2019年延安市统考第一次模拟试题分析002
- 格式:ppt
- 大小:838.51 KB
- 文档页数:20
陕西省延安市2019-2020学年中考语文仿真第一次备考试题一、选择题1.下列词语中书写全部正确....的一项是()A.松驰嘹亮暗然失色长途跋涉B.涣散板粟静影沉壁不屈不挠C.惶恐搅拌沁人心脾正襟危坐D.取缔要决诡计多端沉鳞竞跃2.依次填入下面句子横线处的词语最恰当的一项是()“天地英雄气,千秋尚凛然。
”_____哪一个时代,英雄的事迹和精神都是_____社会前行的强大力量。
期盼“崇尚英雄”_____,光荣永远_____,英雄永不独行。
A.尽管勉励蔚为大观传递B.无论激励蔚然成风传承C.尽管激励蔚为大观传递D.无论勉励蔚然成风传承3.下列各句中,加点词语使用正确的一项是A.为了把扬州建设成为古代文化与现代文明交相辉映的名城,城市管理者们以无所不为....的勇气,开拓进取,积极担当。
B.在党中央高度强调“以人民为中心”的今天,竟然还有如此漠不关心....群众疾苦的领导干部,真让人觉得匪夷所思。
C.学校艺术节汇报演出晚会上,我班京剧社团将《贵妃醉酒》唱得字正腔圆,一招一式都有模有样,令领导、家长、老师和同学们刮目相看....。
D.世界上没有十全十美的人,只有取长补短....,不断完善自我,才能使我们有质的飞跃。
4.下面语段中加点字的拼音、横线处填写的汉字都正确的一项是夜雨款款地剥夺了人的活力,因此夜雨中的想象又格外敏感和畏怯。
这种畏怯又与某种安全感拌和.在一起,凝聚成对小天地中一脉温情的自享和(qǐ)盼。
在夜雨中与家人围炉闲谈,几乎都不会拌嘴;在夜雨中专心攻读,身心会超常地熨帖.;在夜雨中思念友人,会思念到立即寻笔写信;在夜雨中挑灯作文,文字也会变得滋润蕴(jiè)。
——选自余秋雨《夜雨诗意》A.hé祈tiě藉B.huò企tiē藉C.hé企tiě籍D.huò祈tiē籍5.下列句子中没有语病的一项是()A.位于杭州湾产业带关键位置的钱塘新区,是湾区经济发展的核心地带,肩负着培育杭州产业发展新增长点。
陕西省延安市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+62.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有()个.A.3 B.4 C.2 D.13.a、b互为相反数,则下列成立的是()A.ab=1 B.a+b=0 C.a=b D.ab=-14.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体5.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B 的大小是()A.27°B.34°C.36°D.54°6.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A. B. C.D.7.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.其中正确的是()A.①②③B.①④⑤C.①②④D.③④⑤8.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m9.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %10.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()A.12B.14C.16D.1811.如图,在平面直角坐标系中,P是反比例函数kyx=的图像上一点,过点P做PQ x⊥轴于点Q,若OPQ△的面积为2,则k的值是( )A.-2 B.2 C.-4 D.4 12.如图是一个几何体的三视图,则这个几何体是()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,中,AC=3,BC=4,,P 为AB 上一点,且AP=2BP ,若点A 绕点C 顺时针旋转60°,则点P 随之运动的路径长是_________14.若x 2+kx+81是完全平方式,则k 的值应是________.15.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E. 若AB=12,BM=5,则DE 的长为_________.16.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____. 17.分解因式a 3﹣6a 2+9a=_________________.18.若关于x 的方程111m x x x ----=0有增根,则m 的值是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB=32.求反比例函数的解析式;若P (1x ,1y )、Q (2x ,2y )是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.(6分)观察下列等式:第1个等式:1111a 11323==⨯-⨯(); 第2个等式:21111a 35235==⨯-⨯(); 第3个等式:31111a 57257==⨯-⨯(); 第4个等式:41111a 79279==⨯-⨯(); …请解答下列问题:按以上规律列出第5个等式:a 5= = ;用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);求a 1+a 2+a 3+a 4+…+a 100的值.21.(6分)如图,一次函数y =kx+b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点. 求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.22.(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.23.(8分)计算:(13)-1+32+)027. 24.(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.(10分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是.(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.26.(12分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?27.(12分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.2.A【解析】【分析】利用抛物线的对称性可确定A 点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x 轴有2个交点可对②进行判断;由抛物线开口向下得到a >0,再利用对称轴方程得到b=2a >0,则可对③进行判断;利用x=-1时,y <0,即a-b+c <0和a >0可对④进行判断.【详解】∵抛物线的对称轴为直线x=-1,点B 的坐标为(1,0),∴A (-3,0),∴AB=1-(-3)=4,所以①正确;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以②正确;∵抛物线开口向下,∴a >0,∵抛物线的对称轴为直线x=-2b a=-1, ∴b=2a >0,∴ab >0,所以③错误;∵x=-1时,y <0,∴a-b+c <0,而a >0,∴a (a-b+c )<0,所以④正确.故选A .【点睛】本题考查了抛物线与x 轴的交点:对于二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),△=b 2-4ac 决定抛物线与x 轴的交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.也考查了二次函数的性质.3.B【解析】【分析】依据相反数的概念及性质即可得.因为a、b互为相反数,所以a+b=1,故选B.【点睛】此题主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.4.A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.5.C【解析】【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,∴OA⊥BA.∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C.考点:切线的性质.6.C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A 、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B 、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C 、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D 、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.故选C【点睛】考核知识点:正方体的表面展开图.7.B【解析】【分析】由抛物线的对称轴结合抛物线与x 轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y >1,得到a ﹣b+c >1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b ),判断⑤.【详解】解:①∵抛物线y=ax 2+bx+c (a≠1)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,1), ∴抛物线与x 轴的另一交点坐标为(1,1),∴抛物线过原点,结论①正确;②∵当x=﹣1时,y >1,∴a ﹣b+c >1,结论②错误;③当x <1时,y 随x 增大而减小,③错误;④抛物线y=ax 2+bx+c (a≠1)的对称轴为直线x=2,且抛物线过原点, ∴22b a-=,c=1, ∴b=﹣4a ,c=1,∴4a+b+c=1,当x=2时,y=ax 2+bx+c=4a+2b+c=(4a+b+c )+b=b ,∴抛物线的顶点坐标为(2,b ),结论④正确;⑤∵抛物线的顶点坐标为(2,b ),∴ax 2+bx+c=b 时,b 2﹣4ac=1,⑤正确;综上所述,正确的结论有:①④⑤.故选B .【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=1532×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.9.C【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4100%50=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.10.B【解析】【分析】画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得. 【详解】 画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种, 所以甲、乙两位游客恰好从同一个入口进入公园的概率为416=14, 故选B . 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率. 11.C 【解析】 【分析】根据反比例函数k 的几何意义,求出k 的值即可解决问题 【详解】解:∵过点P 作PQ ⊥x 轴于点Q ,△OPQ 的面积为2, ∴|2k|=2, ∵k <0, ∴k=-1. 故选:C . 【点睛】本题考查反比例函数k 的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 12.B 【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B . 考点:由三视图判断几何体.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.【分析】作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.【详解】作PD⊥BC,则PD∥AC,∴△PBD~△ABC,∴.∵AC=3,BC=4,∴AB=,∵AP=2BP,∴BP=,∴,∴点P运动的路径长=.故答案为:.【点睛】本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.14.±1【解析】试题分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+kx+81是完全平方式,故答案为±1.考点:完全平方式.15.109 5【解析】【分析】由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.【详解】详解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴BMAM=AMAE,即513=13AE,∴AE=1695,∴DE=AE﹣AD=1695﹣12=1095.故答案为1095.【点睛】本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.16.5 6【解析】【分析】列举出所有情况,看在第四象限的情况数占总情况数的多少即可.【详解】如图:共有12种情况,在第三象限的情况数有2种,故不再第三象限的共10种,不在第三象限的概率为105= 126,故答案为56.【点睛】本题考查了树状图法的知识,解题的关键是列出树状图求出概率.17.a(a﹣3)1.【解析】a3﹣6a1+9a=a(a1﹣6a+9)=a(a﹣3)1.故答案为a(a﹣3)1.18.2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)3yx=-;(2)P在第二象限,Q在第三象限.【解析】试题分析:(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B(﹣2,32),把B(﹣2,32)代入kyx=中,得到k=﹣3,∴反比例函数的解析式为3yx =-.(2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(1)1111 9112911⨯-⨯,()(2)()()1111 2n 12n+122n 12n+1⨯--⨯-,()(3)100201【解析】 【分析】(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1. (3)运用变化规律计算 【详解】 解:(1)a 5=1111=9112911⨯-⨯(); (2)a n =()()1111=2n 12n+122n 12n+1⨯--⨯-();(3)a 1+a 2+a 3+a 4+…+a 10011111111111=1++++232352572199201⨯-⨯-⨯-⋅⋅⋅⨯-()()()() 11111111111200100=1++++=1==23355719920122012201201⎛⎫⎛⎫⨯---⋅⋅⋅-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭. 21. (1)y=2x-,y=−x−1;(2)x<−2或0<x<1 【解析】 【分析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (1,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A,B 两点的坐标即可写出一次函数的值大于反比例函数的值的x 的取值范围. 【详解】(1)∵A(−2,1)在反比例函数y=mx的图象上, ∴1=2m-,解得m=−2. ∴反比例函数解析式为y=2x-, ∵B(1,n)在反比例函数上, ∴n=−2,∴B 的坐标(1,−2),把A(−2,1),B(1,−2)代入y=kx+b 得122k bk b=-+⎧⎨-=+⎩解得:11 kb=-⎧⎨=-⎩∴一次函数的解析式为y=−x−1;(2)由图像知:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.22.(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.【解析】试题分析:(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)100800×100%=12.5%.答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.23.4+23.【解析】【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【详解】原式=3+1+33-2×3 2=4+23.24.(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.【解析】【分析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【详解】(1).(2)根据题意,得:∵∴当时,随x的增大而增大∵∴当时,取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】熟悉掌握图中所给信息以及列方程组是解决本题的关键.25.(1)1;(2)这两次测试的平均增长率为20%;(3)55%.【解析】【分析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.【详解】解:(1)将四次测试结果排序,得:30,40,50,60,∴测试不合格人数的中位数是(40+50)÷2=1.故答案为1;(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),∴第四次测试合格人数为1×2﹣18=72(人).设这两次测试的平均增长率为x , 根据题意得:50(1+x )2=72,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去), ∴这两次测试的平均增长率为20%; (3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%, 1﹣1%=55%.补全条形统计图与扇形统计图如解图所示.【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.26.(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件. 【解析】 【分析】(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分,利用待定系数法求出x ,y 的值. (2)设生产甲种产品用x 分,则生产乙种产品用(25×8×60-x )分,分别求出甲乙两种生产多少件产品. 【详解】(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分.由题意得:10103503020850x y x y +=⎧⎨+=⎩,解这个方程组得:1520x y =⎧⎨=⎩,答:生产一件甲产品需要15分,生产一件乙产品需要20分. (2)设生产甲种产品共用x 分,则生产乙种产品用(25×8×60-x )分. 则生产甲种产品15x件,生产乙种产品2586020x ⨯⨯-件.∴w 总额=1.5×15x+2.8×2586020x ⨯⨯-=0.1x+1200020x -×2.8=0.1x+1680-0.14x=-0.04x+1680, 又15x≥60,得x≥900, 由一次函数的增减性,当x=900时w 取得最大值,此时w=0.04×900+1680=1644(元), 则小王该月收入最多是1644+1900=3544(元), 此时甲有90015=60(件), 乙有:2586090020⨯⨯-=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件. 【点睛】考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.27.(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组 【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人, 如图:(3)设需从甲组抽调x 名同学到丙组, 根据题意得:3(11-x )=21+x 解得x=1.答:应从甲抽调1名学生到丙组 (1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图; (3)设需从甲组抽调x 名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解。
2019年延安市高考数学模拟试题含答案一、选择题1.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0 D .存在x 0∈R ,使得x 02<02.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③ 3.(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .244.()()31i 2i i --+=( )A .3i +B .3i --C .3i -+D .3i -5.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}6.函数32()31f x x x =-+的单调减区间为 A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2) 7.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则 A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-8.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元9.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A .14B .12C .22D .210.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7B .8C .9D .1011.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.1512.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直二、填空题13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.14.在ABC 中,60A =︒,1b =,面积为3,则sin sin sin a b cA B C________.15.函数2()log 1f x x =-的定义域为________.16.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC 的面积为______.17.已知样本数据,,,的均值,则样本数据,,,的均值为 .18.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).19.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____. 20.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 三、解答题21.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+= (1)写出点P 的直角坐标及曲线C 的普通方程; (2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t=+⎧⎨=-+⎩(t 为参数)距离的最小值.22.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.23.如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高.(Ⅰ)证明:平面PAC ⊥平面PBD ; (Ⅱ)若AB 6=,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积. 24.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 25.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at=+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是22sin 4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)己知直线l 与曲线C 交于A 、B 两点,且7AB =,求实数a 的值.26.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .2.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.3.A解析:A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.4.B解析:B 【解析】 【分析】先分别对分子和分母用乘法公式化简,再分子分母同时乘以分母的共轭复数,化简即得最后结果. 【详解】由题意得,复数()()()31i 2i 13i i 13i 3i i ii i--+-+⋅-+===----⋅.故应选B【点睛】本小题主要考查复数的乘法和除法的运算,乘法的运算和实数的运算类似,只需要记住2i 1=-.除法的运算记住的是分子分母同时乘以分母的共轭复数,这一个步骤称为分母实数化,分母实数化的主要目的是将分母变为实数,然后将复数的实部和虚部求出来.属于基础题.5.B解析:B 【解析】 【分析】先求出A B ⋃,阴影区域表示的集合为()UA B ⋃,由此能求出结果.【详解】全集{1,U =3,5,7},集合{}1,3A =,{}3,5B =,{1,A B ∴⋃=3,5},∴如图所示阴影区域表示的集合为:(){}7UA B ⋃=.故选B . 【点睛】本题考查集合的求法,考查并集、补集、维恩图等基础知识,考查运算求解能力,考查集合思想,是中等题.6.D解析:D 【解析】 【分析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间. 【详解】32'2()31()363(2)002f x x x f x x x x x x -=-<⇒=+∴=<-<,所以函数的单调减区间为(0,2),故本题选D. 【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.7.C解析:C 【解析】 【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】因为()a i i b i +=+, 即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-, 故选C. 【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.8.D解析:D 【解析】 【分析】设目前该教师的退休金为x 元,利用条形图和折线图列出方程,求出结果即可. 【详解】设目前该教师的退休金为x 元,则由题意得:6000×15%﹣x×10%=100.解得x =8000. 故选D . 【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.9.C解析:C 【解析】由题得(1)111122222i i i i z i z i -+====+∴==+. 故选C. 10.D解析:D 【解析】试题分析:因为210:270:3007:9:10,=所以从高二年级应抽取9人,从高三年级应抽取10人.考点:本小题主要考查分层抽样的应用.点评:应用分层抽样,关键是搞清楚比例关系,然后按比例抽取即可.11.D解析:D 【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .12.D解析:D【解析】解:利用展开图可知,线段AB与CD是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D二、填空题13.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.14.【解析】【分析】由已知利用三角形面积公式可求c进而利用余弦定理可求a的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在【解析】【分析】由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】60A=︒,1b=11sin1222bc A c==⨯⨯⨯,解得4c=,由余弦定理可得:a===,所以13239sin sin sin sin3a b c aA B C A故答案为:3【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.15.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.16.【解析】【分析】由已知利用正弦定理二倍角的正弦函数公式可求的值根据同角三角函数基本关系式可求的值利用二倍角公式可求的值根据两角和的正弦函数公式可求的值即可利用三角形的面积公式计算得解【详解】由正弦定【解析】 【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos B 的值,根据同角三角函数基本关系式可求sin B 的值,利用二倍角公式可求sin C ,cos C 的值,根据两角和的正弦函数公式可求sin A 的值,即可利用三角形的面积公式计算得解. 【详解】2b =,3c =,2C B =,∴由正弦定理sin sin b c B C =,可得:23sin sin B C=,可得:233sin sin22sin cos B B B B==,∴可得:3cos 4B =,可得:sin 4B ==,∴可得:sin sin22sin cos C B B B ===,21cos cos22cos 18C B B ==-=,()13sin sin sin cos cos sin 84A B C B C B C ∴=+=+=+=,1157157sin 23221616S bc A ∴==⨯⨯⨯=. 故答案为:157. 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角公式,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.17.11【解析】因为样本数据x1x2⋅⋅⋅xn 的均值x=5所以样本数据2x1+12x2+1⋅⋅⋅2xn+1的均值为2x+1=2×5+1=11所以答案应填:11考点:均值的性质 解析:【解析】 因为样本数据,,,的均值,所以样本数据,,,的均值为,所以答案应填:.考点:均值的性质.18.390【解析】【分析】【详解】用2色涂格子有种方法用3色涂格子第一步选色有第二步涂色共有种所以涂色方法种方法故总共有390种方法故答案为:390解析:390 【解析】 【分析】 【详解】 用2色涂格子有种方法,用3色涂格子,第一步选色有,第二步涂色,共有种,所以涂色方法种方法,故总共有390种方法. 故答案为:39019.8【解析】【详解】由题意知a ∈Pb ∈Q 则a+b 的取值分别为123467811故集合P+Q中的元素有8个点睛:求元素(个数)的方法根据题目一一列举可能取值(应用列举法和分类讨论思想)然后根据集合元素的解析:8【解析】【详解】由题意知a∈P,b∈Q,则a+b的取值分别为1,2,3,4,6,7,8,11.故集合P+Q中的元素有8个.点睛:求元素(个数)的方法,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.20.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同解析:-3 4【解析】因为3sinsinαα=()2sinsinααα+=22sin cos cos sinsinααααα+=()22221sin cos cos sinsinααααα+-=24sin cos sinsinαααα-=4cos2α-1=2(2cos2α-1)+1=2cos 2α+1=135,所以cos 2α=45.又α是第四象限角,所以sin 2α=-35,tan2α=-34.点睛:三角函数求值常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.三、解答题21.(1)P,22(4x y++=;(2)110-.【解析】【分析】(1)把x=ρcosθ,y=ρsinθ代入即可得出;(2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出.【详解】(1)x =ρcosθ,y =ρsinθ代入计算,36P x π===,6P y π==12= ∴点P的直角坐标(,由2sin 1ρθ+=,得221x y ++=,即(224x y ++=,所以曲线C的直角坐标方程为(224x y ++=(2)曲线C的参数方程为22x cos y sin θθ=⎧⎪⎨=⎪⎩(θ为参数),由32:2x t l y t =+⎧⎨=-+⎩(t 为参数),得直线l 的普通方程为270x y --=.设()2cos ,2sin Q θθ,则PQ 中点3cos ,sin 2M θθ⎛⎫+ ⎪⎝⎭,那么点M 到直线l 的距离,()11d θϕ-+===111≥=,所以点M 到直线l1. 【点睛】本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.22.(Ⅰ)见解析(Ⅱ)35. 【解析】 【分析】(Ⅰ)所抽取的40人中,该天行走20008000~步的人数:男12人,女14人,由此能求出400位参与“微信运动”的微信好友中,每天行走20008000~步的人数. (Ⅱ)该天抽取的步数在800010000~的人数:男6人,女3人,共9人,再按男女比例分层抽取6人,则其中男4人,女2人,由此能求出其中至少有一位女性微信好友被采访的概率. 【详解】(Ⅰ)由题意,所抽取的40人中,该天行走20008000~步的人数:男12人,女14人, 所以400位参与“微信运动”的微信好友中,每天行走20008000~步的人数约为2640026040⨯=人; (Ⅱ)该天抽取的步数在800010000~的人数中,根据频率分布直方图可知,男生人数所占的频率为0.1520.3⨯=,所以男生的人数为为200.36⨯=人,根据柱状图可得,女生人数为3人,再按男女比例分层抽取6人,则其中男4人,女2人.再从这6位微信好友中随机抽取2人进行采访,基本事件总数2615n C ==种,至少1个女性的对立事件是选取中的两人都是男性,∴其中至少有一位女性微信好友被采访的概率:2426315C P C =-=.【点睛】本题主要考查了频率分布直方图的应用,以及古典概型及其概率的求解,以及分层抽样等知识的综合应用,其中解答中认真审题,正确理解题意,合理运算求解是解答此类问题的关键,着重考查了运算与求解能力,属于基础题. 23.(Ⅰ)证明见解析;(Ⅱ. 【解析】 【分析】 【详解】试题分析:(Ⅰ)因为PH 是四棱锥P-ABCD 的高.所以AC ⊥PH,又AC ⊥BD,PH,BD 都在平面PHD 内,且PH BD=H. 所以AC ⊥平面PBD. 故平面PAC ⊥平面PBD.(Ⅱ)因为ABCD 为等腰梯形,AB CD,AC ⊥. 所以因为∠APB=∠ADR=600 所以,HD=HC=1. 可得等腰梯形ABCD 的面积为S=12所以四棱锥的体积为V=13x (考点:本题主要考查立体几何中的垂直关系,体积的计算.点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算.在计算问题中,有“几何法”和“向量法”.利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程.本题(I )较为简单,(II )则体现了“一作、二证、三计算”的解题步骤.24.(1)19;(2)89. 【解析】试题分析:(1)所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 共计3个,由此求得“抽取的卡片上的数字满足a b c +=”的概率;(2)所有的可能结果(,,)a b c 共有33327⨯⨯=种,用列举法求得满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 共计三个,由此求得“抽取的卡片上的数字a 、b 、c 完全相同”的概率,再用1减去此概率,即得所求.试题解析:(1) 所有的可能结果(,,)a b c 共有33327⨯⨯=种, 而满足a b c +=的(,,)a b c 有(1,1,2)、(1,2,3)、(2,1,3)共计3个 故“抽取的卡片上的数字满足a b c +=”的概率为31279= (2) 所有的可能结果(,,)a b c 共有33327⨯⨯=种满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 有(1,1,1)、(2,2,2)、(3,3,3)共计三个故“抽取的卡片上的数字a 、b 、c 完全相同”的概率为31279= 所以“抽取的卡片上的数字a 、b 、c 不完全相同”的概率为18199-= 考点:独立事件的概率.【方法点睛】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式求解.如果采用方法一,一定要将事件拆分成若干个互斥事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.25.(1)l 的普通方程210ax y a +--=;C 的直角坐标方程是22220x y x y +--=;(2)3±【解析】 【分析】(1)把直线l 的标准参数方程中的t 消掉即可得到直线l 的普通方程,由曲线C 的极坐标方程为ρ=(θ4π+),展开得22ρ=(ρsinθ+ρcosθ),利用x cos y sin ρθρθ=⎧⎨=⎩即可得出曲线C 的直角坐标方程; (2)先求得圆心C 到直线AB 的距离为d ,再用垂径定理即可求解.【详解】(1)由直线l 的参数方程为21x ty at=+⎧⎨=-⎩,所以普通方程为210ax y a +--=由曲线C 的极坐标方程是22sin 4πρθ⎛⎫=+ ⎪⎝⎭, 所以222sin 2sin 2cos 4πρθρθρθ⎛⎫=+=+ ⎪⎝⎭, 所以曲线C 的直角坐标方程是22220x y x y +--=(2)设AB 的中点为M ,圆心C 到直线AB 的距离为d ,则72MA =, 圆()()22:112C x y -+-=,则2r =,()1,1C ,2271||242d MC r MA ==-=-=, 由点到直线距离公式,221211211a a a d a a +--===++ 解得33a =±,所以实数a 的值为33±.【点睛】本题考查了极坐标方程化为直角坐标方程、直线参数方程化为普通方程,考查了点到直线的距离公式,圆中垂径定理,考查了推理能力与计算能力,属于中档题. 26.(1)因为时,所以;(2)由(1)知该商品每日的销售量,所以商场每日销售该商品所获得的利润:222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-; /2()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+-----,令/()0f x =得4x =函数在(3,4)上递增,在(4,6)上递减, 所以当时函数取得最大值答:当销售价格时,商场每日销售该商品所获得的利润最大,最大值为42.【解析】(1)利用销售价格为5元/千克时,每日可售出该商品11千克.把x=5,y=11代入,解关于a 的方程即可求a..(2)在(1)的基础上,列出利润关于x 的函数关系式,利润=销售量⨯(销售单价-成品单价),然后利用导数求其最值即可.。
陕西省延安市2019-2020学年第一次中考模拟考试语文试卷一、选择题1.下列句中标点符号使用有错误的一项是()A.《白杨礼赞》选自《见闻杂记》(文光书店1943年版)。
B.为了深入实施兴化市中小学生素养提升五项工程,兴化市教育局举办了《2019我们的节日·清明》经典诵读比赛。
C.父亲有时吸点旱烟,喝点酒;母亲管束着我们,不允许我们染上一点。
D.吟诵《重修望海楼记》,怎能不唤起我们对家乡的爱?怎能不激起我们建设家乡的豪情?2.下列文学常识说法不正确...的一项是( )A.《史记》是我国第一部纪传体通史,被誉为“史家之绝唱,无韵之离骚”。
B.中国古代称毛发黄而未黑的孩童为“黄发”,又常用“垂髫”来指代老人。
C.《春》《济南的冬天》《天上的街市》的作者分别是朱自清、老舍和郭沫若。
D.契诃夫是俄国作家、戏剧家,代表作有《变色龙》《装在套子里的人》等。
3.依次填入下面一段文字横线处的语句,衔接最恰当...的一项是()在中国人眼里,人生有四件大事——衣、食、住、行。
把衣放在首位,为什么?①古人常言“修身”“齐家”“治国”“平天下”②而它的起点“修身”当然不能缺少对身体的包装行为③即必须首先从外表上塑造出具有儒家风范的形象④因为在礼仪之邦,衣是脸面、包装,是身份的体现⑤这是士人儒生的人生信念与行为准则A.①②⑤④③B.④①⑤②③C.③⑤④①②D.④①③②⑤4.下列关于文学常识和文化常识表述错误的一项是()A.古代的交际用语常有敬辞与谦辞之分,比如“惠顾”“垂问”“见教”是敬辞,“舍弟”“愚见”“拙作”是谦辞。
B.“三五步走遍天下,七八人百万雄兵”“咫尺地五湖四海,几更时万古千秋”等都是对中国戏曲现象生动的描述,这种描述反映出中国戏曲场景虚拟化的主要特点。
C.梅兰竹菊并称为“四君子”,“凌霜自行,不趋炎势”、“筛风弄月,潇洒一生”、“剪雪裁冰,一身傲骨”分别表现的是菊、竹、梅的风骨。
D.成语“温故知新”“一鼓作气”“熟能生巧”分别出自《论语》、编年体史书《战国策》、欧阳修的《卖油翁》。
延安市2019届高考模拟试题(一)数学(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数满足,则复数的虚部为()A. B. C. D.【答案】B【解析】设,由,,故选B.2.已知集合,则()A. B. C. D.【答案】A【解析】【分析】先根据指数函数的值域求出集合A,然后根据对数函数有意义求出集合B,最后根据交集的定义求出所求即可.【详解】∵A={y|y=2x,x∈R}={y|y>0},B={x|y=lg(2﹣x)}={x|2﹣x<0}={x|x<2}=(﹣∞,2),∴A∩B={x|0<x<2}=,故选A.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合A,B是解决本题的关键,比较基础.3.即空气质量指数,越小,表明空气质量越好,当不大于时称空气质量为“优良”.如图是某市3月1日到12日的统计数据.则下列叙述正确的是()A. 这天的的中位数是B. 天中超过天空气质量为“优良”C. 从3月4日到9日,空气质量越来越好D. 这天的的平均值为【答案】C【解析】这12天的AQI指数值的中位数是,故A不正确;这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B不正确;;从4日到9日,空气质量越来越好,,故C正确;这12天的指数值的平均值为110,故D不正确.故选C.4.已知平面向量(2,3),(x,4),若⊥(),则()A. B. C. D.【答案】B【解析】【分析】可求出,根据即可得出,进行数量积的坐标运算即可求出x.【详解】;∵;∴;解得.故选B.【点睛】本题考查向量垂直的充要条件,向量坐标的减法和数量积运算,属于基础题.5.已知,表示两条不同的直线,表示平面.下列说法正确的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】B【解析】【分析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【详解】A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,,由线面垂直的性质定理可知,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选:B.【点睛】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟定理是解题的关键,注意观察空间的直线与平面的模型.6.宋元时期数学名著《算学启蒙》中有关“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,竹松何日而长等.如图是源于思想的一个程序框图,若输入的,分别为和,则输出的()A. B. C. D.【答案】B【解析】模拟程序运行,可得:,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出的值为故选7.函数的图象向左平移个单位长度后,所得到的图象关于原点对称,则等于()A. B. C. D.【答案】D【解析】【分析】先根据图象变换规律求得平移后的解析式设为g(x),再根据对称性求得结果.【详解】函数f(x)sin(2x+φ)(|φ|)的图象向左平移个单位后,得到g(x)sin(2xφ)(|φ|)的图象,由于平移后的图象关于原点对称,故g(0)sin(φ)=0,∴φ=k(k)由|φ|得:φ,故选:D.【点睛】本题考查的知识点是函数图象的平移变换,三角函数的对称性,属于基础题.8.已知为常数,,则的展开式中的常数项是()A. B. C. D.【答案】C【解析】【分析】计算定积分求出a的值,再利用二项展开式的通项公式,求得常数项.【详解】a2xdx=x21,∴()6的通项公式为T r+1=C6r=(﹣1)r C6r,令0,解得r=2,则二项展开式中的常数项为(﹣1)2C62=15,故选C.【点睛】本题主要考查定积分的运算,二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.9.已知双曲线的渐近线与圆相切,则该双曲线的离心率为()A. B. C. D.【答案】B【解析】由双曲线方程可知,双曲线的一条渐近线为:,即:,由直线与圆的位置关系可得:,整理可得:,则:,据此有:.本题选择B选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).10.设函数满足,当,,则()A. B. C. D.【答案】A【解析】试题分析:因为函数满足,当时,,所以,故选A.考点:抽象函数的性质;三角函数的求值.【方法点晴】本题主要考查了抽象函数的性质、三角函数的求值、三角函数的诱导公式等知识点的综合应用,本题的解答中函数满足,当时,,利用三角函数的诱导公式,即可求解的值,着重考查了分析问题和解答问题的能力,属于中档试题.【此处有视频,请去附件查看】11.正三角形的边长为,将它沿高折叠,使点与点间的距离为,则四面体外接球的表面积为()A. B. C. D.【答案】B【解析】【分析】四面体的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.【详解】根据题意可知四面体的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面△BDC,BD=CD=1,BC,∴∠BDC=120°,∴△BDC的外接圆的半径为 1由题意可得:球心到底面的距离为,∴球的半径为r.外接球的表面积为:4πr2=7π故选:B.【点睛】本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,属于中档题.12.已知函数,若且,则实数的取值范围是()A. B.C. D.【答案】A【解析】【分析】根据对数的性质的可知:函数f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),可得,即,可得a,b的关系,利用基本不等式求解2a+b的取值范围.【详解】函数f(x)=|lg(x﹣1)|,∵1<a<b且f(a)=f(b),则b>2,1<a<2,∴,即,可得:ab﹣a﹣b=0.那么:a.则2a+b,当且仅当b时取等号.满足b>2,故选:A.【点睛】本题考查对数函数的性质和基本不等式的综合运用,考查了数形结合思想,属于中档题.二、填空题。
延安市2019届高考模拟试题(一)数学(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数满足,则复数的虚部为()A. B. C. D.【答案】B【解析】设,由,,故选B.2.已知集合,则()A. B. C. D.【答案】A【解析】【分析】先根据指数函数的值域求出集合A,然后根据对数函数有意义求出集合B,最后根据交集的定义求出所求即可.【详解】∵A={y|y=2x,x∈R}={y|y>0},B={x|y=lg(2﹣x)}={x|2﹣x<0}={x|x<2}=(﹣∞,2),∴A∩B={x|0<x<2}=,故选A.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合A,B是解决本题的关键,比较基础.3.即空气质量指数,越小,表明空气质量越好,当不大于时称空气质量为“优良”.如图是某市3月1日到12日的统计数据.则下列叙述正确的是()A. 这天的的中位数是B.天中超过天空气质量为“优良”C. 从3月4日到9日,空气质量越来越好D. 这天的的平均值为【答案】C【解析】这12天的AQI指数值的中位数是,故A不正确;这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B不正确;;从4日到9日,空气质量越来越好,,故C正确;这12天的指数值的平均值为110,故D不正确.故选C.4.已知平面向量(2,3),(x,4),若⊥(),则()A. B. C. D.【答案】B【解析】【分析】可求出,根据即可得出,进行数量积的坐标运算即可求出x.【详解】;∵;∴;解得.故选B.【点睛】本题考查向量垂直的充要条件,向量坐标的减法和数量积运算,属于基础题.5.已知,表示两条不同的直线,表示平面.下列说法正确的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】B 【解析】 【分析】A .运用线面平行的性质,结合线线的位置关系,即可判断;B .运用线面垂直的性质,即可判断;C .运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D .运用线面平行的性质和线面垂直的判定,即可判断.【详解】A .若m ∥α,n ∥α,则m ,n 相交或平行或异面,故A 错; B .若m ⊥α,,由线面垂直的性质定理可知,故B 正确;C .若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错;D .若m ∥α,m ⊥n ,则n ∥α或n ⊂α或n ⊥α,故D 错. 故选:B .【点睛】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟定理是解题的关键,注意观察空间的直线与平面的模型.6.宋元时期数学名著《算学启蒙》中有关“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,竹松何日而长等.如图是源于思想的一个程序框图,若输入的,分别为和,则输出的( )A. B. C. D.【答案】B 【解析】模拟程序运行,可得:,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出的值为故选 7.函数的图象向左平移个单位长度后,所得到的图象关于原点对称,则等于( )A. B.C.D.【答案】D 【解析】 【分析】先根据图象变换规律求得平移后的解析式设为g (x ),再根据对称性求得结果. 【详解】函数f (x )sin (2x +φ)(|φ|)的图象向左平移个单位后, 得到g (x )sin (2xφ)(|φ|)的图象,由于平移后的图象关于原点对称, 故g (0)sin (φ)=0,∴φ=k (k)由|φ|得:φ,故选:D .【点睛】本题考查的知识点是函数图象的平移变换,三角函数的对称性,属于基础题.8.已知为常数,,则的展开式中的常数项是( )A.B.C.D.【答案】C 【解析】 【分析】计算定积分求出a 的值,再利用二项展开式的通项公式,求得常数项.【详解】a2xdx=x21,∴()6的通项公式为T r+1=C6r=(﹣1)r C6r,令0,解得r=2,则二项展开式中的常数项为(﹣1)2C62=15,故选C.【点睛】本题主要考查定积分的运算,二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.9.已知双曲线的渐近线与圆相切,则该双曲线的离心率为()A. B. C. D.【答案】B【解析】由双曲线方程可知,双曲线的一条渐近线为:,即:,由直线与圆的位置关系可得:,整理可得:,则:,据此有:.本题选择B选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).10.设函数满足,当,,则()A. B. C. D.【答案】A【解析】试题分析:因为函数满足,当时,,所以,故选A.考点:抽象函数的性质;三角函数的求值.【方法点晴】本题主要考查了抽象函数的性质、三角函数的求值、三角函数的诱导公式等知识点的综合应用,本题的解答中函数满足,当时,,利用三角函数的诱导公式,即可求解的值,着重考查了分析问题和解答问题的能力,属于中档试题.11.正三角形的边长为,将它沿高折叠,使点与点间的距离为,则四面体外接球的表面积为()A. B. C. D.【答案】B【解析】【分析】四面体的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.【详解】根据题意可知四面体的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面△BDC,BD=CD=1,BC,∴∠BDC=120°,∴△BDC的外接圆的半径为 1由题意可得:球心到底面的距离为,∴球的半径为r.外接球的表面积为:4πr2=7π故选:B.【点睛】本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,属于中档题.12.已知函数,若且,则实数的取值范围是()A. B.C. D.【答案】A【解析】【分析】根据对数的性质的可知:函数f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),可得,即,可得a,b的关系,利用基本不等式求解2a+b的取值范围.【详解】函数f(x)=|lg(x﹣1)|,∵1<a<b且f(a)=f(b),则b>2,1<a<2,∴,即,可得:ab﹣a﹣b=0.那么:a.则2a+b,当且仅当b时取等号.满足b >2,故选:A.【点睛】本题考查对数函数的性质和基本不等式的综合运用,考查了数形结合思想,属于中档题.二、填空题。
陕西省延安市2019届高三上学期第一次月考数学试卷(理科)一、选择题(每题5分,总计50分)1.若复数z=3﹣i,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.复数3+4i的共轭复数是()A.3﹣4i B.3+4i C.﹣3+4i D.﹣3﹣4i3.定积分2xdx的值是()A.1 B.2 C.3 D.44.下列值等于1的积分是()A. xdx B.(x+1)dx C. 1dx D.dx5.计算的结果是()A.﹣1﹣i B.1﹣i C.1+i D.﹣1+i6.如图,函数y=f(x)在区间[a,b]上,则阴影部分的面积S为()A. f(x)dx B. f(x)dx﹣f(x)dxC.﹣f(x)dx﹣f(x)dx D.﹣f(x)dx+f(x)dx7.计算的结果是()A.1 B.﹣1 C.i D.﹣i8.定积分dx表示()A.半径为4的圆的面积B.半径为4的半圆的面积C.半径为4的圆面积的D.半径为16的圆面积的9.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A .8B .24C .48D .12010.若ω=﹣,则ω2+ω+1等于( )A .0B .1C .D . 二、填空题(每题5分,共计25分)11.用数字0、1、2、3、4组成没有重复数字的五位数,则其中数字1、2相邻的偶数有 个(用数字作答).12.实数x 、y 满足(1﹣i )x+(1+i )y=2,则xy 的值是 .13.若z l =a+2i ,z 2=3﹣4i ,且为纯虚数,则实数a 的值为 .14.i+i 2+i 3+i 4+i 5= .15.已知dx= .陕西省延安市2019届高三上学期第一次月考数学试卷(理科)参考答案与试题解析一、选择题(每题5分,总计50分)1.若复数z=3﹣i,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】直接由给出的复数得到对应点的坐标,则答案可求.【解答】解:因为复数z=3﹣i,所以其对应的点为(3,﹣1),所以z在复平面内对应的点位于第四象限.故选D2.复数3+4i的共轭复数是()A.3﹣4i B.3+4i C.﹣3+4i D.﹣3﹣4i【考点】复数的基本概念.【分析】共轭复数的定义为:若复数为a+bi,则其共轭复数为a﹣bi.所以根据可得答案.【解答】解:根据题意可得:复数为3+4i,所以结合共轭复数的定义可得:复数3+4i的共轭复数是3﹣4i.故选A.3.定积分2xdx的值是()A.1 B.2 C.3 D.4【考点】定积分.【分析】根据定积分的计算法则计算即可.【解答】解: 2xdx=x2|=4,故选:D.4.下列值等于1的积分是()A. xdx B.(x+1)dx C. 1dx D.dx【考点】定积分的简单应用.【分析】分别求出被积函数的原函数,然后根据定积分的定义分别计算看其值是否为1即可.【解答】解:选项A, xdx=x2=,不满足题意;选项B,(x+1)dx=(x2+x)=+1=,不满足题意;选项C, 1dx=x=1﹣0=1,满足题意;选项D,dx=x=﹣0=,不满足题意;故选C.5.计算的结果是()A.﹣1﹣i B.1﹣i C.1+i D.﹣1+i【考点】复数代数形式的混合运算.【分析】复数分母实数化,并化简即可得到答案.【解答】解:复数故选B.6.如图,函数y=f(x)在区间[a,b]上,则阴影部分的面积S为()A. f(x)dx B. f(x)dx﹣f(x)dxC.﹣f(x)dx﹣f(x)dx D.﹣f(x)dx+f(x)dx 【考点】定积分在求面积中的应用.【分析】阴影部分的面积S,可转化为两个面积的和,即可得出结论.【解答】解:由题意,S= [﹣f(x)]dx+f(x)dx=﹣f(x)dx+f(x)dx.故选:D.7.计算的结果是()A.1 B.﹣1 C.i D.﹣i【考点】复数代数形式的乘除运算.【分析】利用复数的除法运算化简括号内部的代数式,然后由叙述单位i的性质计算.【解答】解: =.故选C.8.定积分dx表示()A.半径为4的圆的面积B.半径为4的半圆的面积C.半径为4的圆面积的D.半径为16的圆面积的【考点】定积分.【分析】设被积函数为y,得到x2+y2=16(0<x<4,y>0),由此得到定积分值.【解答】解:设y=,整理得到x2+y2=16(0<x<4,y>0),所以定积分dx表示半径为4的圆面积的;故选C.9.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()A.8 B.24 C.48 D.120【考点】计数原理的应用.1种结果,再从余下的其余【分析】本题需要分步计数,首先选择2和4排在末位时,共有A23种结果,根据由分步计数原理得到符合题意的偶数.三位数从余下的四个数中任取三个有A4【解答】解:由题意知本题需要分步计数,1=2种排法,2和4排在末位时,共有A23=4×3×2=24种排法,其余三位数从余下的四个数中任取三个有A4根据由分步计数原理得到符合题意的偶数共有2×24=48(个).故选C.10.若ω=﹣,则ω2+ω+1等于()A.0 B.1 C.D.【考点】复数代数形式的混合运算.【分析】按照复数的运算法则计算即可【解答】解:若ω=﹣,则ω2+ω+1=ω(ω+1)+1=+1=+1=0故选A二、填空题(每题5分,共计25分)11.用数字0、1、2、3、4组成没有重复数字的五位数,则其中数字1、2相邻的偶数有24 个(用数字作答).【考点】排列及排列数公式.【分析】本题的约束条件比较多,注意数字0,数字1、2相邻的偶数,可以分情况讨论:①若末位数字为0,若末位数字为2,则1与它相邻,若末位数字为4,根据分类计数原理得到结果.【解答】解:用数字0、1、2、3、4组成没有重复数字的五位数,其中数字1、2相邻的偶数.可以分情况讨论:①若末位数字为0,则1,2,为一组,且可以交换位置,3=12个五位数;3,4,各为1个数字,共可以组成2•A3②若末位数字为2,则1与它相邻,其余3个数字排列,2=4个五位数;且0不是首位数字,则有2•A2③若末位数字为4,则1,2,为一组,且可以交换位置,2)=8个五位数,3,0,各为1个数字,且0不是首位数字,则有2•(2•A2∴全部合理的五位数共有24个.故答案为:24.12.实数x、y满足(1﹣i)x+(1+i)y=2,则xy的值是 1 .【考点】复数相等的充要条件.【分析】由条件可得 x+y+(y ﹣x )i=2,故有 x+y=2,y ﹣x=0,解得x 、y 的值,即可求得xy 的值.【解答】解:∵实数x 、y 满足(1﹣i )x+(1+i )y=2,即 x+y+(y ﹣x )i=2,∴x+y=2,y ﹣x=0,解得 x=y=1,∴xy=1,故答案为 1.13.若z l =a+2i ,z 2=3﹣4i ,且为纯虚数,则实数a 的值为 . 【考点】复数代数形式的乘除运算;复数的基本概念.【分析】把z l =a+2i ,z 2=3﹣4i 代入,然后化简,复数分子、分母同乘分母的共轭复数,利用实部等于0,虚部不为0,求出a 即可.【解答】解: =它是纯虚数,所以3a ﹣8=0,且4a+6≠0,解得a=故答案为:14.i+i 2+i 3+i 4+i 5= i .【考点】复数代数形式的乘除运算.【分析】根据i 2=﹣1,然后把i n 写成i 2的几次幂的形式或i 乘以i 2的几次幂的形式可求得答案.【解答】解:∵i 2=﹣1,∴i+i 2+i 3+i 4+i 5=i ﹣1+i (i 2)+(i 2)2+i (i 4)=i ﹣1﹣i+1+i=i .故答案为:i .15.已知dx= B ﹣A .【考点】定积分.【分析】利用定积分的可加性解答.【解答】解: dx==B﹣A;故答案为:B﹣A.。
陕西省延安市2019-2020学年中考第一次模拟地理试题一、选择题(本题包括25个小题,每小题2分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的。
)1.有关我国地理位置的叙述,正确的是:A.位于东半球,亚洲东部,东临大西洋B.位于亚洲西部,太平洋东岸C.我国领土跨热带、北温带、北寒带D.我国南部有北回归线穿过【答案】D【解析】【详解】关于我国地理位置的叙述,我国位于东半球、亚洲的东部和太平洋西岸,故A和B错误;我国领土跨了热带和北温带,没有跨北寒带,故C错误;我国南部有北回归线穿过,自西向东穿过了云南省、广西壮族自治区、广东省和台湾省,故选D。
2.一位外国游客来中国旅游后,感慨万分地说:“中国真是个自然风光差异大的国家啊!在短短的十天中,我没有登高,就感受到一年四季的变化”。
据此完成下面小题。
1.据此判断该游客最有可能乘坐的火车途径铁路干线是()A.陇海—兰新线B.宝成—成昆线C.京哈—京广线D.浙赣—湘黔线2.据此判断该游客最有可能到达的季节是()A.春季B.夏季C.秋季D.冬季3.以下列举国家中,该游客最不可能来自()A.美国B.冰岛C.埃及D.新加坡4.结合题意,推断出“一年四季的变化”的主要影响因素是()A.海拔高度B.纬度位置C.海陆位置D.洋流因素【答案】1.C2.D3.A4.B【解析】【分析】1.由题目可知,该外国游客在短短的时间时感受了四季变化,说明他乘坐的路线是南北走向的铁路线,东西走向的铁路线可以感觉干湿状况的差异,不能感受四季变化,以上四条铁路线中,只有京哈-京广符合题意,故选C。
2.由题目可知,该游客在短短的时间里感受到四季的变化,说明此季节我国南北气温差异大,只有在冬季时才能体会到,其他季节我国南北温差小,故选D。
3.由题目可知,该游客在短短的时间里感受四季变化,并且十分奇怪,说明该游客的家乡四季变化小,以上四个国家,美国四季变化大,冰岛、埃及和新加坡的四季变化小,可以判断该游客最不可能来自美国,故选A。
陕西省延安市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h2.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C.112a b ab+=D.(a2b)3=a5b33.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM 的长为()A.32B.2 C.52D.34.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+55.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线92t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()A.1 B.2 C.3 D.46.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为( )米. A .25×10﹣7 B .2.5×10﹣6 C .0.25×10﹣5 D .2.5×10﹣57.如图,在△ABC 中,EF ∥BC ,AB=3AE ,若S 四边形BCFE =16,则S △ABC =( )A .16B .18C .20D .248.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价( )元. A .3B .2.5C .2D .59.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足13x -剟时,与其对应的函数值y 的最小值为4,则h 的值为( ) A .1或5B .5-或3C .3-或1D .3-或510.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .11.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( )A .40°B .50°C .60°D .140°12.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ) A .B .2C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,P 为∠α的边OA 上一点,且P 点的坐标为(3,4),则sinα+cosα=_____.14.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q15.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为______.16.小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为3550000,这个数用科学记数法表示为.17.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_____千米.18.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?20.(6分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(3,1)在反比例函数k yx =的图象上.求反比例函数kyx=的表达式;在x轴的负半轴上存在一点P,使得S△AOP=12S△AOB,求点P的坐标;若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.21.(6分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人? 22.(8分)阅读材料,解答问题.材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P 1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y =x 2上向右跳动,得到点P 2、P 3、P 4、P 5…(如图1所示).过P 1、P 2、P 3分别作P 1H 1、P 2H 2、P 3H 3垂直于x 轴,垂足为H 1、H 2、H 3,则S △P1P2P3=S 梯形P1H1H3P3﹣S 梯形P1H1H2P2﹣S 梯形P2H2H3P3=12(9+1)×2﹣12(9+4)×1﹣12(4+1)×1,即△P 1P 2P 3的面积为1.” 问题:(1)求四边形P 1P 2P 3P 4和P 2P 3P 4P 5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形P n ﹣1P n P n+1P n+2的面积,并说明理由(利用图2);(3)若将抛物线y =x 2改为抛物线y =x 2+bx+c ,其它条件不变,猜想四边形P n ﹣1P n P n+1P n+2的面积(直接写出答案).23.(8分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20my m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -.求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.24.(10分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题: (1)共有 名同学参与问卷调查; (2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.25.(10分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里. (1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?26.(12分)如图,分别延长▱ABCD 的边CD AB ,到E F ,,使DE BF =,连接EF ,分别交AD BC ,于G H ,,连结CG AH.,求证:CG //AH .27.(12分)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】甲的速度是:20÷4=5km/h ; 乙的速度是:20÷1=20km/h ; 由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到, 故选C . 2.B 【解析】 【分析】由整数指数幂和分式的运算的法则计算可得答案. 【详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a ba b ab++=,故C 项错误;D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误; 故本题正确答案为B. 【点睛】 幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数) (2)幂的乘方:()m n mn a a =(m 、n 都是正整数) (3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n) (5)零次幂:01a =(a≠0) (6) 负整数次幂: 1ppa a -=(a≠0, p 是正整数). 3.C 【解析】 【分析】延长BC 到E 使BE =AD ,利用中点的性质得到CM =12 DE =12AB ,再利用勾股定理进行计算即可解答. 【详解】解:延长BC 到E 使BE =AD ,∵BC//AD ,∴四边形ACED 是平行四边形,∴DE=AB , ∵BC =3,AD =1, ∴C 是BE 的中点, ∵M 是BD 的中点, ∴CM =12 DE =12AB , ∵AC ⊥BC , ∴AB =22AC BC +=224+3=5,∴CM =52, 故选:C .【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.4.A【解析】【分析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答. 5.B【解析】试题解析:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.6.B【解析】【分析】由科学计数法的概念表示出0.0000025即可.【详解】0.0000025=2.5×10﹣6.故选B.【点睛】本题主要考查科学计数法,熟记相关概念是解题关键.7.B【解析】【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.【详解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S △AEF :S △ABC =1:9, 设S △AEF =x , ∵S 四边形BCFE =16, ∴1169x x =+,解得:x=2, ∴S △ABC =18, 故选B .【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键. 8.A 【解析】 【分析】设售价为x 元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x )]件,然后根据盈利为6120元即可列出方程解决问题. 【详解】解:设售价为x 元时,每星期盈利为6120元, 由题意得(x-40)[300+20(60-x )]=6120, 解得:x 1=57,x 2=1,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x 2=1. ∴每件商品应降价60-57=3元. 故选:A . 【点睛】本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解. 9.D 【解析】 【分析】由解析式可知该函数在x h =时取得最小值0,抛物线开口向上,当x h >时,y 随x 的增大而增大;当x h <时,y 随x 的增大而减小;根据13x -≤≤时,函数的最小值为4可分如下三种情况:①若13h x <-≤≤,1x =-时,y 取得最小值4;②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4;③若13x h -≤≤<,当x=3时,y 取得最小值4,分别列出关于h 的方程求解即可. 【详解】解:∵当x >h 时,y 随x 的增大而增大,当x h <时,y 随x 的增大而减小,并且抛物线开口向上,∴①若13h x <-≤≤,当1x =-时,y 取得最小值4, 可得:24(1)h =--4, 解得3h =-或1h =(舍去);②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4, ∴此种情况不符合题意,舍去;③若-1≤x≤3<h ,当x=3时,y 取得最小值4,可得:24(3)h =-,解得:h=5或h=1(舍). 综上所述,h 的值为-3或5, 故选:D . 【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键. 10.B 【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B . 考点:简单组合体的三视图. 11.A 【解析】试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答. 解:∵DB ⊥BC ,∠2=50°, ∴∠3=90°﹣∠2=90°﹣50°=40°, ∵AB ∥CD , ∴∠1=∠3=40°. 故选A .12.D 【解析】 【分析】由m≤x≤n 和mn <0知m <0,n >0,据此得最小值为1m 为负数,最大值为1n 为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m 时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.7 5【解析】【分析】根据正弦和余弦的概念求解.【详解】解:∵P是∠α的边OA上一点,且P点坐标为(3,4),∴PB=4,OB=3,222234PB OB+=+=5,故sinα=PBOP=45, cosα=35OBOP=,∴sinα+cosα=7 5 ,故答案为7 5【点睛】此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.14.D【解析】D.试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B. 若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D.考点:1.动点问题的函数图象分析;2.排他法的应用.15.110°或50°.【解析】【分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.16.3.55×1.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【详解】3550000=3.55×1,故答案是:3.55×1.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.36【解析】【分析】作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.【详解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BE AB,∴BE=AB•sin∠BAC=3633=由题意得,∠C =45°, ∴BC =BE sin C=2=, 故答案为. 【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键. 18.1 【解析】在△AGF 和△ACF 中,{GAF CAFAF AF AFG AFC∠=∠=∠=∠, ∴△AGF ≌△ACF , ∴AG=AC=4,GF=CF , 则BG=AB−AG=6−4=2. 又∵BE=CE ,∴EF 是△BCG 的中位线, ∴EF=12BG=1. 故答案是:1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)应安排4天进行精加工,8天进行粗加工(2)①20001000(140)W m m =+-=1000140000m +②安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元 【解析】 【分析】 【详解】解:(1)设应安排x 天进行精加工,y 天进行粗加工,根据题意得12{515140.x y x y +=+=,解得4{8.x y ==,答:应安排4天进行精加工,8天进行粗加工.(2)①精加工m 吨,则粗加工(140m -)吨,根据题意得20001000(140)W m m =+-=1000140000m +②Q 要求在不超过10天的时间内将所有蔬菜加工完,14010515m m -∴+≤ 解得5m ≤ 05m ∴<≤又Q 在一次函数1000140000W m =+中,10000k =>,W ∴随m 的增大而增大,∴当5m =时,10005140000145000.W =⨯+=最大 ∴精加工天数为55÷=1,粗加工天数为(1405)159-÷=.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.20.(1)y x=;(2)P (-0);(3)E (,﹣1),在. 【解析】 【分析】(1)将点A ,1)代入ky x=,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B 3),计算求出S △AOB =12×4=S △AOP =12S △AOB P 的坐标为(m ,0),列出方程求解即可;(3)先解△OAB ,得出∠ABO=30°,再根据旋转的性质求出E 1),即可求解. 【详解】(1)∵点A ,1)在反比例函数ky x=的图象上,∴∴反比例函数的表达式为y x=;(2)∵A 1),AB ⊥x 轴于点C ,∴AC=1,由射影定理得2OC =AC•BC ,可得BC=3,B 3),S △AOB =124=∴S △AOP =12S △AOB . 设点P 的坐标为(m ,0),∴12×|m|×∴|m|=∵P 是x 轴的负半轴上的点,∴m=﹣∴点P 的坐标为(-,0);(3)点E 在该反比例函数的图象上,理由如下:∵OA ⊥OB ,OA=2,OB=AB=4,∴sin ∠ABO=OA AB =24=12, ∴∠ABO=30°,∵将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,∴△BOA ≌△BDE ,∠OBD=60°,∴BO=BD=OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD ﹣,BC ﹣DE=1,∴E (1),∵×(﹣1)∴点E 在该反比例函数的图象上.考点:待定系数法求反比例函数解析式;反比例函数系数k 的几何意义;坐标与图形变化-旋转. 21.(1)见解析;(2)1;(3)估计全校达标的学生有10人 【解析】 【分析】(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数. (2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比. 【详解】解:(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%, 测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1.(3)1200×(50%+30%)=10(人).答:估计全校达标的学生有10人.22.(1)2,2;(2)2,理由见解析;(3)2.【解析】【分析】(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为S P1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和S P2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3来求解;(2)(3)由图可知,P n﹣1、P n、P n+1、P n+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,代入二次函数解析式,可得P n﹣1、P n、P n+1、P n+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,将四边形面积转化为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn ﹣2来解答.【详解】(1)作P5H5垂直于x轴,垂足为H5,由图可知S P1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2=93111449 2222⨯⨯++---=2,S P2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3=3(14)1111142222+⨯⨯+---=2;(2)作P n﹣1H n﹣1、P n H n、P n+1H n+1、P n+2H n+2垂直于x轴,垂足为H n﹣1、H n、H n+1、H n+2,由图可知P n﹣1、P n、P n+1、P n+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,代入二次函数解析式,可得P n﹣1、P n、P n+1、P n+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,四边形P n﹣1P n P n+1P n+2的面积为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2=222222223(5)(2)(5)(4)(4)(3)(3)(2) 2222 n n n n n n n n⎡⎤-+--+--+--+-⎣⎦---=2;(3)S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn ﹣2Pn﹣2=22223(5)(5)(2)(2)(5)(5)(4)(4)-22n b n c n b n c n b n c n b n c ⎡⎤-+-++-+-+-+-++-+-+⎣⎦-2222(4)(4)(3)(3)(3)(3)(2)(2)22n b n c n b n c n b n c n b n c-+-++-+-+-+-++-+-+-=2. 【点睛】本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错, 23. (1) 3y x=,2y x =-;(2)10x -<<或3x >. 【解析】 【分析】(1)把点A 坐标代入()my m 0x=≠可求出m 的值即可得反比例函数解析式;把点A 、点C 代入()1y kx b k 0=+≠可求出k 、b 的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B 的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x 的取值范围即可. 【详解】(1)把()A 3,1代入()my m 0x=≠得m 3=. ∴反比例函数的表达式为3y x=把()A 3,1和()B 0,2-代入y kx b =+得132k bb=+⎧⎨-=⎩,解得12k b =⎧⎨=-⎩∴一次函数的表达式为y x 2=-.(2)由3x 2y y x ⎧=⎪⎨⎪=-⎩得()B 1,3--∴当1x 0-<<或x 3>时,12y y >. 【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.24.(1)100;(2)补图见解析;(3)570人. 【解析】【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【详解】(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解析】【分析】(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【详解】解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.(2)设去参观山西地质博物馆的学生有m 人,甲、乙旅行社的收费分别为y 甲元,y 乙元.由题意:y 甲=30×0.9m=27m , y 乙=30×0.8(m+2)=24m+48,当y 甲=y 乙时,27m=24m+48,m=16,当y 甲>y 乙时,27m >24m+48,m >16,当y 甲<y 乙时,27m <24m+48,m <16,答:当学生人数为16人时,两个旅行社的费用一样.当学生人数为大于16人时,乙旅行社比较合算.当学生人数为小于16人时,甲旅行社比较合算.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.26.证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出△EGD 和△FHB 全等,从而得出DG=BH ,从而说明AG 和CH 平行且相等,得出四边形AHCG 为平行四边形,从而得出答案.详解:证明:在▱ABCD 中,AB//CD AD//CB AD CB ,,=,E F EDG DCH FBH ,∠∠∠∠∠∴===,又 DE BF =,EGD ∴V ≌()FHB AAS V ,DG BH ∴=,AG HC ∴=,又AD//CB Q ,∴四边形AGCH 为平行四边形, AH //CG ∴.点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG 为平行四边形.27.(1)6;(2)126y x =-;259524y x =-;(3)10或15413; 【解析】【分析】(1)根据图象变化确定a 秒时,P 点位置,利用面积求a ;(2)P 、Q 两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒; (3)以(2)为基础可知,两个点相距3cm 分为相遇前相距或相遇后相距,因此由(2)可列方程.【详解】(1)由图象可知,当点P 在BC 上运动时,△APD 的面积保持不变,则a 秒时,点P 在AB 上. 110302AP ⨯=,∴AP=6,则a=6;(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6,∵Q点路程总长为34cm,第6秒时已经走12cm,故点Q还剩的路程为y2=34﹣12﹣5595 (6)424x x-=-;(3)当P、Q两点相遇前相距3cm时,595 24x-﹣(2x﹣6)=3,解得x=10,当P、Q两点相遇后相距3cm时,(2x﹣6)﹣(59524x-)=3,解得x=15413,∴当x=10或15413时,P、Q两点相距3cm【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式.。