智能制造有哪些关键步骤
- 格式:docx
- 大小:15.32 KB
- 文档页数:8
汽车零部件企业智能制造实施方案第一章智能制造概述 (2)1.1 智能制造的定义与发展趋势 (2)1.2 智能制造在汽车零部件行业中的应用 (2)第二章企业现状分析 (3)2.1 企业基本情况 (3)2.2 现有制造流程与设备分析 (3)2.2.1 制造流程 (3)2.2.2 设备分析 (4)2.3 企业面临的挑战与机遇 (4)第三章智能制造战略规划 (4)3.1 智能制造目标设定 (4)3.2 智能制造战略布局 (5)3.3 智能制造项目实施步骤 (5)第四章设备智能化升级 (6)4.1 设备智能化改造方案 (6)4.2 智能传感器与控制系统 (6)4.3 设备维护与故障预测 (7)第五章生产线自动化改造 (7)5.1 生产线自动化升级方案 (7)5.2 应用与集成 (7)5.3 自动化物流与仓储 (8)第六章数据采集与管理 (8)6.1 数据采集技术 (8)6.2 数据存储与处理 (8)6.3 数据分析与决策支持 (9)第七章生产管理系统升级 (9)7.1 生产计划与调度 (9)7.1.1 生产计划优化 (9)7.1.2 生产调度优化 (10)7.2 生产过程监控与优化 (10)7.2.1 生产数据采集与分析 (10)7.2.2 生产过程优化 (10)7.3 质量管理与追溯 (10)7.3.1 质量管理优化 (10)7.3.2 质量追溯与改进 (10)第八章信息安全与防护 (11)8.1 信息安全策略 (11)8.1.1 制定信息安全政策 (11)8.1.2 信息安全风险管理 (11)8.1.3 信息安全培训与宣传 (11)8.2 网络安全防护 (11)8.2.1 防火墙设置 (11)8.2.2 入侵检测与防御系统 (12)8.2.3 安全审计 (12)8.3 数据加密与备份 (12)8.3.1 数据加密 (12)8.3.2 数据备份 (12)第九章员工培训与技能提升 (12)9.1 培训计划与内容 (12)9.2 培训方式与方法 (13)9.3 技能提升与激励机制 (13)第十章项目实施与评估 (14)10.1 项目实施进度安排 (14)10.2 项目评估与监控 (14)10.3 项目总结与持续优化 (15)第一章智能制造概述1.1 智能制造的定义与发展趋势智能制造是指利用信息化、网络化、智能化等现代信息技术,对制造过程进行深度融合与创新,实现制造资源的优化配置、制造过程的自动化和智能化控制,以及产品质量的全面提升。
智能制造有哪些关键步骤为落实《中国制造2025》总体部署,按照《智能制造发展规划(2016-2020年)》《智能制造工程实施指南(2016-2020年)》的要求,工业和信息化部现开展2018年智能制造试点示范项目推荐工作。
其中明确了2018年智能制造试点示范项目要素条件,下面让我们来了解下工信部是如何判定智能制造的要素条件,或者说智能制造是怎样具体呈现的。
智能制造模式要素条件一、离散型智能制造1、车间/工厂的总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现规划、生产、运营全流程数字化管理。
2、应用数字化三维设计与工艺技术进行产品、工艺设计与仿真,并通过物理检测与试验进行验证与优化。
建立产品数据管理系统(PDM),实现产品设计、工艺数据的集成管理。
3、制造装备数控化率超过70%,并实现高档数控机床与工业机器人、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等关键技术装备之间的信息互联互通与集成。
4、建立生产过程数据采集和分析系统,实现生产进度、现场操作、质量检验、设备状态、物料传送等生产现场数据自动上传,并实现可视化管理。
5、建立车间制造执行系统(MES),实现计划、调度、质量、设备、生产、能效等管理功能。
建立企业资源计划系统(ERP),实现供应链、物流、成本等企业经营管理功能。
6、建立工厂内部通信网络架构,实现设计、工艺、制造、检验、物流等制造过程各环节之间,以及制造过程与制造执行系统(MES)和企业资源计划系统(ERP)的信息互联互通。
7、建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。
建有功能安全保护系统,采用全生命周期方法有效避免系统失效。
通过持续改进,实现企业设计、工艺、制造、管理、物流等环节的产品全生命周期闭环动态优化,推进企业数字化设计、装备智能化升级、工艺流程优化、精益生产、可视化管理、质量控制与追溯、智能物流等方面的快速提升。
基于模型的智能制造系统设计在当今科技飞速发展的时代,制造业正经历着前所未有的变革。
智能制造作为制造业的未来发展方向,正逐渐成为提升企业竞争力和推动经济增长的关键因素。
其中,基于模型的智能制造系统设计成为了实现智能制造的重要途径。
一、智能制造系统的概念与发展智能制造系统是一种融合了先进的信息技术、自动化技术、制造工艺和管理理念的综合性系统。
它能够实现生产过程的自动化、智能化、高效化和柔性化,从而提高产品质量、降低生产成本、缩短生产周期,并满足客户日益个性化的需求。
随着信息技术的不断进步,智能制造系统的发展经历了多个阶段。
从早期的自动化生产设备,到计算机集成制造系统,再到如今的基于模型的智能制造系统,每一次的变革都带来了生产效率和质量的显著提升。
二、基于模型的智能制造系统的特点1、数字化建模基于模型的智能制造系统首先需要对产品、生产过程和生产设备进行数字化建模。
通过建立精确的数学模型,可以对生产过程进行仿真和优化,提前发现潜在的问题,并制定相应的解决方案。
系统充分利用生产过程中产生的大量数据,通过数据分析和挖掘技术,提取有价值的信息,为生产决策提供依据。
同时,数据的实时反馈可以实现对生产过程的动态调整和优化。
3、智能化控制借助人工智能和机器学习算法,实现对生产设备和生产过程的智能化控制。
例如,自适应控制、预测性维护等技术的应用,可以提高设备的可靠性和生产的稳定性。
4、协同性强调企业内部不同部门之间以及企业与供应商、客户之间的协同合作。
通过信息共享和业务流程集成,实现整个供应链的高效运作。
三、基于模型的智能制造系统设计的关键要素1、需求分析深入了解企业的业务需求、生产流程和市场环境,明确智能制造系统的目标和功能。
这需要与企业的管理层、技术人员和一线工人进行充分的沟通和调研。
2、模型构建根据需求分析的结果,选择合适的建模方法和工具,构建产品模型、工艺模型、设备模型和生产管理模型等。
模型的准确性和完整性直接影响到系统的性能和效果。
智能制造平台的设计与实现随着信息技术和制造技术的不断发展,智能制造已成为当今制造业的重要发展趋势。
智能制造平台是实现智能制造的核心,其设计与实现是智能制造发展的关键。
本文将探讨智能制造平台设计与实现的相关问题。
一、智能制造平台的概念及功能智能制造平台是指利用信息技术、人工智能、物联网等技术手段,将制造环节中的各个环节进行全面数字化、智能化,从而提升制造过程的效率和质量,实现成本优化与资源高效利用的平台。
其主要功能包括:1. 智能制造全过程监控与控制:通过对各个生产环节的全面监控,实时获取数据,对整个生产过程进行控制。
2. 智能制造资源协同管理:实现物料、设备、人员等资源的统一管理和协同,提升生产效率。
3. 智能制造质量管理:通过数据分析、质量跟踪等手段,实现对产品质量的全程追溯和监控。
4. 智能制造供应链协同:通过云计算等技术,实现供应链各环节协同,提升整体供应链效率。
二、智能制造平台设计原则智能制造平台设计需遵循以下原则:1. 模块化设计原则:将平台功能分为不同模块,实现功能的灵活组合、扩展和替换,提升平台的可维护性和可扩展性。
2. 数据本位设计原则:将数据视为平台的核心,将不同数据进行整合和分析,为用户提供更好的数据支持。
3. 安全可靠设计原则:确保平台数据安全、系统稳定等方面的可靠性,建立完善的系统运行和维护体系。
4. 用户体验设计原则:根据用户的实际需求,提供简单易用的操作界面和功能,提升用户体验和平台的接受度。
三、智能制造平台实现步骤智能制造平台的实现步骤主要包括以下方面:1. 确定平台功能和需求:根据用户需求和市场情况,确定平台基本功能和服务,建立平台需求文档。
2. 模块化设计和开发:根据模块化设计原则,将平台功能进行分类和设计,并进行开发和测试。
3. 数据建模与管理:根据数据本位设计原则,建立平台数据模型,并实现数据的采集、存储、分析等功能。
4. 安全可靠性设计与实现:基于安全可靠设计原则,确保平台的数据安全、系统稳定性,并实现平台运行和维护体系。
智能制造有哪些关键步骤集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)智能制造有哪些关键步骤为落实《中国制造2025》总体部署,按照《智能制造发展规划(2016-2020年)》《智能制造工程实施指南(2016-2020年)》的要求,工业和信息化部现开展2018年智能制造试点示范项目推荐工作。
其中明确了2018年智能制造试点示范项目要素条件,下面让我们来了解下工信部是如何判定智能制造的要素条件,或者说智能制造是怎样具体呈现的。
智能制造模式要素条件一、离散型智能制造1、车间/工厂的总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现规划、生产、运营全流程数字化管理。
2、应用数字化三维设计与工艺技术进行产品、工艺设计与仿真,并通过物理检测与试验进行验证与优化。
建立产品数据管理系统(PDM),实现产品设计、工艺数据的集成管理。
3、制造装备数控化率超过70%,并实现高档数控机床与工业机器人、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等关键技术装备之间的信息互联互通与集成。
4、建立生产过程数据采集和分析系统,实现生产进度、现场操作、质量检验、设备状态、物料传送等生产现场数据自动上传,并实现可视化管理。
5、建立车间制造执行系统(MES),实现计划、调度、质量、设备、生产、能效等管理功能。
建立企业资源计划系统(ERP),实现供应链、物流、成本等企业经营管理功能。
6、建立工厂内部通信网络架构,实现设计、工艺、制造、检验、物流等制造过程各环节之间,以及制造过程与制造执行系统(MES)和企业资源计划系统(ERP)的信息互联互通。
7、建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。
建有功能安全保护系统,采用全生命周期方法有效避免系统失效。
通过持续改进,实现企业设计、工艺、制造、管理、物流等环节的产品全生命周期闭环动态优化,推进企业数字化设计、装备智能化升级、工艺流程优化、精益生产、可视化管理、质量控制与追溯、智能物流等方面的快速提升。
智能制造有哪些关键步骤为落实《中国制造2025》总体部署,按照《智能制造发展规划(2016-2020年)》《智能制造工程实施指南(2016-2020年)》的要求,工业和信息化部现开展2018年智能制造试点示范项目推荐工作。
其中明确了2018年智能制造试点示范项目要素条件,下面让我们来了解下工信部是如何判定智能制造的要素条件,或者说智能制造是怎样具体呈现的。
智能制造模式要素条件一、离散型智能制造1、车间/工厂的总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现规划、生产、运营全流程数字化管理。
2、应用数字化三维设计与工艺技术进行产品、工艺设计与仿真,并通过物理检测与试验进行验证与优化。
建立产品数据管理系统(PDM),实现产品设计、工艺数据的集成管理。
3、制造装备数控化率超过70%,并实现高档数控机床与工业机器人、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等关键技术装备之间的信息互联互通与集成。
4、建立生产过程数据采集和分析系统,实现生产进度、现场操作、质量检验、设备状态、物料传送等生产现场数据自动上传,并实现可视化管理。
5、建立车间制造执行系统(MES),实现计划、调度、质量、设备、生产、能效等管理功能。
建立企业资源计划系统(ERP),实现供应链、物流、成本等企业经营管理功能。
6、建立工厂内部通信网络架构,实现设计、工艺、制造、检验、物流等制造过程各环节之间,以及制造过程与制造执行系统(MES)和企业资源计划系统(ERP)的信息互联互通。
7、建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。
建有功能安全保护系统,采用全生命周期方法有效避免系统失效。
通过持续改进,实现企业设计、工艺、制造、管理、物流等环节的产品全生命周期闭环动态优化,推进企业数字化设计、装备智能化升级、工艺流程优化、精益生产、可视化管理、质量控制与追溯、智能物流等方面的快速提升。
智能制造有哪些关键步骤为落实《中国制造2025〉总体部署,按照《智能制造发展规划(2016- 2020年)》《智能制造工程实施指南(2016- 2020年)》的要求,工」L1业和信息化部现开展2018年智能制造试点示范项目推荐工作。
其中明确了2018年智能制造试点示范项目要素条件,下面让我们来了解下工信部是如何判定智能制造的要素条件,或者说智能制造是怎样具体呈现的。
智能制造模式要素条件一、离散型智能制造-1、车间/工厂的总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现规划、生产、运营全流程数字化管理。
2、应用数字化三维设计与工艺技术进行产品、工艺设计与仿真,并通过物理检测与试验进行验证与优化。
建立产品数据管理系统(PDM,实现产品设计、工艺数据的集成管理。
3、制造装备数控化率超过70%,并实现高档数控机床与工业机器人、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等关键技术装备之间的信息互联互通与集成。
4、建立生产过程数据采集和分析系统,实现生产进度、现场操作、质量检验、设备状态、物料传送等生产现场数据自动上传,并实现可视化管理。
5、建立车间制造执行系统(MES,实现计划、调度、质量、设备、生产、能效等管理功能。
建立企业资源计划系统(ERP,实现供应链、物流、成本等企业经营管理功能。
&建立工厂内部通信网络架构,实现设计、工艺、制造、检验、物流等制造过程各环节之间,以及制造过程与制造执行系统(ME$和企业资源计划系统(ERP的信息互联互通。
7、建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。
建有功能安全保护系统,采用全生命周期方法有效避免系统失效。
通过持续改进,实现企业设计、工艺、制造、管理、物流等环节的产品全生命周期闭环动态优化,推进企业数字化设计、装备智能化升级、工艺流程优化、精益生产、可视化管理、质量控制与追溯、智能物流等方面的快速提升。
制造业智能制造工厂解决方案第一章智能制造概述 (3)1.1 智能制造的定义 (3)1.2 智能制造的发展趋势 (3)1.2.1 技术创新驱动 (3)1.2.2 系统集成化 (3)1.2.3 个性化定制 (4)1.2.4 绿色制造 (4)1.2.5 人机协同 (4)第二章智能制造工厂规划与设计 (4)2.1 工厂布局规划 (4)2.2 设备选型与配置 (4)2.3 网络架构设计 (5)第三章智能制造关键技术 (5)3.1 人工智能在制造业中的应用 (5)3.1.1 智能决策与优化 (5)3.1.2 智能监控与诊断 (6)3.1.3 智能质量控制 (6)3.1.4 智能研发 (6)3.2 技术 (6)3.2.1 生产线自动化 (6)3.2.2 柔性制造 (6)3.2.3 智能物流 (6)3.3 物联网技术 (6)3.3.1 设备互联互通 (6)3.3.2 远程监控与维护 (6)3.3.3 数据分析与挖掘 (6)3.3.4 智能工厂建设 (7)第四章智能制造系统架构 (7)4.1 系统集成 (7)4.2 数据采集与处理 (7)4.3 系统安全与防护 (7)第五章智能制造生产流程优化 (8)5.1 生产计划与调度 (8)5.2 质量控制与追溯 (8)5.3 库存管理与物流优化 (9)第六章智能制造设备管理 (9)6.1 设备维护与保养 (9)6.1.1 概述 (9)6.1.2 维护与保养策略 (9)6.1.3 维护与保养方法 (10)6.1.4 实施步骤 (10)6.2 故障诊断与预测性维护 (10)6.2.1 概述 (10)6.2.2 故障诊断方法 (10)6.2.3 预测性维护方法 (10)6.2.4 实施步骤 (11)6.3 设备功能监测与优化 (11)6.3.1 概述 (11)6.3.2 功能监测方法 (11)6.3.3 功能优化方法 (11)6.3.4 实施步骤 (11)第七章智能制造工厂能源管理 (11)7.1 能源消耗监测与优化 (11)7.1.1 能源消耗监测 (12)7.1.2 能源消耗优化 (12)7.2 节能技术与应用 (12)7.2.1 高效节能设备 (12)7.2.2 余热回收利用 (12)7.2.3 节能照明 (12)7.3 能源管理与碳排放控制 (12)7.3.1 碳排放监测与评估 (12)7.3.2 碳排放控制策略 (13)第八章智能制造工厂人力资源管理 (13)8.1 人员培训与素质提升 (13)8.1.1 培训体系构建 (13)8.1.2 培训方式与方法 (13)8.1.3 培训效果评估与反馈 (13)8.2 人力资源配置与优化 (13)8.2.1 人力资源规划 (13)8.2.2 岗位设置与人员配置 (14)8.2.3 人员流动与晋升机制 (14)8.3 薪酬福利与绩效管理 (14)8.3.1 薪酬体系设计 (14)8.3.2 福利待遇保障 (14)8.3.3 绩效考核与激励 (14)第九章智能制造项目实施与管理 (14)9.1 项目策划与组织 (14)9.1.1 项目背景分析 (14)9.1.2 项目目标设定 (15)9.1.3 项目组织结构 (15)9.1.4 项目策划内容 (15)9.2 项目实施与监控 (15)9.2.1 项目启动 (15)9.2.2 项目实施过程监控 (15)9.2.3 项目风险管理 (15)9.2.4 项目变更管理 (15)9.3 项目验收与评价 (15)9.3.1 项目验收标准 (16)9.3.2 项目验收流程 (16)9.3.3 项目评价与反馈 (16)第十章智能制造工厂未来发展 (16)10.1 智能制造工厂发展趋势 (16)10.2 智能制造工厂面临的挑战 (16)10.3 智能制造工厂应对策略 (17)第一章智能制造概述1.1 智能制造的定义智能制造是指利用信息化和智能化技术,对制造过程进行全面的优化和升级,以提高生产效率、降低成本、提升产品质量和满足个性化需求的一种新型制造模式。
实施智能制造工程实施方案
一、概述
智能制造工程是把智能制造技术应用到制造业的一种解决方案,旨在
实现定制化生产、精密制造、低能耗制造,以及自动化生产等。
它充分利
用可视化技术、自动化技术、传感技术、计算机技术、网络技术、数据采
集等技术,实现对工业物质和信息系统的全要素控制,以及连接和协调完
成全流程制造质量、成本、效率的系统性解决方案,使企业生产变得更加
智能、更高效、更精细。
本项目的目标是实现智能制造工程在企业制造过
程中的全要素全流程的控制,从而提高企业的制造效率,降低生产成本,
提高制造质量,实现定制化、自动化的生产。
二、实施步骤
1、需求分析:首先进行需求分析,通过调研、收集企业要求的制造
流程和生产环境,确定具体的智能制造系统需求及其实施技术,并针对企
业的具体情况,制定合理的智能制造方案;
2、系统设计:根据需求分析制定的方案,完成智能制造系统的设计,包括硬件系统的设计和软件系统的设计;
3、系统开发:基于系统设计的规范,在软件和硬件上分别进行系统
研发,并实现系统的整合;。
制造业智能化生产管理及工艺改进方案第1章智能化生产概述 (4)1.1 智能制造的发展背景 (4)1.2 智能制造的关键技术 (4)1.3 智能制造在我国的发展现状 (4)第2章生产管理基础 (5)2.1 生产管理流程 (5)2.1.1 生产准备 (5)2.1.2 生产执行 (5)2.1.3 生产结束 (5)2.2 生产计划与排程 (5)2.2.1 生产计划 (5)2.2.2 生产排程 (6)2.3 生产监控与调度 (6)2.3.1 生产监控 (6)2.3.2 生产调度 (6)第3章智能化生产管理 (6)3.1 智能制造系统架构 (6)3.1.1 设备层:主要包括各类自动化生产设备、传感器、执行器等,负责完成生产过程中的物理操作。
(6)3.1.2 控制层:采用工业控制网络,对设备层进行实时监控与控制,实现生产过程的自动化。
(6)3.1.3 信息层:负责收集、存储、处理生产过程中的各类数据,为智能决策提供支持。
(6)3.1.4 应用层:根据生产需求,开发各类智能化应用,如生产调度、质量管理、设备维护等。
(6)3.1.5 网络层:采用云计算、大数据等技术,实现各层之间的信息交互与资源共享。
73.2 数据采集与处理 (7)3.2.1 数据采集:利用传感器、工业相机等设备,实时采集生产现场的设备状态、工艺参数、产品质量等信息。
(7)3.2.2 数据传输:采用有线或无线网络,将采集到的数据实时传输至数据处理中心。
73.2.3 数据存储:采用分布式数据库技术,对海量数据进行高效存储与管理。
(7)3.2.4 数据处理:运用大数据分析、云计算等技术,对生产数据进行实时处理与分析,挖掘潜在的价值。
(7)3.3 智能决策与优化 (7)3.3.1 生产调度:根据生产计划、设备状态、资源状况等因素,动态调整生产任务分配,提高生产效率。
(7)3.3.2 工艺优化:通过对生产过程数据的分析,发觉工艺参数的优化空间,提高产品质量。
智能制造有哪些关键步
骤
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
智能制造有哪些关键步骤
为落实《中国制造2025》总体部署,按照《智能制造发展规划(2016-2020年)》《智能制造工程实施指南(2016-2020年)》的要求,工业和信息化部现开展2018年智能制造试点示范项目推荐工作。
其中明确了2018年智能制造试点示范项目要素条件,下面让我们来了解下工信部是如何判定智能制造的要素条件,或者说智能制造是怎样具体呈现的。
智能制造模式要素条件
一、离散型智能制造
1、车间/工厂的总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现规划、生产、运营全流程数字化管理。
2、应用数字化三维设计与工艺技术进行产品、工艺设计与仿真,并通过物理检测与试验进行验证与优化。
建立产品数据管理系统(PDM),实现产品设计、工艺数据的集成管理。
3、制造装备数控化率超过70%,并实现高档数控机床与工业机器人、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等关键技术装备之间的信息互联互通与集成。
4、建立生产过程数据采集和分析系统,实现生产进度、现场操作、质量检验、设备状态、物料传送等生产现场数据自动上传,并实现可视化管理。
5、建立车间制造执行系统(MES),实现计划、调度、质量、设备、生产、能效等管理功能。
建立企业资源计划系统(ERP),实现供应链、物流、成本等企业经营管理功能。
6、建立工厂内部通信网络架构,实现设计、工艺、制造、检验、物流等制造过程各环节之间,以及制造过程与制造执行系统(MES)和企业资源计划系统(ERP)的信息互联互通。
7、建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。
建有功能安全保护系统,采用全生命周期方法有效避免系统失效。
通过持续改进,实现企业设计、工艺、制造、管理、物流等环节的产品全生命周期闭环动态优化,推进企业数字化设计、装备智能化升级、工艺流程优化、精益生产、可视化管理、质量控制与追溯、智能物流等方面的快速提升。
二、流程型智能制造
1、工厂总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现生产流程数据可视化和生产工艺优化。
2、实现对物流、能流、物性、资产的全流程监控,建立数据采集和监控系统,生产工艺数据自动数采率达到90%以上。
实现原料、关键工艺和成品检测数据的采集和集成利用,建立实时的质量预警。
3、采用先进控制系统,工厂自控投用率达到90%以上,关键生产环节实现基于模型的先进控制和在线优化。
4、建立生产执行系统(MES),生产计划、调度均建立模型,实现生产模型化分析决策、过程量化管理、成本和质量动态跟踪以及从原材料到产成品的一体化协同优化。
建立企业资源计划系统(ERP),实现企业经营、管理和决策的智能优化。
5、对于存在较高安全与环境风险的项目,实现有毒有害物质排放和危险源的自动检测与监控、安全生产的全方位监控,建立在线应急指挥联动系统。
6、建立工厂通信网络架构,实现工艺、生产、检验、物流等制造过程各环节之间,以及制造过程与数据采集和监控系统、生产执行系统(MES)、企业资源计划系统(ERP)之间的信息互联互通。
7、建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。
建有功能安全保护系统,采用全生命周期方法有效避免系统失效。
通过持续改进,实现生产过程动态优化,制造和管理信息的全程可视化,企业在资源配置、工艺优化、过程控制、产业链管理、节能减排及安全生产等方面的智能化水平显着提升。
三、网络协同制造
1、建有网络化制造资源协同云平台,具有完善的体系架构和相应的运行规则。
2、通过协同云平台,展示社会/企业/部门制造资源,实现制造资源和需求的有效对接。
3、通过协同云平台,实现面向需求的企业间/部门间创新资源、设计能力的共享、互补和对接。
4、通过协同云平台,实现面向订单的企业间/部门间生产资源合理调配,以及制造过程各环节和供应链的并行组织生产。
5、建有围绕全生产链协同共享的产品溯源体系,实现企业间涵盖产品生产制造与运维服务等环节的信息溯源服务。
6、建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。
通过持续改进,网络化制造资源协同云平台不断优化,企业间、部门间创新资源、生产能力和服务能力高度集成,生产制造与服务运维信息高度共享,资源和服务的动态分析与柔性配置水平显着增强。
四、大规模个性化定制
1、产品采用模块化设计,通过差异化的定制参数,组合形成个性化产品。
2、建有基于互联网的个性化定制服务平台,通过定制参数选择、三维数字建模、虚拟现实或增强现实等方式,实现与用户深度交互,快速生成产品定制方案。
3、建有个性化产品数据库,应用大数据技术对用户的个性化需求特征进行挖掘和分析。
4、个性化定制平台与企业研发设计、计划排产、柔性制造、营销管理、供应链管理、物流配送和售后服务等数字化制造系统实现协同与集成。
通过持续改进,实现模块化设计方法、个性化定制平台、个性化产品数据库的不断优化,形成完善的基于数据驱动的企业研发、设计、生产、营销、供应链管理和服务体系,快速、低成本满足用户个性化需求的能力显着提升。
五、远程运维服务
1、采用远程运维服务模式的智能装备/产品应配置开放的数据接口,具备数据采集、通信和远程控制等功能,利用支持IPv4、IPv6等技术的工业互联
网,采集并上传设备状态、作业操作、环境情况等数据,并根据远程指令灵活调整设备运行参数。
2、建立智能装备/产品远程运维服务平台,能够对装备/产品上传数据进行有效筛选、梳理、存储与管理,并通过数据挖掘、分析,向用户提供日常运行维护、在线检测、预测性维护、故障预警、诊断与修复、运行优化、远程升级等服务。
3、智能装备/产品远程运维服务平台应与设备制造商的产品全生命周期管理系统(PLM)、客户关系管理系统(CRM)、产品研发管理系统实现信息共享。
4、智能装备/产品远程运维服务平台应建立相应的专家库和专家咨询系统,能够为智能装备/产品的远程诊断提供智能决策支持,并向用户提出运行维护解决方案。
5、建立信息安全管理制度,具备信息安全防护能力。
通过持续改进,建立高效、安全的智能服务系统,提供的服务能够与产品形成实时、有效互动,大幅度提升嵌入式系统、移动互联网、大数据分析、智能决策支持系统的集成应用水平。
新技术创新应用要素条件
一、工业互联网
1、建立工业互联网工厂内网,采用工业以太网、工业PON、工业无线、IPv6等技术,实现生产装备、传感器、控制系统与管理系统等的互联,实现数据的采集、流转和处理;利用IPv6、工业物联网等技术,实现与工厂内、外网的互联互通,支持内、外网业务协同。
2、采用各类标识技术自动识别零部件、在制品、工序、产品等对象,在仓储、生产过程中实现自动信息采集与处理,通过与国家工业互联网标识解析系统对接,实现对产品全生命周期管理。
3、实现工厂管理软件之间的横向互联,实现数据流动、转换和互认。
4、在工厂内部建设工业互联网平台,或利用公众网络上的工业互联网平台,实现数据的集成、分析和挖掘,支撑智能化生产、个性化定制、网络化协同、服务化延伸等应用。
5、通过部署和应用工业防火墙、安全监测审计、入侵检测等安全技术措施,实现对工业互联网安全风险的防范、监测和响应,保障工业系统的安全运行。
二、人工智能
1、关键制造装备采用人工智能技术,通过嵌入计算机视听觉、生物特征识别、复杂环境识别、智能语音处理、自然语言理解、智能决策控制以及新型人机交互等技术,实现制造装备的自感知、自学习、自适应、自控制。
2、结合行业特点,基于大数据分析技术,应用机器学习、知识发现与知识工程以及跨媒体智能等方法,在产品质量改进与缺陷检测、生产工艺过程优化、设备健康管理、故障预测与诊断等关键环节具备人工智能特征。
3、目标产品采用智能感知、模式识别、智能语义理解、智能分析决策等核心技术,实现复杂环境感知、智能人机交互、灵活精准控制、群体实时协同等方面性能和智能化水平的显着提高。
4、人工智能技术已在产品开发、制造过程等产品全生命周期过程中实际运用,实现对制造过程优化,技术方案和应用模式等具有可复制性、可推广性。