直角坐标系xOy 中,O 为坐标原点.定义()11,P x y 、()22,Q x y 两点之间的“直角距离”为1212(,)d P Q x x y y =-+-为. 若点()1,3A -,则(,)d A O = ; 已知()1,0B ,点M 为直线20x y -+=上动点,则(,)d B M 的最小值为 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)开始0;0S n ==n i<21n S S =++是否1n n =+S输出结束i 输入设函数13()sin cos 22f x x x =+,R x ∈. (I )求函数)(x f 的周期和值域;(II )记ABC ∆的内角C B A ,,的对边分别为c b a ,,,若3(),2f A = 且32a b =, 求角C 的值.16. (本小题满分13分)某学校三个社团的人员分布如下表(每名同学只参加一个社团)围棋社戏剧社书法社学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果围棋社被抽出12人. (I) 求这三个社团共有多少人?(II) 书法社从3名高中和2名初中成员中,随机选出2人参加书法展示,求这2人中初、高中学生都有的概率.17. (本小题满分13分)如图,棱柱ABCD —1111A B C D 的底面ABCD 为菱形 ,AC BD O ,侧棱1AA ⊥BD,点F高中 45 30 a初中151020为1DC 的中点.(I ) 证明://OF 平面11BCC B ; (II )证明:平面1DBC ⊥平面11ACC A .18. (本小题满分13分)已知函数322()1,a f x x x=++其中0a >.(I )若曲线()y f x =在(1,(1))f 处的切线与直线1y =平行,求a 的值; (II )求函数()f x 在区间[1,2]上的最小值. 19. (本小题满分14分)已知圆22:4O x y +=,点P 为直线:4l x =上的动点.(I)若从P 到圆O 的切线长为23,求P 点的坐标以及两条切线所夹劣弧长;(II )若点(2,0),(2,0)A B -,直线,PA PB 与圆O 的另一个交点分别为,M N ,求证:直线MN 经过定点(1,0).20. (本小题满分14分)已知集合{}1,2,3,,2A n = *()n N ∈.对于A 的一个子集S ,若存在不大于n 的正整数m ,使得对于S 中的任意一对元素12,s s ,都有12s s m -≠,则称S 具有性质P.(Ⅰ)当10n =时,试判断集合{}9B x A x =∈>和{}*31,C x A x k k N =∈=-∈是否具有性质P ?并说明理由.(II)若集合S 具有性质P ,试判断集合 {}(21)T n x x S =+-∈)是否一定具有性质P ?并说明理由.答案及评分参考第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案CAACBDBD第II 卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分)9.240x y +-= 10. 19 11.(3,0) 212y x = 12.25π13. 2 14. 4 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I ) x x x f cos 23sin 21)(+=)3sin(π+=x , ............................... 3分)(x f ∴的周期为π2 (或答:0,,2≠∈k Z k k π). ................................4分 因为x R ∈,所以3x R π+∈,所以)(x f 值域为]1,1[- . ...............................5分(II )由(I )可知,)3sin()(π+=A A f , ...............................6分23)3s i n (=+∴πA, ...............................7分 π<<A 0 ,3433πππ<+<∴A , ..................................8分 2,33A ππ∴+=得到3A π= . ...............................9分 ,23b a =且B b A a sin sin = , ....................................10分 32s i n 32b b B ∴=, ∴1sin =B , ....................................11分 π<<B 0 , 2π=∴B . ....................................12分6ππ=--=∴B A C . ....................................13分16. (共13分)解:(I )围棋社共有60人, ...................................1分 由150301260=⨯可知三个社团一共有150人. ...................................3分 (II )设初中的两名同学为21,a a ,高中的3名同学为321,,b b b , ...................................5分 随机选出2人参加书法展示所有可能的结果:1211121321{,},{,},{,},{,},{,},a a a b a b a b a b 222312132{,}, {,},{,},{,},{,}a b a bb b b b b b ,共10个基本事件. ..................................8分 设事件A 表示“书法展示的同学中初、高中学生都有”, ..................................9分 则事件A 共有111213212223{,},{,},{,},{,},{,},{,}a b a b a b a b a b a b 6个基本事件. ...................................11分 ∴53106)(==A P . 故参加书法展示的2人中初、高中学生都有的概率为35. ................................13分 17. (共13分)解:(I ) 四边形ABCD 为菱形且AC BD O = ,O ∴是BD 的中点 . ...................................2分 又点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , ...................................4分⊄OF 平面11BCC B ,⊂1BC 平面11BCC B ,∴//OF 平面11BCC B . ...................................6分 (II ) 四边形ABCD 为菱形,AC BD ⊥∴, ...................................8分 又⊥BD 1AA ,1,AA AC A = 且1,AA AC ⊂平面11ACC A ,.................................10分 ⊥∴BD 平面11ACC A , ................................11分 ⊂BD 平面1DBC ,∴平面1DBC ⊥平面11ACC A . ................................13分 18. (共13分)解:3332222()()2a x a f x x x x -'=-=,0x ≠. .........................................2分(I )由题意可得3(1)2(1)0f a '=-=,解得1a =, ........................................3分此时(1)4f =,在点(1,(1))f 处的切线为4y =,与直线1y =平行.故所求a 值为1. ........................................4分 (II )由()0f x '=可得x a =,0a >, ........................................ 5分 ①当01a <≤时,()0f x '>在(1,2]上恒成立 ,所以()y f x =在[1,2]上递增, .....................................6分 所以()f x 在[1,2]上的最小值为3(1)22f a =+ . ........................................7分 ②当12a <<时,x(1,)a a(,2)a()f x ' - 0 + ()f x极小由上表可得()y f x =在[1,2]上的最小值为2()31f a a =+ . ......................................11分 ③当2a ≥时,()0f x '<在[1,2)上恒成立,所以()y f x =在[1,2]上递减 . ......................................12分....................................10分所以()f x 在[1,2]上的最小值为3(2)5f a =+ . .....................................13分 综上讨论,可知:当01a <≤时, ()y f x =在[1,2]上的最小值为3(1)22f a =+; 当12a <<时,()y f x =在[1,2]上的最小值为2()31f a a =+; 当2a ≥时,()y f x =在[1,2]上的最小值为3(2)5f a =+. 19. (共14分)解:根据题意,设(4,)P t . (I)设两切点为,C D ,则,OC PC OD PD ⊥⊥,由题意可知222||||||,PO OC PC =+即222242(23)t +=+ , ............................................2分 解得0t =,所以点P 坐标为(4,0). ...........................................3分 在Rt POC ∆中,易得60POC ∠= ,所以120DOC ∠= . ............................................4分 所以两切线所夹劣弧长为24233ππ⨯=. ...........................................5分 (II )设1122(,),(,)M x y N x y ,(1,0)Q , 依题意,直线PA 经过点(2,0),(4,)A P t -,可以设:(2)6tAP y x =+, ............................................6分和圆224x y +=联立,得到22(2)64t y x x y ⎧=+⎪⎨⎪+=⎩ , 代入消元得到,2222(36)441440t x t x t +++-= , ......................................7分 因为直线AP 经过点11(2,0),(,)A M x y -,所以12,x -是方程的两个根,所以有2124144236t x t --=+, 21272236t x t -=+ , ..................................... 8分代入直线方程(2)6t y x =+得,212272224(2)63636t t ty t t -=+=++. ..................................9分 同理,设:(2)2tBP y x =-,联立方程有 22(2)24t y x x y ⎧=-⎪⎨⎪+=⎩, 代入消元得到2222(4)44160t x t x t +-+-=,因为直线BP 经过点22(2,0),(,)B N x y ,所以22,x 是方程的两个根,22241624t x t -=+, 222284t x t -=+ , 代入(2)2t y x =-得到2222288(2)244t t t y t t --=-=++ . .....................11分 若11x =,则212t =,此时2222814t x t -==+ 显然,,M Q N 三点在直线1x =上,即直线MN 经过定点Q (1,0)............................12分 若11x ≠,则212t ≠,21x ≠, 所以有212212240836722112136MQ t y t t k t x t t -+===----+, 22222280842811214NQ t y t t k t x t t ---+===----+................13分 所以MQ NQ k k =, 所以,,M N Q 三点共线,即直线MN 经过定点Q (1,0).综上所述,直线MN 经过定点Q (1,0). .......................................14分20. (共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A = ,{}{}910,11,12,,19,20B x A x =∈>= 不具有性质P . ...................................1分 因为对任意不大于10的正整数m ,都可以找到集合B 中两个元素110b =与210b m =+, 使得12b b m -=成立 . ...................................3分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ....................................4分因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠ . ............................................6分 (Ⅱ)若集合S 具有性质P ,那么集合{}(21)T n x x S =+-∈一定具有性质P . ..........7分 首先因为{}(21)T n x x S =+-∈,任取0(21),t n x T =+-∈ 其中0x S ∈,因为S A ⊆,所以0{1,2,3,...,2}x n ∈,从而01(21)2n x n ≤+-≤,即,t A ∈所以T A ⊆ ...........................8分 由S 具有性质P ,可知存在不大于n 的正整数m ,使得对S 中的任意一对元素12,s s ,都有 12s s m -≠, ..................................9分 对上述取定的不大于n 的正整数m , 从集合{}(21)T n x x S =+-∈中任取元素112221,21t n x t n x =+-=+-, 其中12,x x S ∈, 都有1212t t x x -=- ; 因为12,x x S ∈,所以有12x x m -≠,即 12t t m -≠ 所以集合{}(21)T n x x S =+-∈具有性质P . .............................14分。
海淀区高三年级第二学期期中练习数 学 (文科) 2011.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}2 23x x x ≤-≤<或 B. {}32<<x x C. {}32<≤x x D. R2. 设0.5323, log 2, cos 3a b c π===,则A. c b a <<B. c a b <<C. a b c <<D. b c a << 3.函数1()x f x x+=图象的对称中心为 A .(0,0) B.(0,1)C. (1,0)D. (1,1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为A. 25 B .24 C. 23 D .225.从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为A . 29 B. 13 C. 49D. 596. 在同一个坐标系中画出函数,sin xy a y ax ==的部分图象,其中01a a >≠且,则下列所给图象中可能正确的是7. 已知函数221, 1,()1, 1,x ax x f x ax x x ⎧++≥⎪=⎨++<⎪⎩ 则“20a -≤≤”是“()f x 在R 上单调递增”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是A .22(1)1x y -+= B ..2212x y += C. 2y x = D .221x y -=非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 计算21i=+__________________.10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 . (用“>”连接)11. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_________.12. 已知函数()x f x xe =,则'()f x =________;函数()f x 图象在点(0,(0))f 处的切线方程为_______13. 已知向量(,2),(1,)a x b y ==,其中,0x y ≥.若4≤ a b ,则y x -的取值范围为 .PDCBA 1A 1D 1B 1C 左视主视乙丙甲14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为________;()f x 的最大值为 ________.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为a b c 、、,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ) 求tan()B C +; (Ⅱ) 求a 的值.16. (本小题共13分)数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ;( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.17. (本小题共13分)如图:梯形A B C D 和正△PAB 所在平面互相垂直,其中//,AB DC12AD CD AB ==,且O 为AB 中点. ( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .CBD BACDOP18. (本小题共14分)已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点. 求O 到直线距离的l 最小值.20. (本小题共13分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i = , 设j j k k k b +++= 21(1,2,3)j = ,12()100m g m b b b m =+++- (1,2,3).m = (Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (II) 若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++= ,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(文)答案及评分参考 2011.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)非选择题 (共110分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.1i - 10. s 1>s 2>s 3 11. 1 12. (1)x x e +, y x = 13. [4,2]- 14. (2,4),三、解答题(本大题共6小题,共80分) 15. (共13分)解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=- …………………3分 代入得到,1123tan()111123B C ++==-⨯. …………………6分(II )因为180A B C =-- …………………7分 所以tan tan[180()]tan()1A B C B C =-+=-+=- …………………9分 又0180A <<,所以135A = . …………………10分 因为1tan 03C =>,且0180C << ,所以sin 10C = , …………………11分 由sin sin a c A C=,得a =. …………………13分16. (共13分)解:(I )因为12n n S S n -=+,所以有12n n S S n --=对2n ≥,*N n ∈成立 ………2分即2n a n =对2n ≥成立,又1121a S ==⋅, 所以2n a n =对*N n ∈成立 …………………3分 所以12n n a a +-=对*N n ∈成立 ,所以{}n a 是等差数列, …………………4分 所以有212nn a a S n n n +=⋅=+ ,*N n ∈ …………………6分 (II )存在. …………………7分 由(I ),2n a n =,*N n ∈对成立所以有396,18a a ==,又12a =, ………………9分所以由 112339, b a b a b a ===,,则23123b b b b == …………………11分 所以存在以12b =为首项,公比为3的等比数列{}n b , 其通项公式为123n n b -=⋅ . ………………13分17. (共13分)证明: (I) 因为O 为AB 中点,所以1,2BO AB =…………………1分 又//,AB CD 12CD AB =,所以有,//,CD BO CD BO = …………………2分所以ODCB 为平行四边形,所以//,BC OD …………………3分 又DO ⊂平面,POD BC ⊄平面,POD所以//BC 平面POD . …………………5分 (II)连接OC .因为,//,CD BO AO CD AO ==所以ADCO 为 平行四边形, …………………6分 又AD CD =,所以ADCO 为菱形,所以 AC DO ⊥, …………………7分 因为正三角形PAB ,O 为AB 中点,所以PO AB ⊥ , …………………8 分 又因为平面ABCD ⊥平面PAB ,平面ABCD 平面PAB AB = ,BACDOPBACD O P所以PO ⊥平面ABCD , …………………10分 而AC ⊂平面ABCD ,所以 PO AC ⊥,又PO DO O = ,所以AC ⊥平面POD . …………………12分 又PD ⊂平面POD ,所以AC ⊥PD . …………………13分18. (共14分)解:(I )因为2211'()a ax f x x x x -=-+=, …………………2分 当1a =, 21'()x f x x-= ,令'()0f x =,得 1x =,…………………3分又()f x 的定义域为(0,)+∞, ()f x ',()f x 随x 的变化情况如下表:所以1x =时,()f x 的极小值为1 . …………………5分()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1); …………………6分(II )解法一:因为2211'()a ax f x x x x-=-+= ,且0a ≠, 令'()0f x =,得到1x a= ,若在区间(0,]e 上存在一点0x ,使得0()0f x <成立,其充要条件是()f x 在区间(0,]e 上的最小值小于0即可. …………………7分 (1)当10x a=<,即0a <时,'()0f x <对(0,)x ∈+∞成立, 所以,()f x 在区间(0,]e 上单调递减, 故()f x 在区间(0,]e 上的最小值为11()ln f e a e a e e =+=+, 由10a e +<,得1a e <-,即1(,)a e∈-∞- …………………9分(2)当10x a =>,即0a >时, ① 若1e a≤,则'()0f x ≤对(0,]x e ∈成立,所以()f x 在区间(0,]e 上单调递减,所以,()f x 在区间(0,]e 上的最小值为11()ln 0f e a e a e e=+=+>,显然,()f x 在区间(0,]e 上的最小值小于0不成立 …………………11分 ② 若10e<<,即1a >时,则有 所以()f x 在区间(0,]e 上的最小值为()lnf a a a a=+, 由11()ln(1ln )0f a a a a a a=+=-<, 得 1ln 0a -<,解得a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知:1(,)(,)a e e∈-∞-+∞ 符合题意. …………………14分解法二:若在区间(0,]e 上存在一点0x ,使得0()0f x <成立, 即001ln 0a x x +<, 因为00x >, 所以,只需001ln 0ax x +< …………………7分 令()1ln g x ax x =+,只要()1ln g x ax x =+在区间(0,]e 上的最小值小于0即可因为'()ln (ln 1)g x a x a a x =+=+, 令'()(ln 1)0g x a x =+=,得1x e = …………………9分 (1)当时:因为(0,)x e∈时,()1ln 0g x ax x =+>,而()1ln 1g e ae e ae =+=+,只要10ae +<,得1a e <-,即1(,)a e∈-∞- …………………11分所以,当 (0,]x e ∈时,()g x 极小值即最小值为1()1ln1a g a e e e e=+⋅=-, 由10ae-<, 得 a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知,有1(,)(,)a e e∈-∞-+∞ . …………………14分19. (共14分)解:(Ⅰ)由已知,222214a b e a -==,所以2234a b =, ① …………………1分 又点3(1,)2M 在椭圆C 上,所以221914a b+= , ② …………………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. …………………5分(Ⅱ) 当直线l 有斜率时,设y kx m =+时,则由22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得,222(34)84120k x k m x m +++-=, …………………6分222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->, ③…………7分设A 、B 、P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则: 012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++,…………8分 由于点P 在椭圆C 上,所以2200143x y +=. ……… 9分从而222222216121(34)(34)k m mk k+=++,化简得22434m k=+,经检验满足③式.………10分又点O到直线l的距离为:d===≥=………11分当且仅当0k=时等号成立…………12分当直线l无斜率时,由对称性知,点P一定在x轴上,从而P点为(2,0),(2,0)-,直线l为1x=±,所以点O到直线l的距离为1 ……13分所以点O到直线l的距离最小值为2……14分20.(共13分)解: (I)因为数列1240,30,k k==320,k=410k=,所以123440,70,90,100b b b b====,所以(1)60,(2)90,(3)100,(4)100g g g g=-=-=-=-. …………………3分(II) 一方面,1(1)()100mg m g m b++-=-,根据j b的含义知1100mb+≤,故0)()1(≤-+mgmg,即)1()(+≥mgmg,①…………………5分当且仅当1100mb+=时取等号.因为123100,,,,a a a a中最大的项为50,所以当50m≥时必有100mb=,所以(1)(2)(49)(50)(51)g g g g g>>>===即当149m<<时,有()(1)g m g m>+;当49m≥时,有()(1)g m g m=+.…………………7分(III)设M为{}12100,,,a a a中的最大值.由(II)可以知道,()g m的最小值为()g M. 下面计算()g M的值.123()100M g M b b b b M =++++-1231(100)(100)(100)(100)M b b b b -=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++-12312(23)()M M k k k Mk k k k =-++++++++123100()M a a a a b =-+++++123100()100a a a a =-+++++ ,∵123100200a a a a ++++= , ∴()100g M =-,∴()g m 最小值为100-.…………………13分说明:其它正确解法按相应步骤给分.。
2012-2013学年北京市海淀区高三(上)期末数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数21−i的值为( )A.1−iB.1+iC.−1−iD.−1+i2. 向量a →=(1, 1),b →=(2, t),若a →⊥b →,则实数t 的值为( ) A.−2 B.−1 C.1 D.23. 在等边△ABC 的边BC 上任取一点P ,则S △ABP ≤S △APC 的概率是( ) A.13 B.12C.23D.564. 点P 是抛物线y 2=4x 上一点,P 到该抛物线焦点的距离为4,则点P 的横坐标为( ) A.2 B.3C.4D.55. 某程序的框图如图所示,执行该程序,若输入的P 为24,则输出的n ,S 的值分别为( )A.n =4,S =30B.n =4,S =45C.n =5,S =30D.n =5,S =456. 已知点A(−1, 0),B(cos α, sin α),且|AB|=√3,则直线AB 的方程为( ) A.y =√3x +√3或y =−√3x −√3 B.y =√33x +√33或y =−√33x −√33C.y =x +1或y =−x −1D.y =√2x +√2或y =−√2x −√27. 已知函数f(x)={sin x,sin x ≥cos xcos x,sin x <cos x 则下面结论中正确的是( )A.f(x)是奇函数B.f(x)的值域是[−1, 1]C.f(x)是偶函数D.f(x)的值域是[−√22, 1]8. 如图,在棱长为1的正方体ABCD −A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P // 平面AEF ,则线段A 1P 长度的取值范围是( )A.[1, √52]B.[3√24, √52] C.[√52, √2]D.[√2, √3]二、填空题:本大题共6小题,每小题5分,共30分.tan 225∘的值为________. 双曲线x 23−y 23=1的渐近线方程为________;离心率为________.数列{a n }是公差不为0的等差数列,且a 2+a 6=a 8,则S5a 5=________.不等式组表示的平面区域为Ω,直线y =kx −1与区域Ω有公共点,则实数k 的取值范围为________.三棱锥S −ABC 及其三视图中的正(主)视图和侧(左)视图如图所示,则棱SB 的长为________.任給实数a ,b 定义a ⊕b ={a ×b,a ×b ≥0a b,a ×b <0 设函数f(x)=ln x ⊕x ,则f(2)+f(12)=________;若{a n }是公比大于0的等比数列,且a5=1,f(a1)+f(a2)+f(a3)…+f(a7)+f(a8)=a1,则a1=________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.已知函数f(x)=√3sin x cos x−cos2x+12,△ABC三个内角A,B,C的对边分别为a,b,c且f(A)=1.(1)求角A的大小;(2)若a=7,b=5,求c的值.某汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取这两种车型各50辆,分别统计了每辆车在某个星期内的出租天数,统计数据如下表:A型车(I)试根据上面的统计数据,判断这两种车型在本星期内出租天数的方差的大小关系(只需写出结果);(Ⅱ)现从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,试估计这辆汽车是A型车的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要购买一辆汽车,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.如图,在直三棱柱ABC−A1B1C1中,∠BAC=90∘,AB=AC=AA1,且E是BC中点.(Ⅰ)求证:A1B // 平面AEC1;(Ⅱ)求证:B1C⊥平面AEC1.已知函数f(x)=12x2−12与函数g(x)=a ln x在点(1, 0)处有公共的切线,设F(x)=f(x)−mg(x)(m≠0).(1)求a的值(2)求F(x)在区间[1, e]上的最小值.已知椭圆M::x2a2+y23=1(a>0)的一个焦点为F(−1, 0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.(1)求椭圆方程;(2)当直线l的倾斜角为45∘时,求线段CD的长;(3)记△ABD与△ABC的面积分别为S1和S2,求|S1−S2|的最大值.已知函数f(x)的定义域为(0, +∞),若y=f(x)x在(0, +∞)上为增函数,则称f(x)为“一阶比增函数”.(1)若f(x)=ax2+ax是“一阶比增函数”,求实数a的取值范围;(2)若f(x)是“一阶比增函数”,求证:∀x1,x2∈(0, +∞),f(x1)+f(x2)<f(x1+x2);(3)若f(x)是“一阶比增函数”,且f(x)有零点,求证:f(x)>2013有解.参考答案与试题解析2012-2013学年北京市海淀区高三(上)期末数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.【答案】 B【考点】复数代数形式的乘除运算 【解析】复数的分子、分母同乘分母的共轭复数,化为a +bi(a 、b ∈R),可得选项. 【解答】解:21−i =2(1+i)(1−i)(1+i)=2(1+i)1−i 2=1+i .故选B . 2.【答案】 A【考点】数量积判断两个平面向量的垂直关系 平面向量数量积的运算 【解析】由题意可得a →⋅b →=1×2+1×t =0,解之即可. 【解答】解:∵ a →=(1, 1),b →=(2, t),且a →⊥b →, ∴ a →⋅b →=1×2+1×t =0,解得t =−2 故选A 3.【答案】 B【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】利用三角形的面积公式,判断P 所在的位置,利用几何概型求出结果即可. 【解答】解:因为等边△ABC 的边BC 上任取一点P ,则S △ABP ≤S △APC , 所以PB ≤PC ,所以P 在BC 的中点靠近B 的一侧,所以等边△ABC 的边BC 上任取一点P ,则S △ABP ≤S △APC 的概率是:S △ABP S △ABC=PB BC =12.故选B . 4.【答案】 B【考点】 抛物线的求解 【解析】由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知P 到该抛物线焦点的距离|MF|=4,则M 到准线的距离也为2,即点M 的横坐标x +p2=4,将p 的值代入,进而求出x . 【解答】解:∵ 抛物线y 2=4x =2px , ∴ p =2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的, ∴ P 到该抛物线焦点的距离|MF|=4=x +p2=4,∴ x =3, 故选B . 5.【答案】 C【考点】 程序框图 【解析】由已知中的程序框图及已知中输入24,可得:进入循环的条件为S <24,即S =0,1,2,3,模拟程序的运行结果,即可得到输出的n ,S 值. 【解答】解:开始S =0时,S =0+3=3,n =2; S =3+6=9,n =3; S =9+9=18,n =4; S =18+12=30,n =5;此时S >24,退出循环,故最后输出的n ,S 的值分别为n =5,S =30. 故选C . 6. 【答案】 B【考点】两点间的距离公式 直线的一般式方程【解析】通过AB 的距离,求出cos α,与sin α,然后求出AB 的斜率,利用点斜式求出直线的方程. 【解答】解:因为点A(−1, 0),B(cos α, sin α),且|AB|=√3,所以(cos α+1)2+sin 2α=3,所以2cos α=1,cos α=12,sin α=±√32, 所以K AB =sin αcos α+1=±√33, 所以直线AB 的方程:y =±√33(x +1).即y =√33x +√33或y =−√33x −√33. 故选B .7.【答案】 D【考点】函数奇偶性的判断 函数的值域及其求法 【解析】由题意可得:函数f(x)={sin x,x ∈(π4+2kπ,5π4+2kπ]cos x,x ∈[2kπ−3π4,2kπ+π4],再根据三角函数的图象与性质可得正确答案.【解答】解:由题意可得:函数f(x)={sin x,x ∈(π4+2kπ,5π4+2kπ]cos x,x ∈[2kπ−3π4,2kπ+π4],其图象如图所示,所以f(x)的值域是[−√22, 1]. 故选D . 8.【答案】 B【考点】点、线、面间的距离计算 【解析】分别取棱BB 1、B 1C 1的中点M 、N ,连接MN ,易证平面A 1MN // 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时A 1P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得. 【解答】解:如下图所示:分别取棱BB 1、B 1C 1的中点M 、N ,连接MN ,连接BC 1,∵ M 、N 、E 、F 为所在棱的中点,∴ MN // BC 1,EF // BC 1, ∴ MN // EF ,又MN ⊄平面AEF ,EF ⊂平面AEF , ∴ MN // 平面AEF ;∵ AA 1 // NE ,AA 1=NE ,∴ 四边形AENA 1为平行四边形, ∴ A 1N // AE ,又A 1N ⊄平面AEF ,AE ⊂平面AEF , ∴ A 1N // 平面AEF ,又A 1N ∩MN =N ,∴ 平面A 1MN // 平面AEF , ∵ P 是侧面BCC 1B 1内一点,且A 1P // 平面AEF , 则P 必在线段MN 上,在Rt △A 1B 1M 中,A 1M =√A 1B 12+B 1M 2=√1+(12)2=√52, 同理,在Rt △A 1B 1N 中,求得A 1N =√52, ∴ △A 1MN 为等腰三角形,当P 在MN 中点O 时A 1P ⊥MN ,此时A 1P 最短,P 位于M 、N 处时A 1P 最长, A 1O =√A 1M 2−OM 2=√(√52)2−(√24)2=3√24, A 1M =A 1N =√52, 所以线段A 1P 长度的取值范围是[3√24, √52]. 故选B .二、填空题:本大题共6小题,每小题5分,共30分. 【答案】 1【考点】运用诱导公式化简求值 【解析】利用诱导公式即可求得答案. 【解答】解:∵ tan 225∘=tan (180∘+45∘)=tan 45∘=1,故答案为:1.【答案】y=±x,√2【考点】双曲线的特性【解析】由双曲线x 23−y23=1的渐近线方程为x23−y23=0,能求出双曲线x23−y23=1的渐近线方程和离心率.【解答】解:∵双曲线x 23−y23=1的渐近线方程为x23−y23=0,∴双曲线x23−y23=1的渐近线方程为y=±x;离心率e=ca =√3+3√3=√2.故答案为:y=±x,√2.【答案】3【考点】等差数列的通项公式等差数列的前n项和【解析】设出等差数列的首项和公差,然后由a2+a6=a8列式求得a1和d的关系,最后把要求的比式S5a5转化为仅含有公差d的式子,则答案可求.【解答】解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以S5a5=5a1+5×(5−1)d2a1+4d=5a1+10da1+4d=15d5d=3.故答案为3.【答案】[3, +∞)【考点】简单线性规划【解析】作出题中不等式组对应的平面区域,得到如图所示的△ABC及其内部.因为直线y=kx−1经过定点M(0, −1),所以当直线y=kx−1与区域有公共点时,直线的位置应界于AM、CM之间,由此算出直线CM的斜率并加以观察即可得到实数k的取值范围.【解答】作出不等式组表示的平面区域,得到如图所示的△ABC及其内部,即为区域Ω其中A(0, 1),B(0, 3),C(1, 2)∵直线y=kx−1经过定点M(0, −1),∴当直线y=kx−1与区域Ω有公共点时,它的位置应界于AM、CM之间(含边界)∵直线CM的斜率k3∴直线y=kx−1斜率的最小值为3,可得实数k的取值范围为[3, +∞)【答案】4√2【考点】点、线、面间的距离计算简单空间图形的三视图【解析】由主视图知CD⊥平面ABC、B点在AC上的射影为AC中点及AC长,由左视图可知CD长及△ABC中边AC的高,利用勾股定理即可求出棱BD的长.【解答】由主视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=2;由左视图知CD=4,BE=2√3,在Rt△BCE中,BC=√BE2+EC2=√(2√3)2+22=4,在Rt△BCD中,BD=√BC2+CD2=√42+42=4√2.【答案】0,e【考点】数列的求和函数的求值【解析】由新定义可得f(x)=ln x⊕x={x ln xx≥1ln xx0<x<1,代入数值求解可得;可设该数列的前8项分别为1q4,1q3,1q2,1q,1,q,q2,q3,当q>1时,f(a1)+f(a2)+f(a3)…+f(a7)+f(a8)=−q4ln q4<0,不合题意,当0<q<1时,f(a1)+f(a2)+f(a3)…+f(a7)+f(a8)=q4ln q4=1q,解之即可.【解答】解:∵a⊕b={a×b,a×b≥0ab,a×b<0,∴f(x)=ln x⊕x={x ln xx≥1ln xx0<x<1,∴f(2)+f(12)=2ln2+ln1212=2ln2+2ln12=2ln2−2ln2=0;∵{a n}是公比大于0的等比数列,且a5=1,故可设该数列的前8项分别为1q4,1q3,1q2,1q,1,q,q2,q3,故当q>1时,数列的前4项1q,1q,1q,1q均为(0, 1)之间的数,数列的6、7、8项q,q2,q3均大于1,f(a1)+f(a2)+f(a3)…+f(a7)+f(a8)=q4ln1q4+q3ln1q3+q2ln1q2+q ln1q+0+q ln q+q2ln q2+q3ln q3=−q4ln q4<0,这与f(a1)+f(a2)+f(a3)…+f(a7)+f(a8)=a1=1q4>0矛盾;同理可得当0<q<1时,数列的前4项1q4,1q3,1q2,1q均为大于1,数列的6、7、8项q,q2,q3均为(0, 1)之间的数,f(a1)+f(a2)+f(a3)…+f(a7)+f(a8)=q4ln q4=a1=1q4,解得1q4=e,故a1=e故答案为:0;e三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 【答案】解:(1)因为f(x)=√3sin x cos x−cos2x+12=√32sin2x−12cos2x=sin(2x−π6)…又f(A)=sin(2A−π6)=1,A∈(0, π),…所以2A−π6∈(−π6,7π6),2A−π6=12π∴A=13π…(2)由余弦定理a2=b2+c2−2bc cos A得到49=25+c2−2×5cos13π,所以c2−5c−24=0…解得c=−3(舍)或c=8…所以c=8【考点】求二倍角的余弦求二倍角的正弦余弦定理【解析】(1)由f(x)=√3sin x cos x−cos2x+12利用二倍角公式及辅助角公式对已知化简,然后结合f(A)=1,及A∈(0, π)可求A;(2)由余弦定理a2=b2+c2−2bc cos A可求c【解答】解:(1)因为f(x)=√3sin x cos x−cos2x+12=√32sin2x−12cos2x=sin(2x−π6)…又f(A)=sin(2A−π6)=1,A∈(0, π),…所以2A−π6∈(−π6,7π6),2A−π6=12π∴A=13π…(2)由余弦定理a2=b2+c2−2bc cos A得到49=25+c2−2×5cos13π,所以c2−5c−24=0…解得c=−3(舍)或c=8…所以c=8【答案】(I)由数据的离散程度可以看出,B型车在本星期内出租天数的方差较大.(2)∵出租天数为3天的汽车A型车有3辆,B型车有10辆,从这13辆中任取一辆可有C131=13中方法,其中任取一辆是A型车的抽法有C31=3中,因此随机抽取一辆,这辆汽车是A型车的概率P=313;(Ⅲ)50辆A类型车出租的天数的平均数x A¯=3×3+4×30+5×15+6×7+7×550=4.62;50辆B类型车出租的天数的平均数x B¯=3×10+4×10+5×15+6×10+7×550=4.8.答案一:一辆A类型的出租车一个星期出租天数的平均值为4.62,B类车型一个星期出租天数的平均值为4.8,选择B类型的出租车的利润较大,应该购买B型车.答案二:一辆A类型的出租车一个星期出租天数的平均值为4.62,B类车型一个星期出租天数的平均值为4.8,而B型车出租天数的方差较大,所以应购买A型车.【考点】古典概型及其概率计算公式极差、方差与标准差【解析】(Ⅰ)由数据的离散程度可以看出哪个方差较大;(Ⅱ)利用古典概型的概率计算公式即可得出;(Ⅲ)可有从出租的天数的平均数或出租天数的方差大小去考虑.【解答】(I)由数据的离散程度可以看出,B型车在本星期内出租天数的方差较大.(2)∵出租天数为3天的汽车A型车有3辆,B型车有10辆,从这13辆中任取一辆可有C131=13中方法,其中任取一辆是A型车的抽法有C31=3中,因此随机抽取一辆,这辆汽车是A型车的概率P=313;(Ⅲ)50辆A类型车出租的天数的平均数x A¯=3×3+4×30+5×15+6×7+7×550=4.62;50辆B类型车出租的天数的平均数x B¯=3×10+4×10+5×15+6×10+7×550=4.8.答案一:一辆A类型的出租车一个星期出租天数的平均值为4.62,B类车型一个星期出租天数的平均值为4.8,选择B类型的出租车的利润较大,应该购买B型车.答案二:一辆A类型的出租车一个星期出租天数的平均值为4.62,B类车型一个星期出租天数的平均值为4.8,而B 型车出租天数的方差较大,所以应购买A 型车. 【答案】证明:(I) 连接A 1C 交AC 1于点O ,连接EO ∵ ACC 1A 1为正方形,∴ O 为中点∴ EO // A 1B ,EO ⊂平面AEC 1,A 1B ⊄平面AEC 1, ∴ A 1B // 平面AEC 1.(2)∵ AB =AC ,E 是BC 的中点,∴ AE ⊥BC∵ 直三棱柱ABC −A 1B 1C 1中,平面ABC ⊥平面BB 1C 1C , ∴ AE ⊥平面BB 1C 1C ,B 1C ⊂平面BB 1C 1C , ∴ B 1C ⊥AE在矩形BCC 1B 1中,tan ∠CB 1C 1=tan ∠EC 1C =√22,∵∠CB 1C 1+∠B 1CC 1=π2∴ ∠B 1CC 1+∠EC 1C =π2,∴ B 1C ⊥EC 1, 又AE ∩EC 1=E , ∴ B 1C ⊥平面AEC 1【考点】直线与平面垂直 直线与平面平行【解析】对(I),根据三角形的中位线平行于底边,在平面内作平行线,再由线线平行⇒线面平行. 对(II),根据直棱柱的性质,侧棱与侧面都与底面垂直,可证平面内的AE 与B 1C 垂直; 利用平面几何与三角函数知识,证C 1E 与B 1C 垂直;再由线线垂直⇒线面垂直. 【解答】证明:(I) 连接A 1C 交AC 1于点O ,连接EO ∵ ACC 1A 1为正方形,∴ O 为中点∴ EO // A 1B ,EO ⊂平面AEC 1,A 1B ⊄平面AEC 1, ∴ A 1B // 平面AEC 1.(2)∵ AB =AC ,E 是BC 的中点,∴ AE ⊥BC∵ 直三棱柱ABC −A 1B 1C 1中,平面ABC ⊥平面BB 1C 1C , ∴ AE ⊥平面BB 1C 1C ,B 1C ⊂平面BB 1C 1C , ∴ B 1C ⊥AE在矩形BCC 1B 1中,tan ∠CB 1C 1=tan ∠EC 1C =√22, ∵ ∠CB 1C 1+∠B 1CC 1=π2 ∴ ∠B 1CC 1+∠EC 1C =π2,∴ B 1C ⊥EC 1,又AE ∩EC 1=E , ∴ B 1C ⊥平面AEC 1【答案】因为f(1)=12×12−12=0,g(1)=a ln 1=0,所以(1, 0)在函数f(x),g(x)的图象上又f ′(x)=x,g ′(x)=ax,所以f ′(1)=1,g ′(1)=a所以a =1因为F(x)=f(x)−mg(x),所以,F(x)=12x 2−12−m ln x ,其定义域为{x|x >0}F ′(x)=x −m x=x 2−m x当m <0时,F ′(x)=x −m x=x 2−m x>0,所以F(x)在(0, +∞)上单调递增所以F(x)在[1, e]上单调递增,其最小值为F(1)=12×12−12−m ⋅ln 1=0. 当m >0时,令F ′(x)=x −m x=x 2−m x=0,得到x 1=√m >0,x 2=−√m <0(舍)当√m≤1时,即0<m≤1时,F′(x)>0对(1, e)恒成立,所以F(x)在[1, e]上单调递增,其最小值为F(1)=0当√m≥e时,即m≥e2时,F′(x)<0对(1, e)成立,所以F(x)在[1, e]上单调递减,其最小值为F(e)=12e2−12−m当1<√m<e,即1<m<e2时,F′(x)<0对(1,√m)成立,F′(x)>0对(√m,e)成立所以F(x)在(1,√m)单调递减,在(√m,e)上单调递增其最小值为F(√m)=12m−12−m ln√m=12m−12−m2ln m.综上,当m≤1,且m≠0时,F(x)在[1, e]上的最小值为F(1)=0.当1<m<e2时,F(x)在[1, e]上的最小值为F(√m)=12m−12−m2ln m.当m≥e2时,F(x)在[1, e]上的最小值为F(e)=12e2−12−m.【考点】利用导数研究曲线上某点切线方程利用导数研究函数的最值【解析】(1)因为函数f(x)=12x2−12与函数g(x)=a ln x在点(1, 0)处有公共的切线,且f(1)=g(1)=0,说明点(1, 0)在两条曲线上,把两函数求导后根据在(1, 0)处的导数值相等可得a的值;(2)把f(x)与g(x)代入函数F(x)的解析式,然后求其导函数,分m<0和m>0判断导函数的单调性,根据函数的单调性求得F(x)在区间[1, e]上的最小值.其中当m>0时需要由导函数的零点对区间[1, e]进行分段.【解答】因为f(1)=12×12−12=0,g(1)=a ln1=0,所以(1, 0)在函数f(x),g(x)的图象上又f′(x)=x,g′(x)=ax,所以f′(1)=1,g′(1)=a 所以a=1因为F(x)=f(x)−mg(x),所以,F(x)=12x2−12−m ln x,其定义域为{x|x>0}F′(x)=x−mx=x2−mx当m<0时,F′(x)=x−mx =x2−mx>0,所以F(x)在(0, +∞)上单调递增所以F(x)在[1, e]上单调递增,其最小值为F(1)=12×12−12−m⋅ln1=0.当m>0时,令F′(x)=x−mx =x2−mx=0,得到x1=√m>0,x2=−√m<0(舍)当√m≤1时,即0<m≤1时,F′(x)>0对(1, e)恒成立,所以F(x)在[1, e]上单调递增,其最小值为F(1)=0当√m≥e时,即m≥e2时,F′(x)<0对(1, e)成立,所以F(x)在[1, e]上单调递减,其最小值为F(e)=12e2−12−m当1<√m<e,即1<m<e2时,F′(x)<0对(1,√m)成立,F′(x)>0对(√m,e)成立所以F(x)在(1,√m)单调递减,在(√m,e)上单调递增其最小值为F(√m)=12m−12−m ln√m=12m−12−m2ln m.综上,当m≤1,且m≠0时,F(x)在[1, e]上的最小值为F(1)=0.当1<m<e2时,F(x)在[1, e]上的最小值为F(√m)=12m−12−m2ln m.当m≥e2时,F(x)在[1, e]上的最小值为F(e)=12e2−12−m.【答案】解:(1)因为F(−1, 0)为椭圆的焦点,所以c=1,又b2=3,所以a2=4,所以椭圆方程为x24+y23=1;(2)因为直线的倾斜角为45∘,所以直线的斜率为1,所以直线方程为y=x+1,和椭圆方程联立得到{x24+y23=1y=x+1,消掉y,得到7x2+8x−8=0,所以△=288,x1+x2=−87,x1x2=−87,所以|CD|=√1+k2|x1−x2|=√2×√(x1+x2)2−4x1x2=247;(3)当直线l无斜率时,直线方程为x=−1,此时D(−1, 32),C(−1, −32),△ABD,△ABC面积相等,|S1−S2|=0,当直线l斜率存在(显然k≠0)时,设直线方程为y=k(x+1)(k≠0),设C(x1, y1),D(x2, y2),和椭圆方程联立得到{x24+y23=1y=k(x+1),消掉y得(3+4k2)x2+8k2x+4k2−12=0,显然△>0,方程有根,且x1+x2=−8k23+4k2,x1x2=4k2−123+4k2,此时|S1−S2|=2||y1|−|y2||=2|y1+y2|=2|k(x2+1)+k(x1+1)|=2|k(x2+x1)+2k|=12|k|3+4k2=123|k|+4|k|≤2√|k|×4|k|=2√12=√3,(k=±√32时等号成立)所以|S1−S2|的最大值为√3.【考点】圆锥曲线的综合问题椭圆的标准方程【解析】(1)由焦点F坐标可求c值,根据a,b,c的平方关系可求得a值;(2)写出直线方程,与椭圆方程联立消掉y得关于x的一元二次方程,利用韦达定理及弦长公式即可求得|CD|;(3)当直线l不存在斜率时可得,|S1−S2|=0;当直线l斜率存在(显然k≠0)时,设直线方程为y=k(x +1)(k ≠0),与椭圆方程联立消y 可得x 的方程,根据韦达定理可用k 表示x 1+x 2,x 1x 2,|S 1−S 2|可转化为关于x 1,x 2的式子,进而变为关于k 的表达式,再用基本不等式即可求得其最大值; 【解答】 解:(1)因为F(−1, 0)为椭圆的焦点,所以c =1,又b 2=3, 所以a 2=4,所以椭圆方程为x 24+y 23=1;(2)因为直线的倾斜角为45∘,所以直线的斜率为1, 所以直线方程为y =x +1,和椭圆方程联立得到 {x 24+y 23=1y =x +1,消掉y ,得到7x 2+8x −8=0, 所以△=288,x 1+x 2=−87,x 1x 2=−87,所以|CD|=√1+k 2|x 1−x 2|=√2×√(x 1+x 2)2−4x 1x 2=247;(3)当直线l 无斜率时,直线方程为x =−1,此时D(−1, 32),C(−1, −32),△ABD ,△ABC 面积相等,|S 1−S 2|=0, 当直线l 斜率存在(显然k ≠0)时,设直线方程为y =k(x +1)(k ≠0), 设C(x 1, y 1),D(x 2, y 2),和椭圆方程联立得到{x 24+y 23=1y =k(x +1),消掉y 得(3+4k 2)x 2+8k 2x +4k 2−12=0, 显然△>0,方程有根,且x 1+x 2=−8k 23+4k 2,x 1x 2=4k 2−123+4k 2,此时|S 1−S 2|=2||y 1|−|y 2||=2|y 1+y 2|=2|k(x 2+1)+k(x 1+1)|=2|k(x 2+x 1)+2k|=12|k|3+4k2=123|k|+4|k|≤2√3|k|×4|k|=2√12=√3,(k =±√32时等号成立) 所以|S 1−S 2|的最大值为√3. 【答案】解:(1)由题意得y =f(x)x=ax 2+axx=ax +a 在(0, +∞)是增函数,由一次函数性质知:当a >0时,y =ax +a 在(0, +∞)上是增函数, ∴ a >0.(2)∵ f(x)是“一阶比增函数”,即f(x)x在(0, +∞)上是增函数,又∀x 1,x 2∈(0, +∞),有x 1<x 1+x 2,x 2<x 1+x 2, ∴f(x 1)x 1<f(x 1+x 2)x 1+x 2,f(x 2)x 2<f(x 1+x 2)x 1+x 2,∴ f(x 1)<x 1f(x 1+x 2)x 1+x 2,f(x 2)<x 2f(x 1+x 2)x 1+x 2,∴ f(x 1)+f(x 2)<x 1f(x 1+x 2)x 1+x 2+x 2f(x 1+x 2)x 1+x 2=f(x 1+x 2).(3)设f(x 0)=0,其中x 0>0.因为f(x)是“一阶比增函数”,所以当x >x 0时,f(x)x>f(x 0)x 0=0.法一:取t ∈(0, +∞),满足f(t)>0,记f(t)=m .由(2)知f(2t)>2m ,同理f(4t)>2f(2t)>4m ,f(8t)>2f(4t)>8m . 所以一定存在n ∈N ∗,使得f(2n t)>2n m >2013, 所以f(x)>2013 一定有解.法二:取t ∈(0, +∞),满足f(t)>0,记f(t)t=k .因为当x >t 时,f(x)x>f(t)t=k ,所以f(x)>kx 对x >t 成立.只要 x >2013k,则有f(x)>kx >2013,所以f(x)>2013 一定有解.【考点】函数与方程的综合运用 【解析】(1)利用“一阶比增函数”的意义及一次函数的单调性即可得出; (2)利用“一阶比增函数”的意义及增函数的定义即可证明; (3)利用“一阶比增函数”的意义和(2)的结论即可证明. 【解答】解:(1)由题意得y =f(x)x=ax 2+axx=ax +a 在(0, +∞)是增函数,由一次函数性质知:当a >0时,y =ax +a 在(0, +∞)上是增函数, ∴ a >0.(2)∵ f(x)是“一阶比增函数”,即f(x)x在(0, +∞)上是增函数,又∀x 1,x 2∈(0, +∞),有x 1<x 1+x 2,x 2<x 1+x 2, ∴f(x 1)x 1<f(x 1+x 2)x 1+x 2,f(x 2)x 2<f(x 1+x 2)x 1+x 2,∴ f(x 1)<x 1f(x 1+x 2)x 1+x 2,f(x 2)<x 2f(x 1+x 2)x 1+x 2,∴ f(x 1)+f(x 2)<x 1f(x 1+x 2)x 1+x 2+x 2f(x 1+x 2)x 1+x 2=f(x 1+x 2).(3)设f(x 0)=0,其中x 0>0.因为f(x)是“一阶比增函数”,所以当x >x 0时,f(x)x>f(x 0)x 0=0.法一:取t ∈(0, +∞),满足f(t)>0,记f(t)=m .由(2)知f(2t)>2m ,同理f(4t)>2f(2t)>4m ,f(8t)>2f(4t)>8m . 所以一定存在n ∈N ∗,使得f(2n t)>2n m >2013, 所以f(x)>2013 一定有解.法二:取t ∈(0, +∞),满足f(t)>0,记f(t)t=k .因为当x>t时,f(x)x >f(t)t=k,所以f(x)>kx对x>t成立.只要x>2013k,则有f(x)>kx>2013,所以f(x)>2013一定有解.。
北京市西城区2010 — 2011学年度第一学期期末试卷高三数学(文科) 2011.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知集合{1}A x x =≥-,{3}B x x =<,那么集合A B = [来源:学#科#网Z#X#X#K] (A ){13}x x -≤< (B ){13}x x -<< (C ){1}x x <-(D ){3}x x >2. 下列函数中,图象关于坐标原点对称的是 (A )lg y x =(B )cos y x =(C )||y x =(D )sin y x =3. 若a b >,则下列不等式正确的是 (A )11a b< (B )33a b >(C )22a b >(D )a b >4. 命题“若a b >,则1a b +>”的逆否命题是 (A )若1a b +≤,则a b > (B )若1a b +<,则a b > (C )若1a b +≤,则a b ≤(D )若1a b +<,则a b <5. 设{}n a 是等差数列,若24a =,57a =,则数列{}n a 的前10项和为 (A )12(B )60(C )75(D )1206. 阅读右面程序框图,如果输出的函数值在区间11[,]42内,那么输入实数x 的取值范围是 (A )(,2]-∞- (B )[2,1]-- (C )[1,2]- (D )[2,)+∞7. 如图,四边形ABCD 中,1AB AD CD ===,2BD =BD CD ⊥,将四边形ABCD沿对角线BD 折成四面体A BCD '-,使平 面A BD '⊥平面BCD ,则下列结论正确的是 (A )A C BD '⊥ (B )90BA C'∠=(C )A DC '∆是正三角形(D )四面体A BCD '-的体积为138. 设函数121()log ()2xf x x =-,2121()log ()2xf x x =-的零点分别为12,x x ,则(A )1201x x << (B )121x x = (C )1212x x << (D )122x x ≥第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. i 为虚数单位,则22(1i)=+______. 10. 已知1==a b ,12⋅=a b ,则平面向量a 与b 夹角的大小为______. 11.若实数,x y 满足条件10,2,1,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为______.12.在ABC ∆中,若3,3a b =,3B 2π∠=,则c =____. 13. 已知双曲线22221x y a b-=的离心率为2,它的一个焦点与抛物线28y x =的焦点相同,那么双曲线的焦点坐标为______;渐近线方程为_______.14.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”.在这个定义下,给出下列命题:①到原点的“折线距离”等于1的点的集合是一个正方形; ②到原点的“折线距离”等于1的点的集合是一个圆;③到(1,0),(1,0)M N -两点的“折线距离”之和为4的点的集合是面积为6的六边形; ④到(1,0),(1,0)M N -两点的“折线距离”差的绝对值为1的点的集合是两条平行线. 其中正确的命题是____________.(写出所有正确命题的序号)三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2()3sin 22sin f x x x -. (Ⅰ)求()6f π的值;(Ⅱ)若[,]63x ππ∈-,求()f x 的最大值和最小值.16.(本小题满分13分)如图,在三棱柱111ABC A B C -中,侧面11ABB A ,11ACC A均为正方形,90BAC ∠=,D 为BC 中点.(Ⅰ)求证:1//A B 平面1ADC ; (Ⅱ)求证:11C A B C ⊥.[来源:学科网ZXXK] [来源:学|科|网]17.(本小题满分13分)对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下: [来源:Z&xx&](Ⅰ)求出表中,M p 及图中a 的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率. [来源:学科网]18.(本小题满分13分)分组[来频数 频率 [10,15) 10 0.25[15,20)24n[20,25)mp[25,30)20.05 合计M1ABCDC 1 A 1B 1已知椭圆2222:1x y C a b+= (0>>b a )的一个焦点坐标为(1,0),且长轴长是短轴长的2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为坐标原点,椭圆C 与直线1y kx =+相交于两个不同的点,A B ,线段AB 的中点为P ,若直线OP 的斜率为1-,求△OAB 的面积.19.(本小题满分14分)已知函数()ln f x ax x =+()a ∈R .(Ⅰ)若2a =,求曲线()y f x =在1x =处切线的斜率; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()22g x x x =-+,若对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值范围.[来源:学.科.网Z.X.X.K]20.(本小题满分14分)[来源:Z,xx,]已知数列}{n a 的首项为1,对任意的n ∈*N ,定义n n n a a b -=+1. (Ⅰ) 若1n b n =+,求4a ;(Ⅱ) 若11(2)n n n b b b n +-=≥,且12,(0)b a b b ab ==≠.[来源:学&科&网] (ⅰ)当1,2a b ==时,求数列{}n b 的前3n 项和;(ⅱ)当1a =时,求证:数列}{n a 中任意一项的值均不会在该数列中出现无数次.北京市西城区2010 — 2011学年度第一学期期末高三数学参考答案及评分标准(文科) 2011.1一、选择题:本大题共8小题,每小题5分,共40分.2[来二、填空题:本大题共6小题,每小题5分,共30分.9.i - 10. 6011. 412.3 13. (2,0)±30x y ±= 14. ①③④[来源:] 注:13题第一问2分,第二问3分;14题①③④选对其中两个命题得2分,选出错误的命题即得0分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分) 解:(Ⅰ)()6f π232sin 36ππ- ………………2分 321241=-⨯=. ………………4分 (Ⅱ)()f x 3sin2cos21x x =+- ………………6分2sin(2)16x π=+-. ………………8分[来源:]因为[,]62x ππ∈-,所以65626πππ≤+≤-x , ………………10分 所以 1sin(2)126x π-≤+≤, ………………11分 所以()f x 的最大值为1 ,最小值为2-. ………………13分16.(本小题满分13分)解:(Ⅰ)连结1AC ,设1AC 交1AC 于点O ,连结OD . ………………2分 因为11ACC A 为正方形,所以O 为1AC 中点,又D 为BC 中点,所以OD 为1A BC ∆的中位线,[来源:学科网]所以1//A B OD . ………………4分 因为OD ⊂平面1ADC ,1A B ⊄平面1ADC , 所以1//A B 平面1ADC . ………………6分 (Ⅱ)由(Ⅰ)可知,11C A CA ⊥ ………………7分因为侧面11ABB A 是正方形,1AB AA ⊥, 且90BAC ∠=, 所以AB ⊥平面11ACC A . 又11//AB A B ,所以11A B ⊥平面11ACC A . ………………9分 又因为1C A ⊂平面11ACC A ,所以111A B C A ⊥. ………………10分 所以111C A A B C ⊥平面. ………………12分 又1B C ⊂平面11A B C ,所以11C A B C ⊥. ………………13分 17.(本小题满分13分)解:(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,100.25M=, 所以40M =. ………………2分 因为频数之和为40,所以1024240m +++=,4m =. ………………3分40.1040m p M ===. ………………4分 因为a 是对应分组[15,20)的频率与组距的商,所以240.12405a ==⨯.……………6分 (Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25,所以估计该校高三学生参加社区服务的次数在此区间内的人数为60人. ………8分 (Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有26m +=人,设在区间[20,25)内的人为{}1234,,,a a a a ,在区间[25,30)内的人为{}12,b b . 则任选2人共有1213141112232421(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a b a b a a a a a b2234(,),(,)a b a a ,3132414212(,),(,),(,),(,),(,)a b a b a b a b b b 15种情况, ………………10分AB CDC 1A 1B 1O而两人都在[25,30)内只能是()12,b b 一种, ………………12分 所以所求概率为11411515P =-=.(约为0.93) ………………13分18.(本小题满分13分)解:(Ⅰ)由题意得1,2c a b ==, ………………2分又221a b -=,所以21b =,22a =. ………………3分所以椭圆的方程为2212x y +=. ………………4分 (Ⅱ)设(0,1)A ,11(,)B x y ,00(,)P x y ,联立2222,1x y y kx ⎧+=⎨=+⎩ 消去y 得22(12)40k x kx ++=……(*), ………………6分解得0x =或2412k x k =-+,所以12412kx k=-+, 所以222412(,)1212k k B k k--++,2221(,)1212k P k k -++, ………………8分 因为直线OP 的斜率为1-,所以112k-=-,[来源:学科网ZXXK] 解得12k =(满足(*)式判别式大于零). ………………10分 O 到直线1:12l y x =+5………………11分 2211(1)AB x y =+-=253………………12分 所以△OAB 的面积为12252335=. ………………13分19.(本小题满分14分)解:(Ⅰ)由已知1()2(0)f x x x'=+>, ………………2分(1)213f '=+=.故曲线()y f x =在1x =处切线的斜率为3. ………………4分[来源:学§科§网](Ⅱ)11'()(0)ax f x a x x x+=+=>. ………………5分 ①当0a ≥时,由于0x >,故10ax +>,'()0f x >所以,()f x 的单调递增区间为(0,)+∞. ………………6分②当0a <时,由'()0f x =,得1x a=-.在区间1(0,)a -上,()0f x '>,在区间1(,)a -+∞上()0f x '<,所以,函数()f x 的单调递增区间为1(0,)a -,单调递减区间为1(,)a-+∞.………………8分(Ⅲ)由已知,转化为max max ()()f x g x <. ………………9分max ()2g x = ………………10分由(Ⅱ)知,当0a ≥时,()f x 在(0,)+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在33(e )e 32f a =+>,故不符合题意.) ………………11分当0a <时,()f x 在1(0,)a -上单调递增,在1(,)a -+∞上单调递减,故()f x 的极大值即为最大值,11()1ln()1ln()f a a a-=-+=----, ………13分 所以21ln()a >---, 解得31ea <-. ………………14分 [来源:学科网ZXXK]20.(本小题满分14分)(Ⅰ) 解:11a =,211123a a b =+=+=,322336a a b =+=+=4336410a a b =+=+=. ………………3分(Ⅱ)(ⅰ)解:因为11n n n b b b +-=(2n ≥),所以,对任意的n ∈*N 有5164321n n n n n n n b b b b b b b ++++++====, 即数列{}n b 各项的值重复出现,周期为6. ………………5分又数列}{n b 的前6项分别为21,21,1,2,2,1,且这六个数的和为7.设数列{}n b 的前n 项和为n S ,则,当2()n k k =∈*N 时,36123456()7n k S S k b b b b b b k ==+++++=,当21()n k k =+∈*N 时,363123456616263()n k k k k S S k b b b b b b b b b ++++==++++++++ 123775k b b b k =+++=+ , ………………7分 所以,当n 为偶数时,372n S n =;当n 为奇数时,3732n n S +=. ………………8分(ⅱ)证明:由(ⅰ)知:对任意的n ∈*N 有6n n b b +=,又数列}{n b 的前6项分别为111,,,1,,b b b b,且这六个数的和为222b b ++.设)0(6≥=+n a c i n n ,(其中i 为常数且}6,5,4,3,2,1{∈i ),所以1n n c c +-=66666162636465n i n i n i n i n i n i n i n i a a b b b b b b ++++++++++++++-=+++++222b b=++. 所以,数列}{6i n a +均为以222b b++为公差的等差数列. ………………10分 因为0b >时,2220b b ++>,0b <时,22220b b++≤-<, ………………12分所以{6n i a +}为公差不为零的等差数列,其中任何一项的值最多在该数列中出现一次.所以数列}{n a 中任意一项的值最多在此数列中出现6次,即任意一项的值不会在此数列中重复出现无数次. ………………14分。
北京市海淀区2011-2012学年高三年级第一学期期中练习数 学(文科)2011.11选择题(共4O 分)一、选择题:本大题共8小题,毎小题5分,共40分。
在每小题列出的四个迭項中,选出符合题目要求的一项1. 设集合{|3}A x x =≥, {|14}B x x =≤≤,则R BA ð=A.[1,3)B. (-∞,4] C [3,4] D.[l ,+∞)A. [0,1)B. [0, +∞) C(l, +∞) D [0,1)(1,)+∞3. 已知等差数列{}n a 中,11a =,35a =-,则1234a a a a ---= A. -14 B. -9 C. 11 D. 16A. b a c >> B . b c a >> C. a b c >> D. a c b >> 5. 要得到函数1()2xf x -=的图象.可以将A. 函数2xy =的图象向左平移1个单位长度 B.函数2xy =的图象向右移1个单位长度 C. 函数2xy -=的图象向左平移1个单位长度 D.函数2xy -=的图象向右平移1个单位长度A B C DA.5B. 6 C 7 D.8非选择题(共110分〉二、填空埋:本大题共6小题,每小题5分,共30分.10已知向量a = (l,2). b = (l ,λ〉, c = (3,4).若a +b 与c 共线.则实效λ=______. 11.函数()log (1)a f x x =+(0a >且1a ≠)在[12,1]上的最小值是1,则a =_______. 12.已知命题p: x R ∃∈,2210ax x ++≤.若命题p 是假命题,则实数a 的取值范围是_______则c =_______;sin A =_______ 14. 已知集合123,,,,*n A a a a a n N ∈={},且2n >,令{|,A i j T x x a a ==+,i j a A a A ∈∈,1}i j n ≤<≤,()A card T 表示集合A T 中元素的个数.①若A={ 2,4,8,16},则()A card T =_________;②若1i i a a c +-=(11i n ≤≤-, c 为非零常数),则()A card T =_________. 三、解答题:本大理共6小题.共80分.解答应写出文宇说明,演算步骤或证明过程. 15. (本小理共13分)(I)求()f x 的最小正周期已知数列{}n a 是公差不为零的等差数列,且23a =, 又4a , 5a ,8a 成等比数列. (I)求数列{}n a 的通项公式;(II) 设n S 为数列{}n a 的前n 项和,求使n n a S =成立的所有n 的值.17. (本小题共13分)某工厂生产某种产品,每日的成本C(单位:万元)与日产里x (单位:吨)满足函数关系式已知每日的利润 L= S - C ,且当x =2时,L=3.(I)求k 的值;(II)当日产量为多少吨时,毎日的利润可以达到最大,并求出最大值18.(木小越共13分)已知数列{}n a 的前n 项和为n S ,且满足21n n S a =-(*n N ∈) (I)求证:数列{}n a 是等比数列;*n N ∈恒成立,求实数t 的取值范围.(1)当3a =时,求()f x 的单调递增区间; (II)求证:曲线()y f x =总有斜率为a 的切线;(III)若存在[1,2]x ∈-,使()0f x <成立,求a 的取值范围.(20)(本小题共14分)已知函数,(),x x Pf x x x M ∈⎧=⎨-∈⎩其中集合P ,M 是非空数集.设(){|(),}f P y y f x x P ==∈(){|(),}f M y y f x x M ==∈.(I)若 P = [l,3],M=(-∞,-2],求()()f P f M ;(II)若PM =∅,且函数()f x 是定义在R 上的单调递增函数,求集合P,M ;(III)判断命题“若P M R ≠,则()()f P f M R ≠”的真假,并说明理由.北京市海淀区2011-2012学年高三年级第一学期期中练习数 学(文科)2011.11参考答案一、选择题1、A ;2、D ;3、D ;4、C ;5、D ;6、C ;7、A ;8、B ; 二、填空题9、14-;10、23;11、32;12、(1,)+∞;137;14、6,23n -;三、解答题15、解:(1)∵2()sin cos f x x x x ==11cos 2sin 222xx -……4分=1sin 222x x +sin(2)3x π+6分 ∴函数()f x 的最小正周期为π……7分(2)由(1)知:()f x=sin(2)3x π+02x π≤≤,所以42333x πππ≤+≤ 所以,当232x ππ+=,即12x π=时,()f x取得最大值1;……10分 当4233x ππ+=,即2x π=时,()f x取得最小值……13分 16、解:(1)因为4a , 5a ,8a 成等比数列,所以2548a a a =.……2分 设等差数列{}n a 的公差为d ,则2222(3)(2)(6)a d a d a d +=++,……4分因为23a =,所以220d d +=,因为0d ≠所以2d =-,……6分 所以27n a n =-+……7分(2)由27n a n =-+可知,15a =,所以1()2n n a a n S +=…9分(572)2n n+-=26n n =-…11分 由n n a S =可得:2276n n n -+=-所以1n =或7n =……13分17、解:(1)由题意可得22,(06)811,(6)k x x L x x x ⎧++<<⎪=-⎨⎪-≥⎩……2分 因为x =2……4分所以18k =……5分 (2)当06x <<时,228L x x =++-所以182(8)188L x x =-++-18[2(8)]188x x=--++-186≤=……9分当且仅当182(8)8x x-=-即5x =时取得等号……10分当6x ≥时,115L x =-≤……12分 所以当5x =时L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大值6万元。
海淀区高三年级第一学期期末练习数学(文)参考答案及评分标准2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)πcosππ2()2sinππ44sin cos44f=+=+=+------------------------3分(Ⅱ)由sin cos0x x+≠得ππ,4x k k≠-∈Z.因为cos2()2sinsin cosxf x xx x=++22cos sin2sinsin cosx xxx x-=++------------------------------------5分cos sinx x=+π)4x+,-------------------------------------7分所以()f x的最小正周期2πT=. -------------------------------------9分因为函数siny x=的对称轴为ππ+,2x k k=∈Z, ------------------------------11分又由πππ+,42x k k+=∈Z,得ππ+,4x k k=∈Z,9. 2 10.16 11. 712.{1,2,4}13.50,1015 14.1-;①②③所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .-----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =. ----------------------------------4分(Ⅱ)设事件A 为“甲队员射击,命中环数大于7环”,它包含三个两两互斥的事件:甲队员射击,命中环数为8环,9环,10环.所以()0.290.450.010.75P A =++=. ----------------------------------9分 (Ⅲ)甲队员的射击成绩更稳定. ---------------------------------13分 17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,所以//CD AB . ----------------------------1分 又因为CD ⊄平面PAB , -------------------3分 所以//CD 平面PAB . --------------------------4分 (Ⅱ)因为PA PB =,点E 是棱AB 的中点,所以PE AB ⊥. ----------------------------------5分 因为平面PAB ⊥平面ABCD ,平面PAB平面ABCD AB =,PE ⊂平面PAB ,----------------------------------7分所以PE ⊥平面ABCD , ------------------------------------8分 因为AD ⊂平面ABCD ,所以PE AD ⊥. ------------------------------------9分 (Ⅲ)因为CA CB =,点E 是棱AB 的中点,所以CE AB ⊥. --------------------------------10分 由(Ⅱ)可得PE AB ⊥, ---------------------------------11分 所以AB ⊥平面PEC , --------------------------------13分 又因为AB ⊂平面PAB ,所以平面PAB ⊥平面PEC . --------------------------------14分18.(本小题共13分)解:(Ⅰ)'()(1)e x f x x a =++,x ∈R . -------------------------------2分因为函数()f x 是区间[3,)-+∞上的增函数,所以'()0f x ≥,即10x a ++≥在[3,)-+∞上恒成立.------------------------------3分 因为1y x a =++是增函数,所以满足题意只需310a -++≥,即2a ≥. -------------------------------5分 (Ⅱ)令'()0f x =,解得1x a =-- -------------------------------6分 (),'()f x f x 的情况如下:--------------------------------------10分①当10a --≤,即1a ≥-时,()f x 在[0,2]上的最小值为(0)f , 若满足题意只需2(0)e f ≥,解得2e a ≥,所以此时,2e a ≥; --------------------------------------11分②当012a <--<,即31a -<<-时,()f x 在[0,2]上的最小值为(1)f a --, 若满足题意只需2(1)e f a --≥,求解可得此不等式无解,所以a 不存在; ------------------------12分③当12a --≥,即3a ≤-时,()f x 在[0,2]上的最小值为(2)f , 若满足题意只需2(2)e f ≥,解得1a ≥-,所以此时,a 不存在. ------------------------------13分综上讨论,所求实数a 的取值范围为2[e ,)+∞. 19. (本小题共14分)解:(Ⅰ)由题意可得1c =, ----------------------------------1分 又由题意可得12c a =, 所以2a =, ----------------------------------2分所以2223b a c =-=, ----------------------------------3分所以椭圆C 的方程为22143x y +=. ---------------------------------4分所以椭圆C 的右顶点(2,0)A , --------------------------------5分 代入圆F 的方程,可得21r =,所以圆F 的方程为22(1)1x y -+=. ------------------------------6分 (Ⅱ)法1:假设存在直线l :(2)y k x =-(0)k ≠满足条件, -----------------------------7分由22(2),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)1616120k x k x k +-+-=----------------------------8分设11(,)B x y ,则21216243k x k +=+, ---------------------------------9分可得中点22286(,)4343k kP k k -++, --------------------------------11分由点P 在圆F 上可得2222286(1)()14343k k k k --+=++化简整理得20k = --------------------------------13分 又因为0k ≠,所以不存在满足条件的直线l . --------------------------------14分 (Ⅱ)法2:假设存在直线l 满足题意.由(Ⅰ)可得OA 是圆F 的直径, -----------------------------7分 所以OP AB ⊥. ------------------------------8分 由点P 是AB 中点,可得||||2OB OA ==. --------------------------------9分设点11(,)B x y ,则由题意可得2211143x y +=. --------------------------------10分又因为直线l 的斜率不为0,所以214x <, -------------------------------11分所以22222211111||3(1)3444x x OB x y x =+=+-=+<,-------------------------------13分这与||||OA OB =矛盾,所以不存在满足条件的直线l . --------------------------14分 20. (本小题共13分)解:(Ⅰ)只有y =是N 函数. ----------------------------3分 (Ⅱ)函数()[ln ]1g x x =+是N 函数.证明如下:显然,*x ∀∈N ,*()[ln ]1g x x =+∈N . ---------------------------------------4分不妨设*[ln ]1,x k k +=∈N ,由[ln ]1x k +=可得1ln k x k -≤<, 即11e e k k x -≤≤<.因为*k ∀∈N ,恒有11e e e (e 1)1k k k ---=->成立, 所以一定存在*x ∈N ,满足1e e k k x -≤<, 所以设*k ∀∈N ,总存在*x ∈N 满足[ln ]1x k +=,所以函数()[ln ]1g x x =+是N 函数. ---------------------------------------8分 (Ⅲ)(1)当0b ≤时,有2(2)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ---------------------------9分(2)当0b >时,① 若0a ≤,有(1)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ------------------10分② 若01a <≤,由指数函数性质易得 x b a b a ⋅≤⋅,所以*x ∀∈N ,都有()[][]x f x b a b a =⋅≤⋅所以函数()[]x f x b a =⋅都不是N 函数. -----------------11分③ 若1a >,令12m m b a b a +⋅-⋅>,则2log (1)am b a >⋅-,所以一定存在正整数k 使得 12k k b a b a +⋅-⋅>, 所以*12,n n ∃∈N ,使得112k k b a n n b a +⋅<<<⋅, 所以12()(1)f k n n f k <<≤+.又因为当x k <时,x k b a b a ⋅<⋅,所以()()f x f k ≤; 当1x k >+时,1x k b a b a +⋅>⋅,所以()(1)f x f k ≥+, 所以*x ∀∈N ,都有*{()|}n f x x ∉∈N ,所以函数()[]x f x b a =⋅都不是N 函数.------------------13分综上所述,对于任意实数,a b ,函数()[]x f x b a =⋅都不是N 函数.。
2011年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出四个选项中,选出符合题目要求的一项。
(1) 已知全集U=R ,集合{}21P x x =½£,那么U P =ð(A)(,1-¥-) (B)(1,+¥) (C)(-1,1) (D)()()11-¥,-,+¥【解析】:2111x x £Þ-££,U P =ð()()11-¥,-,+¥ ,故选D (2)复数212ii-=+(A)i (B )i - (C)4355i -- (D)4355i -+ 【解析】:22i 2(i 2)(12i)2242(1)2412i (12i)(12i)1414(1)i i i i i i i ---------+====++----,选A 。
(3)如果1122log log 0x y <<,那么,那么(A )1y x << (B)1x y << (C)1x y << (D)1y x << 【解析】:1122log log x y x y <Þ>,12log 01y y <Þ>,即1y x <<故选D(4)若p 是真命题,q 是假命题,则是假命题,则(A )p q Ù是真命题是真命题 (B)p q Ú是假命题是假命题 (C)p Ø是真命题是真命题 (D)q Ø是真命题是真命题 【解析】:或(Ú)一真必真,且(Ù)一假必假,非(Ø)真假相反,故选D(5)某四棱锥的三视图如图所示,该四棱锥的表面积是(A)32 (B)16+162 (C)48 (D)16322+【解析】:由三视图可知几何体为底面边长为4,高为2的正四棱锥,则四棱锥的斜高为22,表面积2142244161622´´´+=+故选B 。
海淀区高三年级第二学期期末练习数 学 (文科) 2011.5选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 在复平面上,复数2i z =-对应的点在A .第一象限B . 第二象限 C. 第三象限 D. 第四象限2.已知全集,U =R 集合{1,2,3,4,5}A =,{|2}B x x =∈≥R ,则右图中阴影部分所表示的集合为A.{1}B.{0,1}C.{1,2}D.{0,1,2} 3.函数21()log f x x x=-的零点所在区间为A .1(0,)2B. 1(,1)2C. (1,2)D. (2,3)4.若函数sin()3y x π=+的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,则得到的图象所对应的函数解析式为 A .1sin()26y x π=+B. 1sin()23y x π=+C. 2sin(2)3y x π=+D. sin(2)3y x π=+5.某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下: 甲 乙 9 8 8 1 7 7 9 9 6 1 0 2 2 5 6 7 9 95323237 1 0 4根据上图对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是 A .甲运动员得分的极差大于乙运动员得分的极差B .甲运动员得分的中位数大于乙运动员得分的中位数C .甲运动员得分的平均值大于乙运动员得分的平均值D .甲运动员的成绩比乙运动员的成绩稳定6. 圆2220x y ax +-+=与直线l 相切于点(3,1)A ,则直线l 的方程为A. 250x y --=B. 210x y --=C. 20x y --=D. 40x y +-=7. 已知正方体1111ABC D A B C D -中,点M 为线段11D B 上的动点,点N 为线段A C 上的动点,则与线段1D B 相交且互相平分的线段M N 有A .0条 B.1条 C. 2条 D.3条1D 1A 1C 1BDCM8. 若椭圆1C :1212212=+b y a x(011>>b a )和椭圆2C :1222222=+b y a x(022>>b a )的焦点相同且12a a >.给出如下四个结论:① 椭圆1C 和椭圆2C 一定没有公共点 ② 22212221b b a a -=- ③1122a b a b > ④1212a a b b -<-其中,所有正确结论的序号是A .②③④ B. ①③④ C .①②④ D. ①②③非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.双曲线C :22122xy-=的渐近线方程为 ;若双曲线C 的右焦点和抛物线22y px =的焦点相同,则抛物线的准线方程为 .10.点(,)P x y 在不等式组22y x y x x ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域内,则z x y =+的最大值为_______.11. 一个几何体的三视图如图所示,则这个几何体的体积 为____________. 12. 已知ABC ∆的面积3=S ,3A π∠=,则=⋅AC AB _________.13.已知数列}{n a 满足,11=a 且)(1n n n a a n a -=+(*n ∈N ), 则2_____a =;n a =________.14.已知函数'()f x 、'()g x 分别是二次函数()f x 和三次函数()g x 的 导函数,它们在同一坐标系下的图象如图所示: ①若(1)1f =,则(1)f -= ;② 设函数()()(),h x f x g x =-则(1),(0),(1)h h h -的 大小关系为 .(用“<”连接))x 正视图俯视图左视图三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15. (本小题共13分)已知函数x x x x f 2sin cos sin )(+=. (Ⅰ)求()4f π的值;(II )若[0,]2x π∈,求)(x f 的最大值及相应的x 值.16. (本小题共13分)已知直三棱柱111C B A ABC -的所有棱长都相等,且F E D ,,分别为11,,AA BB BC 的中点. (I) 求证:平面//1FC B 平面EAD ;(II )求证:⊥1BC 平面EAD .17.(本小题共14分)某学校餐厅新推出A B C D 、、、四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:(Ⅰ)若同学甲选择的是A 款套餐,求甲的调查问卷被选中的概率;(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D 款套餐的概率.D1C FEBAC1A 1B 种类A B C D18. (本小题共14分)已知函数321().3f x x ax bx =-+ (,)a b ∈R(I )若'(0)'(2)1f f ==,求函数()f x 的解析式;(II )若2b a =+,且()f x 在区间(0,1)上单调递增,求实数a 的取值范围.19.(本小题共14分)已知椭圆C :22221 (0)x y a b ab+=>>两个焦点之间的距离为2,且其离心率为2.(Ⅰ) 求椭圆C 的标准方程;(Ⅱ) 若F 为椭圆C 的右焦点,经过椭圆的上顶点B 的直线与椭圆另一个交点为A ,且满 足=2BA BF ⋅,求ABF ∆外接圆的方程.20. (本小题共13分)对于数列12n A a a a :,,,,若满足{}0,1(1,2,3,,)i a i n ∈=⋅⋅⋅,则称数列A 为“0-1数列”.定义变换T ,T 将“0-1数列”A 中原有的每个1都变成0,1,原有的每个0都变成1,0. 例如A :1,0,1,则():0,1,1,0,0,1.T A 设0A 是“0-1数列”,令1(),k k A T A -= 12k = ,,3,.(Ⅰ) 若数列2A :1,0,0,1,0,1,1,0,1,0,0,1. 求数列10,A A ;(Ⅱ) 若数列0A 共有10项,则数列2A 中连续两项相等的数对至少有多少对?请说明理由;(Ⅲ)若0A 为0,1,记数列k A 中连续两项都是0的数对个数为k l ,1,2,3,k =⋅⋅⋅.求k l 关于k 的表达式.海淀区高三年级第二学期期末练习数 学(文)答案及评分参考 2011.5选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)非选择题 (共110分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9. y x=±,2x =- 10. 6 11. 1π+12. 2 13. 2,n 14. 1 ,(0)(1)(1)h h h <<- 三、解答题(本大题共6小题,共80分) 15. (共13分)解:(Ⅰ) x x x x f 2sin cos sin )(+=,∴4sin4cos4sin)4(2ππππ+=f …………………1分2222=+((…………………4分1= . …………………6分(Ⅱ)x x x x f 2sin cos sin )(+= 22cos 12sin 21xx -+=…………………8分21)2cos 2(sin 21+-=x x21)42sin(22+-=πx , …………………9分 由]2,0[π∈x 得]43,4[42πππ-∈-x , …………………11分所以,当242ππ=-x ,即π83=x 时,)(x f 取到最大值为212+. ……………13分16. (共13分)证明:(Ⅰ)由已知可得1//AF B E ,1AF B E =, ∴四边形E AFB 1是平行四边形,∴1//FB AE , ……………1分1C FE1A 1BA E ⊄ 平面FCB 1,1F B ⊂平面FC B 1, //A E ∴平面FC B 1; ……………2分又 E D ,分别是1,BB BC 的中点, ∴C B DE 1//, ……………3分E D ⊄ 平面FC B 1,1B C ⊂平面FC B 1,//E D ∴平面FC B 1; ……………4分,AE DE E AE =⊂ 平面EAD ,ED ⊂平面EAD , ……………5分∴平面FC B 1∥平面EAD . ……………6分 (Ⅱ) 三棱柱111C B A ABC -是直三棱柱,∴⊥C C 1面ABC ,又 ⊂AD 面ABC , ∴⊥C C 1AD . ……………7分 又 直三棱柱111C B A ABC -的所有棱长都相等,D 是B C 边中点, ∴A B C ∆是正三角形,∴B C A D ⊥, ……………8分 而1C C BC C = , 1C C ⊂面11B BCC ,B C ⊂面11B BCC ,⊥∴AD 面11B BCC , ……………9分故 1AD BC ⊥ . ……………10分四边形11BCC B 是菱形,∴C B BC 11⊥, ……………11分而C B DE 1//,故 1D E BC ⊥ , ……………12分由D DE AD = A D ⊂,面EAD ,ED ⊂面EAD ,得 ⊥1BC 面EAD . ……………13分17. (共13分)解:(Ⅰ)由条形图可得,选择A ,B ,C ,D 四款套餐的学生共有200人, ……………1分 其中选A 款套餐的学生为40人, ……………2分 由分层抽样可得从A 款套餐问卷中抽取了 42004020=⨯份. ……………4分设事件M =“同学甲被选中进行问卷调查”, ……………5分 则.10404)(==M P . ……………6分答:若甲选择的是A 款套餐,甲被选中调查的概率是0.1.(II) 由图表可知,选A ,B ,C ,D 四款套餐的学生分别接受调查的人数为4,5,6,5. 其中不满意的人数分别为1,1,0,2个 . ……………7分记对A 款套餐不满意的学生是a ;对B 款套餐不满意的学生是b ;对D 款套餐不满意的学生是c ,d. ……………8分设事件N=“从填写不满意的学生中选出2人,至少有一人选择的是D 款套餐” ……………9分 从填写不满意的学生中选出2人,共有(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)6个基本事件,……10分 而事件N 有(a,c),(a,d),(b,c),(b,d),(c,d)5个基本事件, ……………11分 则 65)(=N P . ……………13分答:这两人中至少有一人选择的是D 款套餐的概率是65.18. (共14分)解:(Ⅰ)因为2'()2f x x ax b =-+ , …………………2分由'(0)'(2)1f f ==即1441b a b =⎧⎨-+=⎩得11a b =⎧⎨=⎩ , …………………4分所以()f x 的解析式为321()3f x x x x=-+. …………………5分(Ⅱ)若2b a =+,则2'()22f x x ax a =-++,244(2)a a ∆=-+ , …………………6分 (1)当0∆≤,即12a -≤≤时,'()0f x ≥恒成立,那么()f x 在R 上单调递增,所以,当12a -≤≤时,()f x 在区间(0,1)上单调递增; …………………8分 (2)解法1:当0∆>,即2a >或1a <-时, 令2'()220f x x ax a =-++=解得1x a =-2x a =+…………………9分 列表分析函数()f x 的单调性如下:…………………10分要使函数()f x 在区间(0,1)上单调递增, 只需210'(0)0a a a f ><-⎧⎪<⎨⎪≥⎩或或211'(1)0a a a f ><-⎧⎪>⎨⎪≥⎩或,解得21a -≤<-或23a <≤. …………………13分解法2:当0∆>,即2a >或1a <-时,因为2'()22f x x ax a =-++的对称轴方程为x a = …………………9分要使函数()f x 在区间(0,1)上单调递增,需1'(0)0a f <-⎧⎨≥⎩或2'(1)0a f >⎧⎨≥⎩解得21a -≤<-或23a <≤. …………………13分 综上:当[2,3]a ∈-时,函数()f x 在区间(0,1)上单调递增. …………………14分19. (共14分) 解:(Ⅰ)22,22===ac e c , ……………1分2,1==∴a c ,122=-=∴c a b , …………4分椭圆C 的标准方程是1222=+y x. ………………5分(Ⅱ)由已知可得)0,1(),1,0(F B , …………………6分 设),(00y x A ,则)1,1(),1,(00-=-=BF y x BA , 2=⋅BF BA ,2)1(00=--∴y x ,即001y x += , …………………8分代入12220=+y x ,得:⎩⎨⎧-==1000y x 或⎪⎪⎩⎪⎪⎨⎧==313400y x , 即)1,0(-A 或)31,34(A . ………………10分当A 为)1,0(-时,1===OF OB OA ,ABF ∆的外接圆是以O 为圆心,以1为半径的圆,该外接圆的方程为122=+y x ; ………………12分当A 为)31,34(时,1,1=-=AF BF k k ,所以ABF ∆是直角三角形,其外接圆是以线段BA 为直径的圆.由线段BA 的中点)32,32(以及352=BA 可得ABF ∆的外接圆的方程为95)32()32(22=-+-y x . ………………14分综上所述,ABF ∆的外接圆的方程为122=+y x 或95)32()32(22=-+-y x .20. (共13分)解:(Ⅰ)由变换T 的定义可得1:0,1,1,0,0,1A ………………2分0:1,0,1A ………………4分(Ⅱ) 数列0A 中连续两项相等的数对至少有10对 ………………5分证明:对于任意一个“0-1数列”0A ,0A 中每一个1在2A 中对应连续四项1,0,0,1,在0A 中每一个0在2A 中对应的连续四项为0,1,1,0,因此,共有10项的“0-1数列”0A 中的每一个项在2A 中都会对应一个连续相等的数对, 所以2A 中至少有10对连续相等的数对. ………………8分 (Ⅲ) 设k A 中有k b 个01数对,1k A +中的00数对只能由k A 中的01数对得到,所以1k k l b +=,1k A +中的01数对有两个产生途径:①由k A 中的1得到; ②由k A 中00得到,由变换T 的定义及0:0,1A 可得k A 中0和1的个数总相等,且共有12k +个,所以12kk k b l +=+,所以22kk k l l +=+,由0:0,1A 可得1:1,0,0,1A ,2:0,1,1,0,1,0,0,1A 所以121,1l l ==, 当3k ≥时,若k 为偶数,222k k k l l --=+,4242k k k l l ---=+,2422l l =+.上述各式相加可得122421(14)11222(21)143k k kk l ---=++++==-- ,经检验,2k =时,也满足1(21)3kk l =-.若k 为奇数,222k k k l l --=+ 4242k k k l l ---=+ 312l l =+.上述各式相加可得12322(14)112221(21)143k k kk l ---=++++=+=+- ,经检验,1k =时,也满足1(21)3kk l =+.所以1(21),31(21),3kk k k l k ⎧+⎪⎪=⎨⎪-⎪⎩为奇数为偶数 .………………13分说明:其它正确解法按相应步骤给分.。
海淀区高三年级第一学期期末练习数 学 (文科) 2011.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.sin 240的值为A .12-B . 12C. D2. 若等差数列{}n a 的前n 项和为n S ,且236a a +=,则4S 的值为 A. 12 B.11 C.10 D. 93. 设,αβ为两个不同的平面,直线l α⊂,则“l β⊥”是“αβ⊥”成立的 A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件4. 某部门计划对某路段进行限速,为调查限速60 km/h 是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按[40,50),[50,60),[60,70),[70,80]分组,绘制成如图所示的频率分布直方图.则这300辆汽车中车速低于限速的汽车有A.75辆B.120辆C.180辆D.270辆 5.点(2,)P t 在不等式组4030x y x y --≤⎧⎨+-≤⎩表示的平面区域内,则点(2,)P t 到直线34100x y ++=距离的最大值为 A.2 B. 4 C. 6 D.8 6. 一空间几何体的三视图如图所示,则该几何体的体 积为A .12B .6C . 4D .2 7. 已知函数1()sin ,[0,π]3f x x x x =-∈, 01cos 3x =(0[0,π]x ∈),那么下面结论正确的是 A .()f x 在0[0,]x 上是减函数 B. ()f x 在0[,π]x 上是减函数正视图左视图俯视图C. [0,π]x ∃∈, 0()()f x f x >D. [0,π]x ∀∈, 0()()f x f x ≥8. 已知椭圆E :1422=+y m x ,对于任意实数k ,下列直线被椭圆E 所截弦长与l :1+=kx y 被椭圆E 所截得的弦长不可能...相等的是 A .0kx y k ++= B .01=--y kx C .0kx y k +-= D .20kx y +-=二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 若直线l 经过点(1,2)且与直线210x y +-=平行,则直线l 的方程为__________.10.某程序的框图如图所示,执行该程序,若输入4, 则输出的S 为 .11.椭圆2212516x y +=的右焦点F 的坐标为 .则顶点在原点的抛物线C 的焦点也为F ,则其标准方程为 .12.在一个边长为1000米的正方形区域的每个顶点处设有一个监测站,若向此区域内随机投放一个爆破点,则爆破点距离监测站200米内都可以被检测到.那么随机投入一个爆破点被监测到的概率为_______.13已知向量(1,),(1,)t t ==-a b .若-2a b 与b 垂直, 则||___=a .14.在平面直角坐标系xOy 中,O 为坐标原点.定义()11,P x y 、()22,Q x y 两点之间的“直角距离”为1212(,)d P Q x x y y =-+-为. 若点()1,3A -,则(,)d A O = ; 已知()1,0B ,点M 为直线20x y -+=上动点,则(,)d B M 的最小值为 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)设函数1()sin 2f x x x =,R x ∈. (I )求函数)(x f 的周期和值域;(II )记ABC ∆的内角C B A ,,的对边分别为c b a ,,,若3(),2f A = 且a =, 求角C 的值.某学校三个社团的人员分布如下表(每名同学只参加一个社团)学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果围棋社被抽出12人.(I) 求这三个社团共有多少人?(II)书法社从3名高中和2名初中成员中,随机选出2人参加书法展示,求这2人中初、高中学生都有的概率.如图,棱柱ABCD —1111A B C D 的底面ABCD 为菱形 ,AC BD O = ,侧棱1AA ⊥BD,点F 为1DC 的中点.(I ) 证明://OF 平面11BCC B ; (II )证明:平面1DBC ⊥平面11ACC A .ABC1B 1C 1A D F1D O已知函数322()1,a f x x x=++其中0a >.(I )若曲线()y f x =在(1,(1))f 处的切线与直线1y =平行,求a 的值; (II )求函数()f x 在区间[1,2]上的最小值. 19. (本小题满分14分)已知圆22:4O x y +=,点P 为直线:4l x =上的动点.(I)若从P 到圆O 的切线长为P 点的坐标以及两条切线所夹劣弧长; (II )若点(2,0),(2,0)A B -,直线,PA PB 与圆O 的另一个交点分别为,M N ,求证:直线MN 经过定点(1,0).已知集合{}1,2,3,,2A n = *()n N ∈.对于A 的一个子集S ,若存在不大于n 的正整数m ,使得对于S 中的任意一对元素12,s s ,都有12s s m -≠,则称S 具有性质P.(Ⅰ)当10n =时,试判断集合{}9B x A x =∈>和{}*31,C x A x k k N =∈=-∈是否具有性质P ?并说明理由.(II)若集合S 具有性质P ,试判断集合 {}(21)T n x x S =+-∈)是否一定具有性质P ?并说明理由.海淀区高三年级第一学期期末练习数 学(文)答案及评分参考 2011.1第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第II 卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分)9.240x y +-= 10. 19 11.(3,0) 212y x = 12.25π13. 2 14. 4 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I ) x x x f cos 23sin 21)(+=)3sin(π+=x , ............................... 3分)(x f ∴的周期为π2 (或答:0,,2≠∈k Z k k π). ................................4分 因为x R ∈,所以3x R π+∈,所以)(x f 值域为]1,1[- . ...............................5分(II )由(I )可知,)3sin()(π+=A A f , ...............................6分23)3s i n (=+∴πA, ...............................7分 π<<A 0 , 3433πππ<+<∴A , ..................................8分 2,33A ππ∴+=得到3A π= . ...............................9分,23b a =且B b A a sin sin = , ....................................10分s i n b B =, ∴1sin =B , ....................................11分π<<B 0 , 2π=∴B . ....................................12分6ππ=--=∴B A C . ....................................13分16. (共13分)解:(I )围棋社共有60人, ...................................1分 由150301260=⨯可知三个社团一共有150人. ...................................3分 (II )设初中的两名同学为21,a a ,高中的3名同学为321,,b b b , ...................................5分 随机选出2人参加书法展示所有可能的结果:1211121321{,},{,},{,},{,},{,},a a a b a b a b a b 222312132{,}, {,},{,},{,},{,}a b a bb b b b b b ,共10个基本事件. ..................................8分 设事件A 表示“书法展示的同学中初、高中学生都有”, ..................................9分 则事件A 共有111213212223{,},{,},{,},{,},{,},{,}a b a b a b a b a b a b 6个基本事件. ...................................11分 ∴53106)(==A P . 故参加书法展示的2人中初、高中学生都有的概率为35. ................................13分 17. (共13分)解:(I ) 四边形ABCD 为菱形且AC BD O = ,O ∴是BD 的中点 . ...................................2分 又点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , ...................................4分 ⊄OF 平面11BCC B ,⊂1BC 平面11BCC B ,∴//OF 平面11BCC B . ...................................6分 (II ) 四边形ABCD 为菱形,AC BD ⊥∴, ...................................8分 又⊥BD 1AA ,1,AA AC A = 且1,AA AC ⊂平面11ACC A ,.................................10分 ⊥∴BD 平面11ACC A , ................................11分 ⊂BD 平面1DBC ,∴平面1DBC ⊥平面11ACC A . ................................13分 18. (共13分)解:3332222()()2a x a f x x x x -'=-=,0x ≠. .........................................2分(I )由题意可得3(1)2(1)0f a '=-=,解得1a =, ........................................3分此时(1)4f =,在点(1,(1))f 处的切线为4y =,与直线1y =平行.故所求a 值为1. ........................................4分 (II )由()0f x '=可得x a =,0a >, ........................................ 5分 ①当01a <≤时,()0f x '>在(1,2]上恒成立 ,所以()y f x =在[1,2]上递增, .....................................6分 所以()f x 在[1,2]上的最小值为3(1)22f a =+ . ........................................7分 ②当12a <<时,由上表可得()y f x =在[1,2]上的最小值为2()31f a a =+ . ......................................11分 ③当2a ≥时,()0f x '<在[1,2)上恒成立,所以()y f x =在[1,2]上递减 . ......................................12分 所以()f x 在[1,2]上的最小值为3(2)5f a =+ . .....................................13分 综上讨论,可知:当01a <≤时, ()y f x =在[1,2]上的最小值为3(1)22f a =+;....................................10分当12a <<时,()y f x =在[1,2]上的最小值为2()31f a a =+;当2a ≥时,()y f x =在[1,2]上的最小值为3(2)5f a =+.19. (共14分)解:根据题意,设(4,)P t .(I)设两切点为,C D ,则,OC PC OD PD ⊥⊥,由题意可知222||||||,PO OC PC =+即222242t +=+ , ............................................2分 解得0t =,所以点P 坐标为(4,0). ...........................................3分 在Rt POC ∆中,易得60POC ∠= ,所以120DOC ∠= . ............................................4分 所以两切线所夹劣弧长为24233ππ⨯=. ...........................................5分 (II )设1122(,),(,)M x y N x y ,(1,0)Q ,依题意,直线PA 经过点(2,0),(4,)A P t -, 可以设:(2)6t AP y x =+, ............................................6分 和圆224x y +=联立,得到22(2)64t y x x y ⎧=+⎪⎨⎪+=⎩, 代入消元得到,2222(36)441440t x t x t +++-= , ......................................7分 因为直线AP 经过点11(2,0),(,)A M x y -,所以12,x -是方程的两个根, 所以有2124144236t x t --=+, 21272236t x t -=+ , ..................................... 8分 代入直线方程(2)6t y x =+得,212272224(2)63636t t t y t t -=+=++. ..................................9分 同理,设:(2)2t BP y x =-,联立方程有 22(2)24t y x x y ⎧=-⎪⎨⎪+=⎩, 代入消元得到2222(4)44160t x t x t +-+-=,因为直线BP 经过点22(2,0),(,)B N x y ,所以22,x 是方程的两个根,22241624t x t -=+, 222284t x t -=+ ,代入(2)2t y x =-得到2222288(2)244t t t y t t --=-=++ . .....................11分 若11x =,则212t =,此时2222814t x t -==+ 显然,,M Q N 三点在直线1x =上,即直线MN 经过定点Q (1,0)............................12分 若11x ≠,则212t ≠,21x ≠, 所以有212212240836722112136MQ t y t t k t x t t -+===----+, 22222280842811214NQ t y t t k t x t t ---+===----+................13分 所以MQ NQ k k =, 所以,,M N Q 三点共线,即直线MN 经过定点Q (1,0).综上所述,直线MN 经过定点Q (1,0). .......................................14分20. (共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A = ,{}{}910,11,12,,19,20B x A x =∈>= 不具有性质P . ...................................1分因为对任意不大于10的正整数m ,都可以找到集合B 中两个元素110b =与210b m =+, 使得12b b m -=成立 . ...................................3分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ....................................4分 因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠ . ............................................6分 (Ⅱ)若集合S 具有性质P ,那么集合{}(21)T n x x S =+-∈一定具有性质P . ..........7分 首先因为{}(21)T n x x S =+-∈,任取0(21),t n x T =+-∈ 其中0x S ∈,因为S A ⊆,所以0{1,2,3,...,2}x n ∈,从而01(21)2n x n ≤+-≤,即,t A ∈所以T A ⊆ ...........................8分由S 具有性质P ,可知存在不大于n 的正整数m , 使得对S 中的任意一对元素12,s s ,都有 12s s m -≠, ..................................9分 对上述取定的不大于n 的正整数m , 从集合{}(21)T n x x S =+-∈中任取元素112221,21t n x t n x =+-=+-, 其中12,x x S ∈, 都有1212t t x x -=- ; 因为12,x x S ∈,所以有12x x m -≠,即 12t t m -≠ 所以集合{}(21)T n x x S =+-∈具有性质P . .............................14分 说明:其它正确解法按相应步骤给分.。