高中数学 第二章 平面向量 2.2.3 向量的数乘(1)同课异构 苏教版必修4
- 格式:ppt
- 大小:4.62 MB
- 文档页数:12
第4课时 §2.2 向量的数乘【教学目标】一、知识与技能(1)向量数乘定义。
(2)向量数乘的运算律。
二、过程与方法在对有关数乘问题的解决中理解数乘概念和实际意义.三、情感、态度与价值观联系生活实际学习向量的数乘让学生感受数学美【教学重点难点】向量的数乘的定义和运算律一、复习:已知非零向量a ,求作a a +和()()a a -+-.如图:OB a a =+2a =,()()CE a a =-+-二、讲解新课:1.实数与向量的积的定义:一般地,实数λ与向量a 的积是一个向量,记作a λ,它的长度与方向规定如下: (1)||||||a a λλ=;(2)当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ= 时,0a λ=.2.实数与向量的积的运算律:(1)()()a a λμλμ=(结合律);a - E a a a O B A CD a -(2)()a a a λμλμ+=+(第一分配律);(3)a b λλλ+(a+b )=(第二分配律).3.向量共线定理:内容:三、例题分析:例1、计算:(1)(3)4a -⨯;(2)3()2()a b a b a +---;(3)(23)(32)a b c a b c +---+例2、 如图,已知3AD AB =,3DE BC =.试判断AC 与AE 是否共线.例3、 判断下列各题中的向量是否共线:(1)21245a e e =-,12110b e e =-; (2)12a e e =+,1222b e e =-,且1e ,2e 共线.A B C D E(3)当1e ,2e 中至少有一个为零向量时,显然b 与a 共线.例4、设12,e e 是两个不共线的向量,已知122AB e ke =+,123CB e e =+,122CD e e =-,若A ,B ,D 三点共线,求k 的值.五、课时小结:1.掌握实数与向量的积的定义;2.掌握实数与向量的积的运算律,并进行有关的计算;3.理解向量共线定理,并会判断两个向量是否共线。
向量的数乘知识点课标要求题型说明向量的数乘1. 掌握向量数乘的运算及其几何意义;2. 理解两个向量共线的含义,掌握向量共线定理;3. 了解向量线性运算的性质及其几何意义选择题填空题1. 向量的数乘要注意向量的“形”的应用;2. 向量的共线定理是很重要的一维空间定理,要重点掌握二、重难点提示重点:向量数乘的运算及其几何意义。
难点:两向量共线的含义及共线定理。
一、向量的数乘的定义一般地,实数λ与向量a的积是一个向量,记作λa,它的长度和方向规定如下:(1)|λa|=|λ||a|;(2)当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当a=0时,λa=0;当λ=0时,λa=0。
实数λ与向量a相乘,叫做向量的数乘。
【要点诠释】向量数乘的几何意义由实数与向量的积的定义可以看出,它的几何意义就是将表示向量a的有向线段伸长或压缩。
当|λ|>1时,表示a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍;当|λ|<1时,表示a的有向线段在原方向(λ>0)或反方向(λ<0)上缩小为原来的|λ|倍。
二、向量数乘的运算律(1)λ(μa )=(λμ)a ; (2)(λ+μ)a =λa +μa ; (3)λ(a +b )=λa +λb 。
三、向量数乘的作图已知a r ,作b a λ=r r 。
当0λ>时,把a r 按原来方向变成原来的λ倍;当0λ<时,把ar 按原来向量的相反方向变成原来的λ倍。
【要点诠释】①注意数零及零向量:00,00a λ⋅=⋅=r r r r②实数与向量求积有意义,结果是一个向量,不能进行加减运算,比如,a a λλ+-r r是没有意义的。
③式子,0b a λλ=≠r r 时可以改写为1a b λ=r r ,但一定不能改写成b a λ=r r 或者1a b λ=rr ,两个向量不定义除法运算。
四、共线向量定理如果有一个实数λ,使b =λa (a ≠0),那么b 与a 是共线向量;反之,如果b 与a (a ≠0)是共线向量,那么有且只有一个实数λ,使得b =λa 。
2.2.3 向量的数乘整体设计教学分析向量的数乘运算,其实是加法运算的推广及简化,与加法、减法统称为向量的三大线性运算.教学时从加法入手,引入数乘运算,充分展现了数学知识之间的内在联系.实数与向量的乘积,仍然是一个向量,既有大小,也有方向.特别是所得向量与已知向量是共线向量,进而引出共线向量定理.共线向量定理是本章节中重要的内容,应用相当广泛,且容易出错.尤其是定理的前提条件:向量a是非零向量.共线向量定理的应用主要用于证明点共线或平行等几何性质,且与后续的知识有着紧密的联系.三维目标1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义.掌握实数与向量的积的运算律.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.2.通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.重点难点教学重点:1.实数与向量积的意义.2.实数与向量积的运算律.3.两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.课时安排1课时教学过程导入新课思路1.(直接引入)前面两节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算的基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相同实数加法的简便计算方法,所以相同向量的求和运算也有类似的简便计算.思路2.(问题引入)一物体做匀速直线运动,一秒钟的位移对应的向量为a,那么在同一方向上3秒钟的位移对应的向量怎样表示?是3a 吗?怎样用图形表示?由此展开新课.推进新课新知探究实数与向量积的定义及运算律.活动:教师引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a =0,而不是0·a =0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a ,λ-a 都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a =λa +μa 和λ(a +b )=λa +λb ,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.实数λ与向量a 相乘,叫做向量的数乘(scalar multiplication of vectors).事实上,通过作图1可发现,OC →=OA →+AB →+BC →=a +a +a .类似数的乘法,可把a +a +a记作3a ,即OC →=3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a|=3|a |.同样,由图可知,PN →=PQ →+QM →+MN →=(-a )+(-a )+(-a ),图1即(-a )+(-a )+(-a )=3(-a ).显然3(-a )的方向与a 的方向相反,3(-a )的长度是a 的长度的3倍,这样,3(-a )=-3a .上述过程推广后即为实数与向量的积.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa|=|λ||a|.(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反.由(1)可知,λ=0时,λa=0.根据实数与向量的积的定义,我们可以验证下面的运算律.设λ、μ为实数,那么1λμa=λμa;2λ+μa=λa+μa;3λa+b=λa+λb.特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.教师与学生一起归纳总结:数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ||a|确定.它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.应用示例思路1例1课本本节例2.变式训练1.计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).解:(1)原式=(-3×4)a=-12a;(2)原式=3a+3b-2a+2b-a=5b;(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.例2课本本节例1.变式训练如图2(1),已知任意两个非零向量a 、b ,试作OA →=a +b ,OB →=a +2b ,OC →=a +3b .你能判断A 、B 、C 三点之间的位置关系吗?为什么?活动:本题给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A 、B 、C 三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只需引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a 、b 变化过程中,A 、B 、C 三点始终在同一条直线上的规律.(1) (2)图2解:如图2(2)分别作向量OA →、OB →、OC →,过点A 、C 作直线AC 〔如图2(2)〕.观察发现,不论向量a 、b 怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线.事实上,因为AB →=OB →-OA →=a +2b -(a +b )=b ,而AC →=OC →-OA →=a +3b -(a +b )=2b ,于是AC →=2AB →.所以A 、B 、C 三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3课本本节例3.变式训练如图3,ABCD 的两条对角线相交于点M ,且AB →=a ,AD →=b ,你能用a 、b 表示MA →、MB →、MC →和MD →吗?图3活动:本题的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点. 解:在ABCD 中,∵AC →=AB →+AD →=a +b ,DB →=AB →-AD →=a -b ,又∵平行四边形的两条对角线互相平分,∴MA →=-12AC →=-12(a +b )=-12a -12b , MB →=12DB →=12(a -b )=12a -12b , MC →=12AC →=12a +12b ,MD →=-MB →=-12DB →=-12a +12b . 点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.思路2例1凸四边形ABCD 的边AD 、BC 的中点分别为E 、F ,求证:EF →=12(AB →+DC →). 活动:教师引导学生探究,能否构造三角形,使EF 作为三角形的中位线,借助于三角形中位线定理解决.或创造相同起点,以建立向量间的关系.鼓励学生多角度观察思考问题.图4证明:方法一:过点C 在平面内作CG →=AB →,则四边形ABGC 是平行四边形,故F 为AG的中点(如图4).∴EF 是△ADG 的中位线.∴EF 12DG ,∴EF →=12DG →. 而DG →=DC →+CG →=DC →+AB →,∴EF →=12(AB →+DC →). 方法二:如图5,连EB 、EC ,则有EB →=EA →+AB →,EC →=ED →+DC →,图5又∵E 是AD 的中点,∴有EA →+ED →=0,即有EB →+EC →=AB →+DC →.以EB →与EC →为邻边作EBGC ,则由F 是BC 的中点,可得F 也是EG 的中点.∴EF →=12EG →=12(EB →+EC →)=12(AB →+DC →). 点评:向量的运算主要从以下几个方面加强练习:(1)加强数形结合思想的训练,画出草图帮助解决问题;(2)加强三角形法则和平行四边形法则的运用练习.做到准确熟练运用.例2课本本节例4.知能训练课本本节练习.课堂小结1.让学生回顾本节学习的数学知识,向量的数乘运算法则,向量的数乘运算律,向量共线的条件.体会本节学习中用到的思想方法:特殊到一般、归纳、猜想、类比、分类讨论、等价转化.2.向量及其运算与数及其运算可以类比,这种类比是我们提高思想性的有效手段,在今后的学习中应予以充分的重视,它是我们学习中伟大的引路人.作业课本习题2.2 8、9.设计感想1.本教案的设计流程符合新课程理念,充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地,0·a=0),它的几何意义是把向量a沿a的方向或a的反方向放大或缩小,当λ>0时,λa与a方向相同,当λ<0时,λa与a方向相反;向量共线定理用来判断两个向量是否共线,然后对所探究的结果进行运用拓展.2.向量具有的几何形式和代数形式的双重身份在本节中得以充分体现,因而成为中学数学知识网络的一个交汇点,由此可看出在中学数学教材中的地位的重要,也成为近几年各地高考命题的重点和热点,教师要引导学生对平面向量中有关知识要点进行归纳整理.备课资料一、向量的数乘运算律的证明设a 、b 为任意向量,λ、μ为任意实数,则有(1)λ(μa )=(λμ)a ;①(2)(λ+μ)a =λa +μa ;②(3)λ(a +b )=λa +λb .③证明:(1)如果λ=0或μ=0或a =0,则①式显然成立.如果λ≠0,μ≠0,且a ≠0,则根据向量数乘的定义有:|λ(μa )|=|λ||μa |=|λ||μ||a |,|(λμ)a |=|λμ||a |=|λ||μ||a |,所以|λ(μa )|=|(λμ)a |.如果λ、μ同号,则①式两边向量的方向都与a 同向;如果λ、μ异号,则①式两边向量的方向都与a 反向.因此,向量λ(μa )与(λμ)a 有相等的模和相同的方向,所以这两个向量相等.(2)如果λ=0或μ=0或a =0,则②显然成立.如果λ≠0,μ≠0且a ≠0,可分如下两种情况:当λ、μ同号时,则λa 和μa 同向,所以|(λ+μ)a |=|λ+μ||a |=(|λ|+|μ|)|a |,|λa +μa |=|λa |+|μa |=|λ||a |+|μ||a |=(|λ|+|μ|)|a |,即有|(λ+μ)a |=|λa +μa |.由λ、μ同号,知②式两边向量的方向或都与a 同向,或都与a 反向,即②式两边向量的方向相同.综上所述,②式成立.如果λ、μ异号,当λ>μ时,②式两边向量的方向都与λa 的方向相同;当λ<μ时,②式两边向量的方向都与μa 的方向相同.还可证|(λ+μ)a |=|λa +μa |.因此②式也成立.(3)当a =0,b =0中至少有一个成立,或λ=0,λ=1时,③式显然成立. 当a ≠0,b ≠0且λ≠0,λ≠1时,可分如下两种情况:当λ>0且λ≠1时,如图6,在平面内任取一点O 作OA →=a ,AB →=b ,OA 1→=λa ,A 1B 1→=λb ;则OB →=a +b ,OB 1→=λa +λb .图6由作法知AB →∥A 1B 1→,有∠OAB=∠OA 1B 1,|A 1B 1→|=λ|AB →|,所以|OA 1→||OA →|=|A 1B 1→||AB →|=λ.所以△AOB∽△A 1OB 1.所以|OB 1→||OB →|=λ,∠AOB=∠A 1OB 1.因此O 、B 、B 1在同一条直线上,|OB 1→|=|λOB →|,OB 1→与λOB →的方向也相同.所以λ(a +b )=λa +λb .当λ<0时,由图7可类似证明λ(a +b )=λa +λb .图7所以③式也成立.二、备用习题1.13[12(2a +8b )-(4a -2b )]等于( )A .2a -bB .2b -aC .b -aD .a -b2.设两非零向量e 1、e 2不共线,且k e 1+e 2与e 1+k e 2共线,则k 的值为( )A .1B .-1C .±1 D.03.若向量方程2x -3(x -2a )=0,则向量x 等于( )A.65a B .-6aC .6aD .-65a 4.在△ABC 中,AE →=15AB →,EF∥BC,EF 交AC 于F ,设AB →=a ,AC →=b ,则BF →用a 、b 表示的形式是BF →=________.5.在△ABC 中,M 、N 、P 分别是AB 、BC 、CA 边上的靠近A 、B 、C 的三等分点,O 是△ABC 平面上的任意一点,若OA →+OB →+OC →=13e 1-12e 2,则OM →+ON →+OP →=________.6.已知△ABC 的重心为G ,O 为坐标原点,OA →=a ,OB →=b ,OC →=c ,求证:OG →=13(a +b +c ).参考答案:1.B 2.C 3.C4.-a +15b 5.13e 1-12e 26.证明:连结AG 并延长,设AG 交BC 于M.∵AB →=b -a ,AC →=c -a ,BC →=c -b ,∴AM →=AB →+12BC →=(b -a )+12(c -b )=12(c +b -2a ).∴AG →=23AM →=13(c +b -2a ).∴OG →=OA →+AG →=a +13(c +b -2a )=13(a +b +c ).。
2.2.3向量的数乘预习课本P68~71,思考并完成下列问题1.向量数乘的定义是什么?2.向量数乘运算满足哪三条运算律?3.什么是向量共线定理?[新知初探]1.向量的数乘运算(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:①|λa|=|λ||a|;②当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当a=0时,λa=0;当λ=0时,λa=0.(2)运算律:设λ,μ为任意实数,则有:①λ(μa)=(λμ)a;②(λ+μ)a=λa+μ a;③λ(a+b)=λa+λb;特别地,有(-λ)a=-(λa)=λ(-a);λ(a -b )=λa -λb .[点睛] (1)实数与向量可以进行数乘运算,但不能进行加减运算. (2)λa 的结果为向量,所以当λ=0时,得到的结果为0而不是0. 2.向量共线定理如果有一个实数λ,使b =λa (a ≠0),那么b 与a 是共线向量;反之,如果b 与a (a ≠0)是共线向量,那么有且只有一个实数λ,使b =λa .[小试身手]1.化简:2(3a -2b )+3(a +5b )-5(4b -a )=_________. ★答案★:14a -9b2.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA =a ,OB =b ,则DC =________.★答案★:b -a3.已知向量a 与b 反向,且|a |=r ,|b |=R ,b =λa ,则λ=________. ★答案★:-Rr4.在△ABC 中,已知点D 在AB 边上,且AD =2DB ,CD =13CA +λCB ,则λ=________.★答案★:23向量数乘的基本运算[典例] (1)(-5)×4a ;(2)5(a +b )-4(a -b )-3a ; (3)(3a -5b +2c )-4(2a -b +3c ). [解] (1)原式=(-5×4)a =-20a .(2)原式=5a +5b -4a +4b -3a =-2a +9b .(3)原式=3a -5b +2c -8a +4b -12c =-5a -b -10c .向量基本运算的方法向量的基本运算类似于代数多项式的运算,共线向量可以合并,即“合并同类项”“提取公因式”,这里的“同类项”“公因式”指的是向量.[活学活用] 化简下列各式: (1)3(6a +b )-9⎝⎛⎭⎫a +13b ; (2)12⎣⎡⎦⎤(3a +2b )-⎝⎛⎭⎫a +12b -2⎝⎛⎭⎫12a +38b ; (3)2(5a -4b +c )-3(a -3b +c )-7a . 解:(1)原式=18a +3b -9a -3b =9a .(2)原式=12⎝⎛⎭⎫2a +32b -a -34b =a +34b -a -34b =0. (3)原式=10a -8b +2c -3a +9b -3c -7a =b -c .用已知向量表示未知向量[典例] 在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB =a ,AC =b ,试用a ,b 表示AD ,AG .[解] AD =12(AB +AC )=12a +12b ; AG =AB +BG =AB +23BE =AB +13(BA +BC )=23AB +13(AC -AB )=13AB +13AC =13a +13b .用已知向量表示未知向量的方法(1)利用三角形法则可以把任何一个向量用两个向量的和或差来表示.(2)当用已知向量线性表示未知向量时,要注意向量选取的恰当性,常常借助图形与平面几何知识(如三角形的中线性质、中位线性质、平行四边形性质等)并结合向量共线定理,把问题解决.如图,ABCD 是一个梯形,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,已知AB =a ,AD =b ,试用a ,b 表示BC 和MN .解:连结CN ,因为N 是AB 的中点,AB =2CD ,所以AN∥DC且AN=DC,所以四边形ANCD是平行四边形,所以CN=-AD=-b,又CN+NB+BC=0,所以BC=-NB-CN=-12a+b;MN =MC+CN=14a-b.向量共线的判定及应用1.如图所示,在平行四边形ABCD中,点M是AB的中点,点N在BD上,且BN=13BD.求证:M,N,C三点共线. 证明:设BA=a,BC=b,则由向量减法的三角形法则可知:CM=BM-BC=12BA-BC=12a-b.又因为N在BD上且BN=13BD,所以BN=13BD=13(BC+CD)=13(a+b),所以CN=BN-BC=13(a+b)-b=13a-23b=23⎝⎛⎭⎫12a-b,所以CN=23CM,又因为CN与CM的公共点为C,所以M,N,C三点共线.题点二:利用向量的共线求参数2.设a,b不共线,AB=2a+pb,BC=a+b,CD=a-2b,若A,B,D三点共线,则实数p=________.解析:因为BC=a+b,CD=a-2b,所以BD=BC+CD=2a-b.又因为A,B,D三点共线,所以AB,BD共线.设AB=λBD,所以2a+pb=λ(2a-b),所以2=2λ,p=-λ,所以λ=1,p=-1.★答案★:-1题点三:利用向量共线判定几何图形形状3.如图所示,正三角形ABC 的边长为15,AP =13AB +25AC ,BQ =15AB +25AC . 求证:四边形APQB 为梯形. 证明:因为PQ =PA +AB +BQ=-13AB -25AC +AB +15AB +25AC =1315AB ,所以PQ ∥AB .又|AB |=15,所以|PQ |=13,故|PQ |≠|AB |,于是四边形APQB 为梯形.向量共线定理应用的注意点(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行.层级一 学业水平达标1.化简:16[]2(2a +8b )-4(4a -2b )=_______.解析:原式=16(4a +16b -16a +8b )=16(-12a +24b )=-2a +4b .★答案★:-2a +4b2.若2⎝⎛⎭⎫y -13a -12(c +b -3y )+b =0,其中a ,b ,c 为已知向量,则向量y =________. 解析:2⎝⎛⎭⎫y -13a -12(c +b -3y )+b =2y -23a -12c -12b +32y +b =0,所以72y =23a +12c -12b ,所以y =421a -17b +17c . ★答案★:421a -17b +17c3.若AP =13BP ,AB =t BP ,则t 的值是________.解析:由题意AP =13BP ,所以AB =-23BP ,所以t =-23.★答案★:-234.已知a ,b 是非零向量,AB =a +2b ,DC =2a +4b ,则四边形ABCD 的形状一定是________.解析:因为 DC =2AB ,所以DC ∥AB ,且DC =2AB ,所以四边形ABCD 一定是梯形.★答案★:梯形5.在▱ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =________(用a ,b 表示).解析:由AN =3NC ,得4AN =3AC =3(a +b ),AM =a +12b ,所以MN =AN -AM =34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . ★答案★:-14a +14b6.已知△ABC 和点M 满足MA +MB +MC =0.若存在实数m 使得AB +AC =m AM 成立,则m =________.解析:因为AB +AC =(AM +MB )+(AM +MC )=MB +MC +2AM .由MA +MB +MC =0得,MB +MC =AM ,所以AB +AC =3AM ,故m =3.★答案★:37.如图,在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =________.解析:AF =AD +DF ,又AB +AD =a ,AD -AB =b , ∴AB =12a -12b ,AD =12a +12b ,DC =AB =12a -12b ,∴AF =AD +13DC =23a +13b .★答案★:23a +13b8.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB +FC =________. 解析:设AB =a ,AC =b ,则EB =-12b +a ,FC =-12a +b ,从而EB +FC =⎝⎛⎭⎫-12b +a +⎝⎛⎭⎫-12a +b =12(a +b )=AD .★答案★:AD 9.计算:(1)14⎣⎡⎦⎤(a +2b )+3a -13(6a -12b ); (2)(λ+μ)(a +b )-(λ-μ)(a -b ).解:(1)原式=14(a +2b )+34a -112(6a -12b )=14a +12b +34a -12a +b =⎝⎛⎭⎫14+34-12a +⎝⎛⎭⎫12+1b =12a +32b . (2)原式=(λ+μ)a +(λ+μ)b -(λ-μ)a +(λ-μ)b =[(λ+μ)-(λ-μ)]a +[(λ+μ)+(λ-μ)]b =2μa +2λb .10.如图所示,已知△OAB 中,点C 是以A 为对称中心的B 点的对称点,D 是把OB 分成2∶1的一个内分点,DC 和OA 交于E ,设OA =a ,OB =b .(1)用a 和b 表示向量OC ,DC ; (2)若OE =λOA ,求实数λ的值.解:(1)依题意,A 是BC 中点,∴2OA =OB +OC , 即OC =2OA -OB =2a -b ,DC =OC -OD =OC -23OB=2a -b -23b =2a -53b .(2)若OE =λOA ,则CE =OE -OC =λa -(2a -b )=(λ-2)a +b . ∵CE 与DC 共线.∴存在实数k ,使CE =k DC . ∴(λ-2)a +b =k ⎝⎛⎭⎫2a -53b ,解得λ=45.层级二 应试能力达标1.已知向量a ,b 是两个不共线的向量,且向量ma -3b 与a +(2-m )b 共线,则实数m 的值为________.解析:因为向量ma -3b 与a +(2-m )b 共线且向量a ,b 是两个不共线的向量,所以存在实数λ,使得ma -3b =λ[a +(2-m )b ],即(m -λ)a +(mλ-2λ-3)b =0,因为a 与b 不共线,所以⎩⎪⎨⎪⎧m =λ,mλ-2λ-3=0,解得m =-1或m =3.★答案★:-1或32.若AB =5e ,CD =-7e ,且|AD |=|BC |,则四边形ABCD 的形状是________. 解析:因为AB =5e ,CD =-7e ,所以CD =-75AB .所以AB 与CD 平行且方向相反,易知|CD |>|AB |.又因为|AD |=|BC |,所以四边形ABCD 是等腰梯形.★答案★:等腰梯形3.点C 在线段AB 上,且AC =35AB ,若AC =λCB ,则λ=________.解析:∵AC =35AB ,∴AC =32CB ,AC 与CB 方向相同,故λ=32.★答案★:324.已知OP 1=a ,OP 2=b ,P P 12=λPP 2 (λ≠0),则OP =_________.解析:因为P P 12=λPP 2,所以OP 2-OP 1=λ(OP 2-OP ),所以OP =1λOP 1+λ-1λOP 2.★答案★:1λ a +λ-1λb5.若点M 是△ABC 所在平面内的一点,且满足5AM =AB +3AC ,则△ABM 与△ABC 的面积比为________.解析:设AB 的中点为D ,由5AM =AB +3AC ,得3AM -3AC =2AD -2AM ,即3CM =2MD .如图所示,故C ,M ,D 三点共线,且MD =35CD ,也就是△ABM 与△ABC 对于边AB 的两高之比为3∶5,则△ABM 与△ABC 的面积比为35.★答案★:356.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP =m OA ,OQ =n OB ,m ,n ∈R ,则1n +1m 的值为________.解析:设OA =a ,OB =b ,由题意知OG =23×12(OA +OB )=13(a +b ),PQ =OQ -OP =nb -ma ,PG =OG -OP =⎝⎛⎭⎫13-m a +13b , 由P ,G ,Q 三点共线,得存在实数λ使得PQ =λPG , 即nb -ma =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ,得1n +1m =3.★答案★:37.已知O ,A ,B 是不共线的三点,且OP =m OA +n OB (m ,n ∈R). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1,则OP =m OA +(1-m )OB =OB +m (OA -OB ), 所以OP -OB =m (OA -OB ), 即BP =m BA ,所以BP 与BA 共线.又因为BP 与BA 有公共点B ,则A ,P ,B 三点共线, (2)若A ,P ,B 三点共线,则存在实数λ,使BP =λBA , 所以OP -OB =λ(OA -OB ).又OP =m OA +n OB . 故有m OA +(n -1)OB =λOA -λOB , 即(m -λ)OA +(n +λ-1)OB =0.因为O ,A ,B 不共线,所以OA ,OB 不共线,所以⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,所以m +n =1.8.在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB =a ,AC =b ,试用a ,b 表示AG .解:AG =AB +BG =AB +λBE=AB +λ2(BA +BC )=⎝⎛⎭⎫1-λ2AB +λ2(AC -AB ) =(1-λ)AB +λ2AC =(1-λ)a +λ2b .又AG =AC +CG =AC +m CF =AC +m2(CA +CB )=(1-m )AC +m 2AB =m2a +(1-m )b , 所以⎩⎨⎧1-λ=m 2,1-m =λ2,解得λ=m =23,所以AG =13a +13b .。
一、课题:向量的数乘(1)二、教学目标:1.掌握实数与向量的积的定义;2.掌握实数与向量的积的运算律,并进行有关的计算;3.理解两向量共线(平行)的充要条件,并会判断两个向量是否共线。
三、教学重、难点:1.实数与向量的积的定义及其运算律,向量共线的充要条件; 2.向量共线的充要条件及其应用。
四、教学过程:(一)复习:已知非零向量a ,求作a a +和()()a a -+-.如图:OB a a =+2a =,()()CE a a =-+-2a =-.(二)新课讲解:1.实数与向量的积的定义:一般地,实数λ与向量a 的积是一个向量,记作a λ,它的长度与方向规定如下:(1)||||||a a λλ=;(2)当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ= 时,0a λ=.2.实数与向量的积的运算律:(1)()()a a λμλμ=(结合律);(2)()a a a λμλμ+=+(第一分配律);(3)a b λλλ+(a+b )=(第二分配律).例1 计算:(1)(3)4a -⨯; (2)3()2()a b a b a +---; (3)(23)(32)a b c a b c +---+.解:(1)原式=12a -; (2)原式=5b ; (3)原式=52a b c -+-.3.向量共线的充要条件:定理:(向量共线的充要条件)向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b a λ=.例2 如图,已知3AD AB =,3DE BC =.试判断AC 与AE 是否共线.解:∵333()3AE AD DE AB BC AB BC AC =+=+=+=∴AC 与AE 共线.例3 判断下列各题中的向量是否共线:(1)21245a e e =-,12110b e e =-; (2)12a e e =+,1222b e e =-,且1e ,2e 共线.解:(1)当0a =时,则0b =,显然b 与a 共线.当0a ≠时, 12121121(4)10454b e e e e a =-=-=,∴b 与a 共线. (3)当1e ,2e 中至少有一个为零向量时,显然b 与a 共线.当1e ,2e 均不为零向量时,设12e e λ=∴2(1)a e λ=+,2(22)b e λ=-a -E a a a O B A CD a - A B C D E若1λ=-时,,0a =,显然b 与a 共线. 若1λ≠-时,221b a λλ-=+,∴b 与a 共线.例4 设12,e e 是两个不共线的向量,已知122AB e ke =+,123CB e e =+,122CD e e =-, 若A ,B ,D 三点共线,求k 的值。
2.2.3 向量的数乘一般地,实数λ与向量a的积是一个向量,记作λa,它的长度和方向规定如下:(1)|λa|=|λ||a|;(2)当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当a=0时,λa=0;当λ=0时,λa=0.实数λ与向量a相乘,叫做向量的数乘.思考:λa=0,一定能得到λ=0吗?[提示]不一定.λa=0则λ=0或a=0.二、向量数乘的运算律1.λ(μa)=(λμ)a;2.(λ+μ)a=λa+μa;3.λ(a+b)=λa+λb.三、向量共线定理如果有一个实数λ,使b=λa(a≠0),那么b与a是共线向量;反之,如果b与a(a≠0)是共线向量,那么有且只有一个实数λ,使b=λa.1.思考辨析(1)a=0,则λa=0.( )(2)对于非零向量a,向量-3a与向量3a方向相反.( )(3)对于非零向量a,向量-6a的模是向量3a的模的2倍.( )[答案](1)√(2)√(3)√2.5×(-4a)=________.-20a[5×(-4a)=5×(-4)a=-20a.]3.a=e1+2e2,b=3e1-2e2,则a+b=________.4e1[a+b=(e1+2e2)+(3e1-2e2)=4e1.]4.已知e1和e2不共线,则下列向量a,b共线的序号是________.①a =2e 1,b =2e 2;②a =e 1-e 2,b =-2e 1+2e 2; ③a =4e 1-25e 2,b =e 1-110e 2;④a =e 1+e 2,b =2e 1-2e 2.②③ [∵e 1与e 2不共线,∴①不正确;对于②有b =-2a ;对于③有a =4b ;④不正确.] 向量数乘的基本运算 【例1】 计算:(1)6(3a -2b )+9(-2a +b );(2)12⎣⎢⎡⎦⎥⎤(3a +2b )-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a ;(3)6(a -b +c )-4(a -2b +c )-2(-2a +c ).思路点拨:利用向量线性运算的法则化简,先去括号,再将共线向量合并. [解] (1)原式=18a -12b -18a +9b =-3b . (2)原式=12⎝ ⎛⎭⎪⎫3a +2b -23a -b -7612a +37b +12a=32a +b -13a -12b -712a -12b -712a =0. (3)原式=6a -6b +6c -4a +8b -4c +4a -2c =6a +2b .向量的数乘运算类似于代数多项式的运算,主要是“合并同类项”、“提取公因式”,但这里的“同类项”、“公因式”指向量,实数看作是向量的系数.向量也可以通过列方程来解,把所求向量当作未知量,利用解代数方程的方法求解.1.若向量a =3i -4j ,b =5i +4j ,则⎝ ⎛⎭⎪⎫13a -b -3⎝ ⎛⎭⎪⎫a +23b +(2b -a )=________.-16i +323j [原式=13a -b -3a -2b +2b -a=-113a -b=-113(3i -4j )-(5i +4j )=(-11-5)i +⎝ ⎛⎭⎪⎫443-4j =-16i +323j .]向量的共线问题【例2】 已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A ,B ,D 三点共线. (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.思路点拨:对于(1),欲证A ,B ,D 共线,只需证存在实数λ,使BD →=λAB →即可;对于(2),若k e 1+e 2与e 1+k e 2共线,则一定存在实数λ,使k e 1+e 2=λ(e 1+k e 2).[解] (1)证明:∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →, ∴AB →,BD →共线,且有公共点B ,∴A ,B ,D 三点共线.(2)∵k e 1+e 2与e 1+k e 2共线,∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.1.证明三点共线,通常转化为证明这三点构成的其中两个向量共线,向量共线定理是解决向量共线问题的依据.2.若A ,B ,C 三点共线,则向量AB →,AC →,BC →在同一直线上,因此必定存在实数,使得其中两个向量之间存在线性关系.而向量共线定理是实现线性关系的依据.2.设e 1,e 2是两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,求k 的值.[解] BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2. 因为A ,B ,D 三点共线,故存在实数λ,使得AB →=λBD →, 即2e 1+k e 2=λ(e 1-4e 2)=λe 1-4λe 2. 由向量相等的条件,得⎩⎪⎨⎪⎧λ=2,k =-4λ,解得k =-8,所以k =-8.向量共线的有关结论 [探究问题]1.已知O 为平面ABC 内任一点,若A ,B ,C 三点共线,是否存在α,β∈R ,使OC →=αO A →+βOB →,其中α+β=1?提示:存在,因A ,B ,C 三点共线,则存在λ∈R ,使AC →=λAB →, ∴OC →-OA →=λ(OB →-OA →),∴OC →=(1-λ)OA →+λOB →. 令1-λ=α,λ=β,则 OC →=αOA →+βOB →,且α+β=1.2.已知O 为平面ABC 内任一点,若存在α,β∈R ,使OC →=αOA →+βOB →,α+β=1,那么A ,B ,C 三点是否共线?提示:共线,因为存在α,β∈R ,使OC →=αOA →+βOB →,且α+β=1, ∴β=1-α,∴OC →=αOA →+(1-α)OB →, ∴OC →=αOA →+OB →-αOB →, ∴OC →-OB →=α(OA →-OB →),∴BC →=αBA →,∴A ,B ,C 三点共线.【例3】 如图所示,已知△OAB 中,点C 是以A 为对称中心的B 点的对称点,D 是把OB →分成2∶1的一个内分点,DC 和OA 交于E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值.思路点拨:由已知得A 为BC 中点,D 为OB 的三等分点,由向量的线性运算法则可解第(1)问,第(2)问可由向量共线定理解决.[解] (1)依题意,A 是BC 中点, ∴2OA →=OB →+OC →, 即OC →=2OA →-OB →=2a -b , DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b .(2)若OE →=λOA →,则CE →=OE →-OC →=λa -(2a -b )=(λ-2)a +b .∵CE →与DC →共线,∴存在实数k ,使CE →=kDC →, ∴(λ-2)a +b =k ⎝ ⎛⎭⎪⎫2a -53b ,解得λ=45. 用已知向量表示未知向量的求解思路:(1)先结合图形的特征,把待求向量放在三角形或平行四边形中;(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理,用已知向量表示未知向量;(3)求解过程体现了数学上的化归思想.3.如图,在▱OADB 中,设OA →=a ,OB →=b ,BM →=13BC →,CN →=13CD →.试用a ,b表示OM →,ON →及MN →.[解] 由题意知,在▱OADB 中,BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b )=16a -16b .则OM →=OB →+BM →=b +16a -16b =16a +56b ,ON →=23OD →=23(OA →+OB →)=23(a +b )=23a +23b ,MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .教师独具1.本节课的重点是向量的数乘运算及共线向量定理,难点是共线向量定理的应用. 2.掌握与向量数乘运算有关的三个问题 (1)向量的线性运算; (2)用已知向量表示未知向量; (3)共线向量定理及应用. 3.本节课的易错点当A 、B 、C 、D 四点共线时,AB →与CD →共线;反之不一定成立. 4.要掌握用已知向量表示其他向量的两种方法 (1)直接法 (2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.5.注意以下结论的运用(1)以AB ,AD 为邻边作▱ABCD ,且AB →=a ,AD →=b ,则对角线所对应的向量AC →=a +b ,DB →=a -b .(2)在△ABC 中,若D 为BC 的中点,则AD →=12(AB →+AC →).(3)在△ABC 中,若G 为△ABC 的重心,则GA →+GB →+GC →=0. 1.已知m ∈R ,下列说法正确的是( ) A .若m a =0,则必有a =0B .若m ≠0,a ≠0,则m a 与a 方向相同C .m ≠0,a ≠0,则|m a |=m |a |D .若m ≠0,a ≠0,则m a 与a 共线 D [A 错.若m a =0,则m =0或a =0;B 错.m >0时,m a 与a 同向,m <0时,m a 与a 反向;C 错.∵|m a |=|m ||a |,∴m >0时,|m a |=m |a |;m <0时|m a |=-m |a |.]2.△ABC 中,E ,F 分别是AB ,AC 的中点,且AB →=a ,AC →=b ,则EF →=________(用a ,b 表示).12(b -a ) [EF →=AF →-AE →=12AC →-12AB →=12(b -a ).] 3.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →可用OA →,OB →表示为________.2OA →-OB → [OC →=OB →+BC →=OB →+2AC →=OB →+2(OC →-OA →),∴OC →=2OA →-OB →.] 4.计算:(1)8(2a -b +c )-6(a -2b +c )-2(2a +c ); (2)(m +n )(a -b )-(m +n )(a +b ).[解] (1)原式=16a -8b +8c -6a +12b -6c -4a -2c =(16-6-4)a +(-8+12)b +(8-6-2)c =6a +4b .(2)原式=(m +n )a -(m +n )b -(m +n )a -(m +n )b =-2(m +n )b .。