[考研数学]概率论与数理统计第三章内容介绍
- 格式:doc
- 大小:89.00 KB
- 文档页数:2
学院 交通 学号1126002026 姓名 吕立正三.多维随机变量及其分布1.二维随机变量1.设随机试验E 的样本空间为:{}()(),S e X e Y e =、 为定义在S 上的随机变量,由它们构成一个随机向量 ()X Y 、,叫二维随机向量或二维随机变量.2.定义:设二维随机变量()X Y 、,对任意实数x y 、,二元函数{}(),F X Y P X xY y =≤≤,,称为()X Y 、的(联合)概率分布函数. 二维随机变量分布函数的性质:(1)(),F x y 是变量x 和y 的不减函数,即对任意固定的y ,当21x x >时()2,F x y ≥()1,F x y ;对于任意固定的x ,当21y y >时()2,F x y ≥()1,F x y .(2)()0,1F x y ≤≤,且对于任意固定的y ,(),0F y -∞=,对于任意固定的x ,(),0F x -∞=,(),0F -∞-∞=,(), 1.F ∞∞=(3) (),F x y =()0,F x y +,(),F x y =(),0F x y +,即(),F xy 关于x 右连续,关于y 也右连续.(4) 对于任意()11,x y ,()22,x y ,21x x >,21y y >,下述不等式成立: ()()()()22211112,,,,0F x y F x y F x y F x y -+-≥.如果二维随机变量(,)X Y 全部可能取到的不相同的值是有限对或可列无限多对,则称(,)X Y 是离散型的随机变量.3. 对于二维随机变量(),X Y 的分布函数(),F x y .如果存在非负的函数(),f x y 使对于任意()X Y 、有()(),,y xF x y f d d μυμυ-∞-∞=⎰⎰,则称(),X Y 是连续型的二维随机变量,函数(),f x y 称为二维随机变量(),X Y 的概率密度,或称为随机变量X 和Y 的联合概率密度. 概率密度(),f x y 具有以下性质: (1)(,)0f x y ≥ (2) (,)(,)1f x y dxdy F ∞∞-∞-∞=∞∞=⎰⎰(3) 设G 是xOy 平面上的区域,点()X Y 、落在G 内的概率为{}(,)(,)GP X Y G f x y dxdy ∈=⎰⎰(4) 若(),f x y 在点()X Y 、连续 则有2(,)(,)F x y f x y x y∂=∂∂ 4. 两个常用的分布(1)均匀分布:定义设D 为闭区域面积为A ,若随机变量()X Y 、 的(联合)密度为: 则称: ()X Y 、服从D 上的均匀分布.(2)二维正态分布:若二维随机变量 ()X Y 、的概率密度为: 则称: ()X Y 、服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布.其中σ1>0,σ2>0,|ρ|≤1是常数.记为:()X Y 、~N (μ1、μ2、σ12、σ22、ρ) .⎩⎨⎧∈=其它),(/1),(D y x Ay x f 21222112222211221(,)211()()()()exp 22(1);f x y x x y y x y πσσρμμμμρρσσσσ=⋅-⎧⎫⎡⎤-----⎪⎪-+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭-∞<<+∞-∞<<+∞2.边缘分布1.二维随机变量(),X Y 作为一个整体,具有分布函数(),F x y ,而X 和Y 都是随机变量,也有也有分布函数,将他们分别记为()X F x ,()Y F y ,依次称为二维随机变量(),X Y 关于X 和Y 的边缘分布函数。
第三章 多维随机变量及其概率分布1. 二维随机变量),(Y X),(Y X 的分布函数),(),(y Y x X P y x F ≤≤=X 的分布函数),(),(lim )(1+∞==∞→x F y x F x F y Y 的分布函数),(),(lim )(2y F y x F y F x +∞==∞→ ),(lim 0),(lim y x F y x F y x -∞→-∞→==2. 离散型),(Y X 的分布律ij P⎪⎩⎪⎨⎧=≥===∑∑i jij i i ij P y Y x X P P 10),( (与⎪⎩⎪⎨⎧=≥∑K K K P P 10比较) ∑===jij i i P x X P P )(∑===iij i j P y Y P P )(例1 设),(Y X 的分布律为求(1)?=a(2))0(=X P(3))2(≤Y P(4))2,1(≤<Y X P(5))(Y X P =解: (1)由 知解得0=a(2)300102031(0)0.10.10.30.5j j P X PP P P ====++=++=∑(3)∑∑==+=+==+==≤10210121)2()1()2(i i i i P P P P Y P Y P Y P 45.0)01.0()25.01.0(=+++=(4)2.01.01.0)2,0()1,0()2,0()2,1(0201=+=+===+===≤==≤<P P Y X P Y X P Y X P Y X P(5)25.0)(11===P Y X P18.知识点: 二维离散型随机变量的概率分布则α=( )。
A.....B....C....D. 答案: A解: 根据二维离散型随机变量的概率分布性质返回:2.离散型 的分布律3. 连续型),(Y X 的分布密度设D 为平面上的区域, 为 的分布密度, 则其满足:dxdy y x f D Y X P D⎰⎰=∈),()),((特别,⎰⎰∞-∞-=≤≤=x ydudv v u f y Y x X P y x F ),(),(),(),(),(2y x f yx y x F =∂∂∂ 若X, Y 相互独立, 则有 , , 其中 分别为X 的边缘分布函数和分布密度, 分别为Y 的边缘分布函数和分布密度。
第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。
概率论与数理统计第三章笔记好的,以下是为您生成的一篇“概率论与数理统计第三章笔记”,希望符合您的需求:---# 概率论与数理统计第三章笔记在学习概率论与数理统计这门课的时候,第三章的内容就像是一座神秘的城堡,充满了新奇和挑战。
这一章主要讲的是多维随机变量及其分布。
一开始,听到这个概念的时候,我的脑袋里就像是被塞进了一团乱麻。
不过,随着深入学习,我逐渐理清了其中的头绪。
先来说说多维随机变量的联合分布函数。
这玩意儿就像是一个神奇的魔法盒子,它能把多个随机变量的可能性都装在一起。
想象一下,有两个随机变量 X 和 Y,它们就像是两个调皮的小精灵,在一个大大的游乐场里到处乱跑。
而联合分布函数 F(x,y) 呢,就能告诉我们这两个小精灵同时出现在某个特定区域的概率。
比如说,X 表示今天的气温,Y 表示湿度,那 F(x,y) 就能告诉我们在气温为 x 度,湿度为 y 的情况下的可能性。
再讲讲多维离散型随机变量。
这可有意思啦!比如说,咱们来假设一个场景,有一家小杂货店,店里卖两种零食,薯片和巧克力。
每天来买零食的顾客人数是随机的,而且他们选择薯片或者巧克力的情况也是随机的。
我们把买薯片的人数设为 X,买巧克力的人数设为 Y。
那么 (X,Y) 就是一个二维离散型随机变量。
我们可以列出它们所有可能的取值以及对应的概率,就像是给这两个调皮的小家伙拍了一张张照片,记录下它们每一个瞬间的样子。
然后是多维连续型随机变量。
这就像是一条流淌不息的河流,没有明显的断点。
还是用上面那个杂货店的例子,不过这次假设每天的销售额是连续变化的。
销售额 X 受到很多因素的影响,比如客流量、顾客的购买欲望等等。
这时候,我们就得用概率密度函数 f(x,y) 来描述它。
想象一下,这个函数就像是一张地图,告诉我们销售额在不同区域的密集程度。
在学习边缘分布的时候,我可真是费了好大的劲。
边缘分布就像是从一个大蛋糕上切下来的一小块。
还是以杂货店为例,如果我们只关心买薯片的人数 X 的分布,不考虑巧克力的情况,那这就是 X 的边缘分布。
概率论与数理统计
第三章 统计推断
学习要点:
总体、样本、统计量,最大似然估计法,置信区间求法,假设检验
本章重点:
总体参数的最大似然估计法;单正态总体均值的置信区间和假设检验。
教学要求:
⒈ 理解总体、样本,统计量等概念,知道χ2分布,t 分布,会查表。
所研究对象的一个或多个指标的全体称为总体,组成整体的基本单位称为个体,从总体中抽取出来的个体称为样品,若干个样品组成的集合称为样本。
样本中所含的样品个数称为样本容量。
统计量就是不含未知参数的样本函数。
⒉ 掌握参数的最大似然估计法。
最大似然估计法:设X X X n 12,,, 是来自总体X f x ~(;)θ(其中未知)的样本,而x x x n 12,,, 为样本值,使似然函数
L x x x f x f x f x n n (;,,,)(;)(;)(;)θθθθ1212 =
达到最大值的 θ
称为参数θ的最大似然估计值。
一般地,θ的最大似然估计值 θ满足: d d ln L θ
=0 ⒊ 了解估计量的无偏性,有效性概念。
参数θ的估计量 (,,,)θx x x n
12 若满足 E ( )θθ=,则称 θ为参数θ的无偏估计量。
若θθ12,都是θ的无偏估计,而且D D ()()θθ12≤,则称θ1比θ2更有效。
⒋ 了解区间估计的概念,熟练掌握方差已知条件下单正态总体期望的置信区间的求法,掌握方差未知条件下单正态总体期望的置信区间的求法。
当置信度α确定后,方差已知条件下单正态总体期望的置信区间是
[,]x n x n -+λσ
λσ
其中σ是总体标准差,x 是样本均值,n 是样本容量,λ由Φ()λα=-
12确定。
方差未知条件下单正态总体期望的置信区间是
[,]x s n x s n
-+λλ
其中s
n
x x
i
i
n
=
-
-=
∑
1 1
2
1
()称为样本标准差,λ满足P t()
≤=-
λα
1。
⒌知道假设检验的基本思想,掌握单正态总体均值的检验方法,会作单正态总体方差的检验方法。
考核要求:(1)判断是否是统计量(选择)
(2)估计量的无偏性、有效性的概念(选择或填空)
(3)熟练掌握求正态总体期望的置信区间的方法(计算题)
(4)熟练掌握单正态总体均值的检验方法,会作单正态总体方差的检验(计算题)。