机械能守恒定律常用表达式汇总
- 格式:docx
- 大小:32.53 KB
- 文档页数:1
机械能守恒定律知识点总结机械能守恒定律是高中物理中一个非常重要的定律,它描述了在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
下面我们来详细总结一下机械能守恒定律的相关知识点。
一、机械能的概念机械能包括动能、重力势能和弹性势能。
动能:物体由于运动而具有的能量,表达式为$E_{k}=\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
重力势能:物体由于被举高而具有的能量,表达式为$E_{p}=mgh$,其中$m$是物体的质量,$g$是重力加速度,$h$是物体相对于参考平面的高度。
弹性势能:物体由于发生弹性形变而具有的能量,与弹簧的劲度系数和形变程度有关。
二、机械能守恒定律的内容在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
三、机械能守恒定律的表达式1、初状态的机械能等于末状态的机械能,即$E_{k1} + E_{p1} =E_{k2} + E_{p2}$。
2、动能的增加量等于势能的减少量,即$\Delta E_{k} =\Delta E_{p}$。
四、机械能守恒定律的条件1、只有重力或弹力做功。
2、受其他力,但其他力不做功或做功的代数和为零。
需要注意的是,“只有重力或弹力做功”不能简单地理解为“只受重力或弹力”。
例如,物体在光滑水平面上做匀速圆周运动,虽然受到绳子的拉力,但拉力始终与速度方向垂直,不做功,所以物体的机械能守恒。
五、机械能守恒定律的应用1、单个物体的机械能守恒分析物体的受力情况,判断机械能是否守恒。
确定初末状态,选择合适的表达式列方程求解。
例如,一个物体从高处自由下落,我们可以根据机械能守恒定律$mgh_1 =\frac{1}{2}mv^2 + mgh_2$来求解物体下落某一高度时的速度。
2、多个物体组成的系统的机械能守恒分析系统内各个物体的受力情况,判断机械能是否守恒。
确定系统的初末状态,注意研究对象的选择和能量的转化关系。
机器能守恒定律公式
机械能守恒定律的公式:
1. 基本表达式。
- 在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
其表达式为E_k1+E_p1=E_k2+E_p2。
- 其中E_k1、E_k2分别表示初状态和末状态的动能,E_p1、E_p2分别表示初状态和末状态的势能(包括重力势能和弹性势能)。
- 动能E_k=(1)/(2)mv^2(m为物体质量,v为物体的速度)。
- 重力势能E_p=mgh(m为物体质量,g为重力加速度,h为物体相对参考平面的高度)。
- 对于弹性势能,如果弹簧的劲度系数为k,弹簧的形变量为x,弹性势能
E_p=(1)/(2)kx^2。
2. 另一种表达式。
- Δ E_k=-Δ E_p,即动能的增加量等于势能的减少量(或者动能的减少量等于势能的增加量)。
这种表达式在解决一些定性分析或者涉及能量变化量关系的问题时比较方便。
机械能守恒定律3种公式守恒条件是什么机械能守恒定律是动力学中的基本定律,也就是任何物体系统。
如果没有外力做功,只有保守力在系统中做功,则系统的机械能(动能和势能之和)保持不变。
机械能守恒定律的三种表达式从能量守恒的角度选择一个势能面为零的平面,系统终态的机械能等于初态的机械能。
Ek末+Ep末=Ek初+Ep初从能量转化的角度当系统的动能和势能相互转化时,如果系统势能的减少等于系统动能的增加,则系统机械能守恒。
△Ep减=△Ek增从能量转移的角度系统中有A、两个物体或更多物体,若A机械能的减少量等于机械能的增加量,系统机械能守恒。
△EA减=△EB增以上三种表达各有特点。
在不同的情况下,要选择恰当的表达方式,灵活运用,才能简单快速地解决问题。
机械能守恒定律表达式机械能守恒定律在系统中只有重力或弹力做功的物体系统中,物体的动能和势能可以相互转化,但机械能不变。
其数学表达式可以有以下两种形式:过程式:1.WG+WFn=△Ek2.E减=E增(Ek减=Ep增、Ep减=Ek增)状态式:1.Ek1+Ep1=Ek2+Ep2(某时刻,某位置)2.1/2mv12+mgh1=1/2mv22+mgh2[这种形式必须先确定重力势能的参考平面]机械能守恒定律守恒条件机械能守恒条件是系统中只有弹性或重力做的功。
(即忽略摩擦引起的能量损失,所以机械能守恒也是一个理想化的物理模型),而且是系统中的机械能守恒。
一般在做题的时候机械能是不守恒的,但是能量是可以守恒的,比如弥补损失的能量。
从功能关系式中的WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。
当系统不受外力或外力做功之和为零时,系统的总动量不变,称为动量守恒定律。
机械能只有在动能和势能(包括重力势能和弹性势能)相互转化时才守恒。
机械能守恒定律3种表达式_机械能量守恒定律公式汇总机械能守恒定律的概念在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。
这个规律叫做机械能守恒定律。
机械能守恒定律(lawofconservationofmechanicalenergy)是动力学中的基本定律,即任何物体系统。
如无外力做功,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。
外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。
这个定律的简化说法为:质点(或质点系)在势场中运动时,其动能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。
这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。
这只能在一些特殊的惯性参考系如地球参考系中才成立。
如图所示,若不考虑一切阻力与能量损失,滚摆只受重力作用,在此理想情况下,重力势能与动能相互转化,而机械能不变,滚摆将不断上下运动。
机械能守恒定律守恒条件机械能守恒条件是:只有系统内的弹力或重力所做的功。
【即忽略摩擦力造成的能量损失,所以机械能守恒也是一种理想化的物理模型】,而且是系统内机械能守恒。
一般做题的时候好多是机械能不守恒的,但是可以用能量守恒,比如说把丢失的能量给补回来。
从功能关系式中的WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。
当系统不受外力或所受外力做功之和为零,这个系统的总动量保持不变,叫动量守恒定律。
当只有动能和势能(包括重力势能和弹性势能)相互转换时,机械能才守恒。
机械能守恒定律的三种表达式1.从能量守恒的角度选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。
2.从能量转化的角度系统的动能和势能发生相互转化时,若系统势能的减少量等于系统。
机械能守恒定律机械能守恒是物理学中的一个基本定律,它描述了在没有外力做功和没有能量损失的封闭系统中,机械能守恒的原理和应用。
本文将介绍机械能守恒定律的基本概念、公式和应用。
一、机械能守恒定律的概念机械能守恒定律是指在一个封闭系统中,如果只有重力做功或者没有外力做功的情况下,系统的机械能保持不变。
机械能是由物体的动能和势能组成的,动能是由物体的运动速度决定的,而势能则与物体的位置和形状有关。
在一个封闭系统中,无论是动能还是势能,它们的总和都会保持不变。
二、机械能守恒定律的公式机械能守恒定律可以用以下公式表示:K1 + U1 = K2 + U2其中,K1和K2分别表示系统在两个不同时刻的动能,U1和U2则表示系统在两个不同时刻的势能。
根据这个公式,我们可以计算出系统在不同时刻的机械能,从而验证机械能守恒定律是否成立。
三、机械能守恒定律的应用机械能守恒定律在实际应用中有着广泛的应用。
以下是几个常见的应用场景:1. 弹簧振子弹簧振子是机械能守恒定律的一个典型应用。
当一个质点通过弹簧与支架相连,并在弹簧的作用下来回振动时,由于没有外力做功和能量损失,系统的机械能将保持不变。
2. 坡道滑块当一个块从斜坡上滑下时,由于没有外力做功,只有重力做功,系统的机械能守恒。
初始时,滑块具有一定高度的势能,随着滑块下滑,势能转化为动能,滑块的速度逐渐增加。
3. 自由落体自由落体是机械能守恒定律的典型应用之一。
在忽略空气阻力的情况下,自由落体物体只受到重力做功,而没有其他外力做功,因此系统的机械能保持不变。
4. 弹性碰撞在弹性碰撞中,系统的动能会发生变化,但总的机械能仍然保持不变。
一部分动能会转化为变形能,而另一部分则会转化为其他物体的动能,通过计算机械能的损失,可以判断碰撞是否为弹性碰撞。
总结:机械能守恒定律是物理学中一个重要的定律,它描述了在没有外力做功和能量损失的封闭系统中,机械能的总和保持不变。
我们可以通过公式和应用来验证机械能守恒定律的正确性。
《科学验证:机械能守恒定律》知识清单机械能守恒定律是物理学中一个非常重要的定律,它描述了在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
接下来,让我们深入了解一下机械能守恒定律的相关知识。
一、机械能守恒定律的表述机械能守恒定律可以表述为:在一个只有重力或弹力做功的系统内,动能与势能相互转化,但机械能的总量保持不变。
即初态的机械能等于末态的机械能。
数学表达式为:E₁= E₂(E 表示机械能)或者:K₁+ P₁= K₂+ P₂(K 表示动能,P 表示势能)二、机械能守恒的条件机械能守恒的条件是只有重力或弹力做功。
重力做功对应重力势能与动能的转化。
例如,物体自由下落,重力做正功,重力势能减少,动能增加,但机械能总量不变。
弹力做功对应弹性势能与动能的转化。
比如,水平放置的弹簧将物体弹出,弹力做正功,弹性势能减少,动能增加,机械能守恒。
需要注意的是,如果有摩擦力或其他非保守力做功,机械能就不守恒。
因为非保守力做功会导致机械能与其他形式的能相互转化,机械能的总量会发生改变。
三、机械能守恒定律的验证实验1、自由落体实验(1)实验原理让一个重物从高处自由下落,测量下落过程中不同位置的速度和高度。
如果机械能守恒,那么重力势能的减少量应该等于动能的增加量。
(2)实验步骤①安装实验装置,将打点计时器固定在铁架台上,纸带穿过打点计时器,重物用夹子固定在纸带的一端。
②接通电源,松开夹子,让重物自由下落。
③取下纸带,选择点迹清晰的部分,每隔一定的点数选取一个计数点,并测量相邻计数点之间的距离。
④根据纸带计算各计数点的速度,然后计算重力势能的减少量和动能的增加量。
(3)数据处理及分析比较重力势能的减少量和动能的增加量,如果两者在误差允许的范围内相等,就验证了机械能守恒定律。
2、平抛运动实验(1)实验原理平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动。
在竖直方向上,重力做功,如果机械能守恒,那么重力势能的减少量应该等于动能的增加量。
一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θ4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ 8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
例1. (09年上海卷)46.与普通自行车相比,电动自行车骑行更省力。
下表为某一品牌电动自行车的部分技术参数。
在额定输出功率不变的情况下,质量为60Kg 的人骑着此自行车沿平直公路行驶,所受阻力恒为车和人总重的0.04倍。
当此电动车达到最大速度时,牵引力为 N,当车速为2s/m22例2. (09年广东理科基础)9.物体在合外力作用下做直线运动的v 一t 图象如图所示。
下列表述正确的是A .在0—1s 内,合外力做正功B .在0—2s 内,合外力总是做负功C .在1—2s 内,合外力不做功D .在0—3s 内,合外力总是做正功二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tWP =(平均功率) θυcos F P =(平均功率或瞬时功率)3单位:瓦特W 4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f =ma 6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值max υ,则f P /max =υ。
机械能守恒定律单元公式汇总做功: W=FS ·COS θ θ为力与位移的夹角重力做功: G W =mg Δh Δh 为物体初末位置的高度差重力势能:p E =mgh h 为物体的重心相对于零势面的高度重力做功和重力势能变化的关系: G W =-Δp E 即重力做功与重力势能的变化量相反弹性势能: p E =21k 2L L 为弹簧的形变量弹力做功与弹性势能的关系: F W =-Δp E 即弹力做功与弹性势能的变化量相反动能定理: 合W =Δk E =21m 22V -21m 21V 即合外力做功等于动能的变化量合外力做功两种求解方式:1)先求合外力合F ,再求合F ·S ·COS θ2)先求各个分力做功再求和,+++321W W W ....... 机械能守恒定律:条件:只有重力弹力做功公式:末初E E =即初总机械能等于末机械能变形公式:Δk E =-ΔP E 即动能的变化量与势能的变化量相反如果是A 与B 的系统机械能守恒:1)2211P K P K E E E E +=+即初的总机械能等于末的总机械能 2)Δk E =-ΔP E 即 Δ1k E +Δ2k E =-(Δ1P E +Δ2P E )即总的动能的变化量与总的势能的变化量相反3)ΔA E =-ΔB E 即 Δ1k E +Δ1P E =-(Δ2k E +Δ2P E )即A 的总机械能变化量与B 的总机械能的变化量相反能量守恒定律:末初E E =即初总能量等于末的总能量机械能变化的情况:1)W=Δ机E 即除重力、系统内弹力外其他力做功的多少为机械能变化量(即其他力给原有系统能量或消耗原有系统能量)2)摩擦力做功对机械能影响: Q X F =相对f 即摩擦力乘以相对位移等于产生的热量(内能)即机械能的损失。
机械能及其守恒定律1.功:作用于物体的力和物体在力的方向上位移的乘积叫做力对物体所做功。
即 W=FScosα公式中α是物体受到的力的方向和物体位移方向的夹角。
公式中的F必须是恒力;位移S,应该是力F作用点的位移。
功是标量,只有大小无方向,合力的功或总功都可由各分力功的代数和求得.但是功有正负之分。
当0°≤α<90°时,力做正功;当90°<α≤180°时,力做负功;当α=90°时力不做功。
2.功率:物体所做的功与完成这些功所用时间的比值,叫功率,功率是表示物体做功快慢的物理量,公式为:P=W/t(1)功率另一种表达式:P=FVcosα此公式中V为平均速度,则求出的是平均功率.若V为某时刻的瞬时速度,则P表示该时刻的瞬时功率.功率一定时,力与物体的运动速度成反比。
速度一定时,物体的功率与速度成正比。
(2)P = FV的应用:①P一定时,F与V成反比,汽车在水平路面上以恒定的功率启动。
②F一定时,P与V成正比,汽车在水平路面上以恒定的加速度启动易错现象1.对功的定义W=FS理解不全面。
公式中F是恒力,在变力情况下如滑动摩擦力有往返运动的做功,位移为零,但功不为零,因此不能直接应用。
2.混淆合外力的功和某个力所做功。
3.混淆平均功率和即时功率。
4.对恒定功率下的运动和恒力作用下的运动的动态变化过程不清楚。
3.重力势能:重力做功的特点是只决定于初、末位置间的高度差,与运动路径无关. W G=mgh E p=mgh (1)重力势能是标量,是地球和物体所组成的系统共有;(2)重力势能具有相对性,即重力势能的大小与零势能面的选择有关;(3)重力所做功等于重力势能增量的负值。
4.弹性势能:物体由于发生弹性形变所具有的能量,大小与弹性形变量有关。
5.机械能守恒定律:在只有重力(或弹力)做功的条件下,物体的重力势能(或弹性势能)和动能相互转化,但机械能总量保持不变E p2+E k2= E p1+E k1或ΔE=0 或ΔE k+ΔE p =0(1)机械能守恒定律成立的条件:①只受重力(或弹力)作用;②受其他外力,但其他外力不做功;③对多个物体构成的系统,如果外力不做功,且系统的内力也不做功;,此系统机械能守恒。
机械能守恒定律表达式是什么
基本的公式是Ek1+Ep1=Ek2+Ep2 等号前的是初始状态的机械能,等号后的是末态的机械能。
ΔE1=ΔE2,E 减=E 增,W=ΔE。
1 机械能守恒定律表达式机械能守恒定律
在只有重力或系统内弹力做功的物体系统内,物体的动能和势能可以相互
转化,但机械能保持不变。
其数学表达式可以有以下两种形式:
过程式:
1.WG+WFn=∆Ek
2.E 减=E 增(Ek 减=Ep 增、Ep 减=Ek 增)
状态式:
1.Ek1+Ep1=Ek2+Ep2(某时刻,某位置)
2.1/2mv12+mgh1=1/2mv22+mgh2[这种形式必须先确定重力势能的参考平面] 1 机械能守恒定律的三种表达式1.从能量守恒的角度
选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。
2.从能量转化的角度
系统的动能和势能发生相互转化时,若系统势能的减少量等于系统动能的
增加量,系统机械能守恒。
3.从能量转移的角度。
机械能守恒定律基本知识点汇总机械能守恒定律是物理学中一个非常重要的定律,它描述了一个封闭系统中机械能的守恒性质。
机械能是指一个物体的动能和势能的总和。
根据机械能守恒定律,当一个物体在一个封闭系统内运动时,它的机械能始终保持不变。
下面是机械能守恒定律的基本知识点汇总。
1. 机械能的定义:机械能是指一个物体的动能和势能的总和。
动能是物体由于运动而具有的能量,通常用公式KE = 1/2mv^2表示,其中m是物体的质量,v是物体的速度。
势能是物体由于位置而具有的能量,通常用公式PE = mgh表示,其中m是物体的质量,g是重力加速度,h是物体的高度。
2.机械能守恒定律的表达式:机械能守恒定律可以用公式E1=E2表示,其中E1是系统的初始机械能,E2是系统的末尾机械能。
根据这个定律,当一个物体从一个位置移动到另一个位置时,它的机械能保持不变。
3.能量转化:机械能守恒定律描述了机械能在封闭系统内的转化过程。
当一个物体在系统内运动时,它的动能和势能会相互转化。
例如,当一个物体从高处下落时,它的势能会逐渐减少,而动能会增加。
在系统完全封闭的情况下,势能的减少和动能的增加相互补偿,使得系统的机械能保持不变。
4. 弹性势能:弹性势能是机械能守恒定律中重要的一种势能形式。
当一个物体被弹性力压缩或拉伸时,它会具有弹性势能。
弹性势能通常用公式PE = 1/2kx^2表示,其中k是弹簧的弹性系数,x是物体相对于平衡位置的位移。
5.实例分析:机械能守恒定律可以应用于各种各样的物理问题。
例如,假设有一个滑块从高出地面h的位置滑下,滑到地面时的速度可以用机械能守恒定律来计算。
根据机械能守恒定律,滑块的初始势能等于末尾动能。
由于滑块在地面时势能为零,所以初始势能等于零,动能即为滑块末尾的动能。
根据动能的定义,可以得到滑块末尾的速度。
6.真实系统的限制:虽然机械能守恒定律在许多理想情况下是成立的,但在真实的系统中会受到各种因素的影响而不完全成立。
机械能守恒与动量守恒定律机械能守恒和动量守恒定律是物理学中两个重要的守恒定律。
它们分别描述了系统在各种运动中相关物理量的守恒规律。
本文将从守恒定律的定义、表达式、适用范围以及实际应用等方面进行探讨。
一、机械能守恒定律机械能守恒定律指的是在不受外力作用的情况下,一个物体的机械能保持不变。
机械能包括动能和势能两个部分,动能是物体运动所具有的能量,而势能则是物体由于位置而具有的能量。
机械能守恒定律可用以下数学表达式表示:E = K + U = 常数其中,E代表机械能,K代表动能,U代表势能。
机械能守恒定律适用于各种力学运动,例如匀速直线运动、自由落体运动等等。
在这些运动中,只要没有外力做功或能量损失,物体的机械能将保持不变。
二、动量守恒定律动量守恒定律描述了物体在相互作用过程中动量保持不变的规律。
动量是物体运动的一种物理量,它等于物体的质量与速度的乘积。
动量守恒定律可用以下数学表达式表示:m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'其中,m代表物体的质量,v代表物体的速度,v'代表相互作用后的物体速度。
动量守恒定律适用于各种物体之间的碰撞、相互作用等情况。
在这些过程中,物体之间的动量之和保持不变。
三、机械能守恒与动量守恒定律的联系机械能守恒定律和动量守恒定律在某些情况下是相互联系的。
例如,在完全弹性碰撞中,碰撞前后物体的动量守恒,但机械能守恒并不成立。
这是因为在弹性碰撞中,动能的转化为势能然后再转化为动能,系统的机械能并不守恒。
然而,在完全非弹性碰撞中,碰撞前后的物体会粘在一起形成一个整体,在这种情况下,虽然动能并不守恒,但机械能守恒仍然成立。
因此,机械能守恒定律和动量守恒定律在不同的物理过程中有着不同的适用条件,但它们都揭示了物体运动中守恒规律的重要性。
四、机械能守恒与动量守恒定律的应用机械能守恒和动量守恒定律在实际应用中具有广泛的意义。
在工程领域,机械能守恒定律可以用于分析机械系统的能量转换和损失情况,优化系统设计。
一、功1概念: 一种物体受到力旳作用, 并在力旳方向上发生了一段位移, 这个力就对物体做了功。
功是能量转化旳量度。
2条件:.力和力旳方向上位移旳乘积3公式: W=F S cos θ4功是标量, 但它有正功、负功。
某力对物体做负功, 也可说成“物体克服某力做功”。
5功是一种过程所对应旳量, 因此功是过程量。
6功仅与F、S 、θ有关, 与物体所受旳其他外力、速度、加速度无关。
7几种力对一种物体做功旳代数和等于这几种力旳合力对物体所做旳功。
即W总=W1+W2+…+Wn 或W总= F合Scos θ8 合外力旳功旳求法:措施1: 先求出合外力, 再运用W=Flcosα求出合外力旳功。
例2.(23年广东理科基础)9. 物体在合外力作用下做直线运动旳v一t图象如图所示。
下列表述对旳旳是A. 在0—1s内, 合外力做正功B. 在0—2s内, 合外力总是做负功C. 在1—2s内, 合外力不做功D.在0—3s内, 合外力总是做正功二、功率1概念: 功跟完毕功所用时间旳比值, 表达力(或物体)做功旳快慢。
2公式: (平均功率)υcosθFP=(平均功率或瞬时功率)3单位: 瓦特W4分类:额定功率: 指发动机正常工作时最大输出功率实际功率: 指发动机实际输出旳功率即发动机产生牵引力旳功率, P实≤P额。
5分析汽车沿水平面行驶时各物理量旳变化, 采用旳基本公式是P=Fv和F-f =ma6 应用:(1)机车以恒定功率启动时, 由(为机车输出功率, 为机车牵引力, 为机车前进速度)机车速度不停增长则牵引力不停减小, 当牵引力时, 速度不再增大到达最大值, 则。
(2)机车以恒定加速度启动时, 在匀加速阶段汽车牵引力恒定为, 速度不停增长汽车输出功率随之增长, 当时, 开始减小但仍不小于因此机车速度继续增大, 直至时, 汽车便到达最大速度, 则。
例3.(23年四川卷)23.(16分)图示为修建高层建筑常用旳塔式起重机。
在起重机将质量m=5×103 kg旳重物竖直吊起旳过程中, 重物由静止开始向上作匀加速直线运动, 加速度a=0.2 m/s2, 当起重机输出功率到达其容许旳最大值时, 保持该功率直到重物做vm=1.02 m/s旳匀速运动。
机械能守恒定律知识集结知识元机械能守恒定律知识讲解一、机械能1.内容:物体的动能和势能(包括:重力势能和弹性势能)之和.2.表达式:E=E k+E p.3.机械能的理解:(1)机械能是状态量;标量,单位为焦耳;数值有正负(2)相对性:势能具有相对性(须确定零势能参考平面),同时,动能也具有相对性(与所选参考系有关),故机械能具有相对性.二、机械能守恒定律1、内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.2、表达式:E k+E p=Ek+Ep.3、适用对象:系统.4、适用条件:只有系统内的重力或弹力做功,其他力不做功或做功的代数和为0.5、解题的基本步骤:(1)明确所选取的研究对象(物体或系统)(2)分析研究对象的受力情况及各力做功情况,判断是否符合机械能守恒的条件.(3)恰当地选取参考平面,确定研究对象在研究过程的初、末状态的机械能(包括动能和势能).(4)根据机械能守恒定律列方程,进行求解.例题精讲机械能守恒定律例1.下列说法正确的是()A.物体所受合力不为零,则其速度一定不为零B.物体所受合力不为零,则其速度方向一定发生变化C.合外力对物体做了功,物体的速度一定发生变化D.合外力对物体不做功,物体的机械能一定不变例2.下列说法正确的是()A.物体处于平衡状态时,机械能一定守恒B.物体的机械能守恒时,一定只受重力作用C.不计空气阻力,小孩沿滑梯匀速滑下过程中机械能守恒D.不计空气阻力,被投掷出的铅球在空中运动过程中机械能守恒例3.关于机械能守恒,下列说法正确的是()A.做自由落体运动的物体,机械能一定守恒B.人乘电梯加速上升的过程,机械能守恒C.物体必须在只受重力作用的情况下,机械能才守恒D.物体以g的加速度竖直向上做匀减速运动例4.如图所示,一根长为L,重为G的均匀软绳悬于O点,若将其下端向上提起使绳双折,至少要做功()A.GLB.C.D.例5.如图所示,质量相同的两物体a和b,用不可伸长的轻绳跨接在同一光滑的轻质滑轮两侧,b在水平粗糙桌面上。