函数的定义和表示
- 格式:doc
- 大小:865.55 KB
- 文档页数:9
函数的概念及表示知识点1:函数的概念1.函数的定义:一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B 的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.规律方法:(1)判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A 中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.考点1:函数的判定典型例题例1 判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.例2 下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.知识点2:函数的图像1.概念:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.2.作函数图像的方法:(1)利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线(2)在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.考点1:画函数的图象 典型例题例1 作下列函数的图象(1)y =x 2+x (-1≤x ≤1); (2)y =2x (-2≤x <1,且x ≠0).(3)y =1+x (x ∈Z); (4)y =x 2-2x ,x ∈[0,3).考点2:函数图象的识别例1 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是________.(填序号)例2 如图所示,函数y =ax 2+bx +c 与y =ax +b (a ≠0)的图象可能是________(填序号).考点3:函数图象的应用例1 画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.例2 若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.考点4:函数图像在实际问题中的应用例1 某商场销售一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定y与x的一个函数关系式y=f(x);(2)设销售此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?知识点3:函数的定义域1.概念:函数的定义域是指自变量x的范围2.函数定义域的求解方法:(1)若()x f为整式,则定义域为R.(2)若()x f是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题. 考点1:具体函数定义域求解 例1 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-考点2:抽象函数定义域求解例1 设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例 2 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 .例3 已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫⎝⎛++=342x f x f y 的定义域.例4 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.知识点4:函数的值域1.概念:函数的值域指因变量y 的范围2.函数值域的求解方法: (1)观察法 (2)判别式法 (3)配方法 (4)换元法 (5)不等式法 (6)图像法 (7)分离常数法 考点1:用观察法求值域 例1 求下列函数的值域:(1)2415+-=x x y (2)123422--+-=x x x x y考点2:用配方法求值域例1 求函数242y x x =-++([1,1]x ∈-)的值域.考点3:用反解+判别式法求值域例1 求函数3274222++-+=x x x x y 的值域考点4:用换元法求值域 例1 求函数12--=x x y 的值域考点5:用不等式法求值域例1 求函数()22415≥+-=x x x y 的值域考点6:用图像法求值域 例1 求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈例2 画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。
函数的概念及其表示知识梳理1.函数的基本概念(1)函数的定义一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A 到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域.(3)函数的三要素是:定义域、值域和对应关系.(4)表示函数的常用方法有:解析法、列表法和图象法.(5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.函数定义域的求法要点一、函数的概念例1、设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N的函数关系的有()A.①②③④B.①②③C.②③D.②例2、下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1D.f(x)=•,g(x)=例3、下列集合A,B及其对应法则,不能构成函数的是()A.A=B=R f(x)=|x|B.A=B=RC.A={1,2,3,4),B={2,3,4,5,6}f(x)=x+1D.A={x|x>0},B={1}f(x)=x0答案:C A B练习1、下列四个图形中不可能是函数y=f(x)图象的是()A.B.C.D.2、已知函数f(x)的定义域A={x|0≤x≤2},值域B={y|1≤y≤2},下列选项中,能表示f (x)的图象的只可能是()A.B.C.D.3、下列四组函数中的f(x)和g(x)相等的是()A.B.C.D.4、下列对应是从集合A到B的函数的是()A.A=N,B=R,对应关系f:“求平方根”B.A=N*,B=N*,对应关系f:x→y=|x﹣3|C.A=R,B={0,1},对应关系f:D.A=Z,B=Q,对应关系5、中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合M={﹣1,1,2,4},N={1,2,4,16},给出下列四个对应法则:①,②y=x+1,③y=|x|,④y=x2,请由函数定义判断,其中能构成从M到N的函数的是()A.①③B.①②C.③④D.②④要点二、函数的定义域例4、函数的定义域是()A.(1,2]B.(1,2)C.(2,+∞)D.(﹣∞,2)例5、已知函数y=f(x+1)的定义域是[﹣1,2],则函数y=f(﹣x)的定义域为()A.[﹣3,0]B.[﹣1,2]C.[0,3]D.[﹣2,1]例6、若函数y=的定义域为R,则a的取值范围为()A.(0,4]B.[4,+∞)C.[0,4] D.(4,+∞)答案: B A C 练习6、函数f (x )=+的定义域为( )A .(﹣3,0]B .(﹣3,1]C .(﹣∞,﹣3)∪(﹣3,0]D .(﹣∞,﹣3)∪(﹣3,1] 7、函数f (x )=(x ﹣5)0+(x ﹣2)的定义域为( )A .{x ∈R |2<x <5或x >5}B .{x ∈R |x >2}C .{x ∈R |x >5}D .{x ∈R |x ≠5且x ≠2}8、若函数f (x )的定义域为[1,2],则函数y=f (x 2)的定义域为( ) A .[1,4]B .[1,] C .[﹣,] D .[﹣,﹣1]∪[1,]9、若函数f (3﹣2x )的定义域为[﹣1,2],则函数f (x )的定义域是( ) A .B .[﹣1,2]C .[﹣1,5]D .10、已知函数的定义域为R ,则实数a 的取值范围是( ) A .(0, B .(﹣∞,C .,+∞)D .[1,+∞)要点三、函数的解析式例7 (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(2) f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试求出f (x )的解析式(3) 定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. (4)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.练习11、已知函数,则( )A .f (x )=x 2+2x +1B .f (x )=x 2﹣2x +3(x ≥1)C .f (x )=x 2﹣2x +1D .f (x )=x 2+2x +3(x ≥1)12、若函数f (x )满足f ()=x ,则f (x )的解析式为( )A.f(x)=(x≠1)B.f(x)=,(x≠﹣1)C.f(x)=(x≠1)D.f(x)=(x≠﹣1)13、已知函数f(x)=2x+3,若f(g(x))=6x﹣7,则函数g(x)的解析式为()A.g(x)=4x﹣10B.g(x)=3x﹣5C.g(x)=3x﹣10D.g(x)=4x+414、若函数f(x)对于任意实数x恒有3f(x)﹣2f(﹣x)=5x+1,则f(x)=.15、已知f(x)是定义在R上的奇函数,当x>0时,f(x)=+1,则f(x)=.答案:1、C 2、D 3、C 4、C 5、C 6、C 7、A 8、D 9、C 10、C 11、B 12、A 13、B 14、x+1。
一、函数的概念及其表示函数是刻画变量之间对应关系的数学模型和工具。
函数的共同特征:(1)都包含两个非空数集,用A 、B 来表示;(2)都有一个对应关系;(3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数级A 中的任意一个数x ,按照对应关系,在数集B 中都有唯一确定的数y 和它对应。
事实上,除了解析式、图象、表格外,还有其他表示对应关系的方法。
为了表示方便,我们引进符号f 统一表示对应关系。
一般地,设A 、B 是非空的实数集,如果对于集合A 中的任意一个数x,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合b 的一个函数,记作().,A x x f y ∈=其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈|叫做函数的值域。
我们所熟悉的一次函数y=kx+b ,k ≠0的定义域是R ,值域也是R 。
对应关系f 把r 中的任意一个数x ,对应到R 中唯一确定的数kx+b 。
二次函数)0(2≠++=a c bx ax y 的定义域是R ,值域是B 。
当A>0时,B=⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当A<0时,B=⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|2。
对应关系f 把R 中任意一个数x,对应到B 中唯一确定的数)0(2≠++a c bx ax 。
由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
因为值域是由定义域和对应关系决定的,所以如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数。
两个函数如果仅有对应关系相同,但定义域不相同,那么它们不是同一个函数。
函数的三种表示方法:解析法、列表法和图象法。
解析法,就是用数学表达式表示两个变量之间的对应关系;列表法,就是列出表格来表示两个变量之间的对应关系;图象法,的就是用图象表示两个变量之间的对应关系。
函数的概念函数是数学中非常重要的概念,它描述了变量之间的依赖关系,帮助我们更好地理解数学中的各种关系。
本文将从函数的定义、表示、性质、运算以及实际应用等方面进行介绍。
1.函数的定义函数是一个数学表达式,它表示了一个或多个自变量的输入值与对应因变量的输出值之间的关系。
在数学中,用符号“f”表示函数,其中f后面的括号内是自变量的取值范围,而f右侧的表达式则是因变量的取值范围。
例如,一个简单的函数可以定义为y=x+2,其中x 是自变量,y是因变量。
2.函数的表示函数的表示方法有多种,包括解析法、表格法和图象法等。
解析法是用数学符号和公式来表示函数关系的一种方法,如y=x+2。
表格法是用表格形式表示函数关系的一种方法,它适用于离散变量函数,如阶跃函数等。
图象法则是用函数图象表示函数关系的一种方法,适用于连续变量函数。
3.函数的性质函数的性质包括单调性、奇偶性、周期性等。
单调性是指函数在某一区间内随着自变量的增加,因变量的值也相应增加,反之亦然。
奇偶性是指函数在原点对称或旋转对称时具有的性质。
周期性是指函数按照一定的周期重复出现的现象。
4.函数的运算函数的运算包括函数的加、减、乘、除等基本运算以及复合运算等。
函数的加、减、乘、除等基本运算可以类比于代数中的运算,而复合运算则是将两个或多个基本函数组合成一个新函数的过程。
5.函数的实际应用函数在实际生活中有着广泛的应用,例如在物理学、工程学、经济学等领域中都有函数的身影。
例如,在物理学中,牛顿第二定律F=ma就描述了力与加速度之间的关系;在经济学中,成本函数、收益函数等都是描述经济变量的重要工具;在工程学中,各种系统模型也都是用函数来描述的。
此外,函数还在计算机科学、统计学等领域中有着广泛的应用。
总之,函数是数学中非常重要的概念之一,它描述了变量之间的依赖关系,并为我们提供了分析问题、解决问题的重要工具。
通过深入理解函数的定义、表示、性质、运算以及实际应用等方面,我们可以更好地掌握函数这一重要概念,并为解决实际问题提供有力的支持。
函数的概念及其表示一、什么是函数1、函数的定义: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function )。
记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ).注意:1) “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”。
2) 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,是一个数;而f()表示的是对应关系。
(用集合关系讲解)2、映射与函数函数的特殊的映射二、构成函数的三要素:定义域、对应关系和值域1、函数是一个整体“y=f(x),x ∈A .”表示一个函数。
函数=定义域+对应关系+值域2、比喻理解:定义域f −−→值域 等价于 原材料f −−→产品 一个函数就是一个完整过程,定义域是原材料、对应关系f 是生产设备、值域是生产的产品,而我们是老板,老板刷题就是从三要素出发不断地管理匹配这个生产过程3、举例说明:21,y x x R =+∈问:定义域值域是对应关系是三、求函数定义域.主要题型:偶次方被开方数为非负;分式的分母不为零;零次幂的底数不为零;对数真数大于零;指数对数的底数大于零且不等于1例题讲解:1、1()f x x x =-2、1()11f x x=+ 3、()f x =4、2()ln(1)f x x =- 5、()1f x x =- 四、求函数解析式1、函数的三种表达方法解析式法+图像法+列表法 因此我们可以看出解析式是函数的表达方式之一,也是我们学习过程中接触最多的。
2、函数解析式求法1) 配凑法\由已知条件(())()f g x F x =,可以将()F x 改写成关于()g x 的表达式,然后以x 替代()g x 例题:已知2222(1))3x f x x ++=-,求()f x 解析式 2) 待定系数法如已知函数类型(如一次函数、二次函数)可用待定系数法例题:已知()f x 是一次函数,且满足3(1)()29f x f x x +-=+,求函数()f x 的解析式3) 换元法若已知(())f g x 的解析式,可用换元法 例题:已知2222(1))3x f x x ++=-,求()f x 解析式 4) 解方程组法已知关于()f x 与1()f x 或者()f x 与()f x 的表达式,可根据条件构造出另外一个等式,组成方程组求解例题:已知()f x +21()f x =3x ,则求()f x 的解析式。
函数及其表示方法1.函数的概念:一般的,设A ,B 是 非空实数集,如果按照某种确定的 对应关系f ,使对于集合A 中的 每一个实数,在集合B 中都有 唯一确定的实数)(x f y =和x 对应,那么就称 f 为从集合A 到集合B 的一个函数,记作 )(x f y = , 其中 x 叫做自变量,x 的取值范围A 叫做 定义域 ,与x 的值相对应的y 值叫做 函数值 ,函数值的集合 叫做函数的 值域,显然,值域是集合B 的子集。
注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . 2.构成函数的三要素: 值域 , 定义域 , 对应关系 .3. 函数相等:若两个函数的 定义域 相同,且 对应关系 在本质上也是相同的,则称两个函数相等。
4、函数的三种表示方法(1)解析法:_用解析式把把x 与y 的对应关系表述出来,最常见的一种表示函数关系的方法。
举例:如222321,,2,6y x x S r C r S t ππ=++===等。
优点:⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(2)列表法:用表格的方式把x 与y 的对应关系一一列举出来.比较少用.举例: 如:平方表,三角函数表,利息表,列车时刻表,国民生产总值表等。
优点:不需要计算,就可以直接看出与自变量的值相对应的函数值。
(3)图象法:在坐标平面中用曲线的表示出函数关系,比较常用,经常和解析式结合起来理解函数的性质.优点:直观形象地表示自变量的变化。
5、分段函数:在函数的定义域内,对于自变量x 的不同取值区间不同的对应关系,这样的函数通常叫做 分段函数 。
拓展一 判断相同函数例1、下列函数f (x )与g (x )是表示同一个函数的是? ( )A. f ( x ) = (x -1) 0;g ( x ) = 1 ;B. f ( x ) = x ; g ( x ) = 2x C .f ( x ) = x 2;f ( x ) = (x + 1) 2 、D. f ( x ) = | x | ;g ( x ) = 2x 拓展二 函数的判断例2、下列函数图像中不能作为函数y=f(x)的图像的是 ( )拓展三 求函数的定义域函数定义域的一般求法(开偶次方根,分式,零次幂)例3、(1) ()x x f 2=+()01+x (2)1()(12)(1)f x x x =-+;(3)()4f x x =-复合函数求定义域若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。
1. 函数的定义设A 、B 是两个非空数集,如果按照某种确定的对应关系f ,使得对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数.记作:()x f y =,A x ∈.其中x 叫自变量,它的取值范围叫做函数的定义域;如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()a f y =或a x y =,所有函数值构成的集合{}|(),y y f x x A =∈叫做这个函数的值域.☆ 函数的三要素:定义域、对应关系和值域;其中对应关系是核心,定义域是根本,当定义域和对应关系一确定,则值域也就确定了.2. 映射 设A ,B 是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射.这时,称y 是x 在映射f 的作用下的象,记作()x f ,于是y =()x f ,x 称作y 的原象.映射f 也可以记为B A f →:,→x ()x f ,其中A 叫做映射f 的定义域(函数定义域的推广),由所有象()x f 构成的集合叫做映射f 的值域,通常记作()A f .3.一一映射:如果映射f 是集合A 到集合B 的映射,并且对于集合B 中的任意一个元素,在集合A 中都有且只有一个原象,这时我们说这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A 到集合B 的一一映射.4.函数与映射:对定义域内每个自变量的值,根据确定的法则对应唯一的函数值,函数值也在一个数集内变化.于是函数也就是数集到数集的映射.映射是函数概念的推广,函数是一种特殊的映射.这里要注意:在映射中,要求元素的对应形式是“多对一”或“一对一”,一一映射中元素的对应形式必须是“一一对应关系”.5.函数的表示方法:表示函数常用的方法有列表法、解析法和图象法三种.列表法:通过列出自变量与对应函数值的表来表示函数关系的方法叫做列表法. 图象法:对于函数()x f y =(A x ∈)定义域内的每一个x 值,都有唯一的y 值与它对应.把这两个对应的数构成有序实数对()y x ,作为点P 的坐标,即P ()y x ,,则所有这些点的集合F 叫做函数()x f y =的图象,即{}(,)|(),F P x y y f x x A ==∈.这就是说,如果F 是函数()x f y =的图像,则图像上的任一点的坐标()y x ,都满足函数关系()x f y =;反之,满足函数关系()x f y =的点()y x ,都在图象F 上.这种用“图形”表示函数的方法叫做图象法.解析法:如果在函数()x f y =, A x ∈中,()x f 是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析法(也称为公式法).6.分段函数:在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数,如⎩⎨⎧≤+>-=0,230,12x x x x y 、423-+=x y 等.7.求函数定义域:在中学阶段,所研究的函数大都是能用解析式表示的,如果未加特殊说明,函数的定义域就是指能使函数解析式有意义的所有实数x 的集合,在实际问题中,还必须考虑自变量x 所代表的具体量的允许范围.①分母不为零;②偶次方根下非负;③对数函数真数大于零;④0x y =,0≠x . 研究函数时常会用到区间的概念:定义名称 符号数轴表示{}b x a x ≤≤ 闭区间 []b a ,{}b x a x << 开区间 ()b a ,{}b x a x <≤ 半开半闭区间 )[b a ,{}b x a x ≤<半开半闭区间](b a ,例题1:求下列函数的定义域(1)()43-=x xx f (2)()2x x f =(3)()2362+-=x x x f (4)()14--=x x x f☆ 如何判断两个函数是否为同一个函数:①看定义域是否相同,如果相同再看对应关系(解析式)是否一样.例题2:下列哪一组中的函数()x f 与()x g 相等?(1)()1-=x x f , ()12-=xx x g (2)()2x x f =, ()()4x x g =(3)()2x x f = , ()36x x g =例题3:画出下列函数的图象,并写出函数的定义域和值域.(1)x y 3= (2)xy 8=(3)54+-=x y (4)762+-=x x y例题4:已知函数()62-+=x x x f . (1)点(3,14)在()x f 的图象上吗? (2)当4=x 时,求()x f 的值; (3)当()2=x f 时,求x 的值.例题5:已知()12+=x x f ,则()()1-f f 的值等于( ) A.2 B.3 C.4 D.5例题6:已知函数()x f 的定义域为()0,1-,则函数()12+x f 的定义域为( )A.()1,1-B.⎪⎭⎫ ⎝⎛--21,1 C.()0,1- D.⎪⎭⎫⎝⎛1,21例题7:用区间表示下列数集: (1){}=≥1x x (2){}=≤<42x x (3){}=≠->21x x x 且 例题8:求下列函数的值域.(1)()1123≤≤-+=x x y ; (2)()x x f -+=42(3)x x y 422+--=例题9:已知函数()2211x x x f -+=.(1)求()x f 的定义域; (2)若()2=a f ,求a 的值;(3)求证:()x f x f -=⎪⎭⎫⎝⎛1求函数解析式(1) 配凑法求函数解析式:形如()[]x g f y =的函数解析式,一般也可以用换元法;例题1:已知函数()x x x f 21+=+,求()x f ;例题2:已知函数2211xx x x f +=⎪⎭⎫ ⎝⎛+,求()x f ;(2) 换元法求函数解析式:形如()[]x g f y =的函数解析式;例题3:已知()x x f 2sin cos 1=-,求()x f 的解析式.(3) 待定系数法求函数解析式:已知所求函数类型;例题4:已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f .(4) 方程组法求函数解析式:已知()x f 和⎪⎭⎫⎝⎛x f 1的关系式或者()x f 和()x f -的关系式.例题5:已知函数()x f 的定义域为()∞+,0,且()112-⎪⎭⎫⎝⎛=x x f x f ,求()x f ;函数的单调性与最值1、函数单调性定义:设函数()x f 在区间I 上有定义,如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f <,则称函数()x f 在区间I 上单调递增;如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f >,则称函数()x f 在区间I 上单调递减;单调递增函数和单调递减函数统称为单调函数.如果函数()x f y =在区间D 上是增函数或减函数,那么就说函数()x f y =在这一区间具有(严格的)单调性,区间D 叫做()x f y =的单调区间.2、最值:对于任意的I x ∈,都有()M x f ≤或者()N x f ≥,这个N M 和便是函数()x f 在区间I 上的最大值和最小值. 用定义法判断函数的单调性 例题1:已知函数()12-=x x f []()6,2∈x ,求函数的最大值和最小值.例题2:用定义法判断函数()12++=x x x f 在区间)(∞+-,1上的单调性.函数单调性的等价定义对于定义在D 上的函数()x f ,设1x ,D x ∈2,21x x <,则有: (1)()()()x f x x x f x f ⇔>--02121是D 上的单调递增函数; (2)()()[]()()x f x x x f x f ⇔>-⋅-02121是D 上的单调递增函数; (3)()()()x f x x x f x f ⇔<--02121是D 上的单调递减函数; (4)()()[]()()x f x x x f x f ⇔<-⋅-02121是D 上的单调递减函数.2x 1x 1x 2x函数的奇偶性一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么函数()x f 就叫做偶函数.(偶函数的图象一定是关于 对称)一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么函数()x f 就叫做奇函数.(奇函数的图象一定是关于 对称) 判断函数的奇偶性方法:1.不对称:函数()x f 为非奇非偶函数;2.对称例题8:判断下列函数的奇偶性.(1)()4x x f = (2)()5x x f = (3)()xx x f 1+= (4)()21xx f = (5)()1122-+-=x x x f (6)()2433xx x f -+-=()x f y =求出定义域判断定义域是否关于原点对称 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧①()()x f x f =-,则()x f 为偶函数 ②()()x f x f -=-,则()x f 为奇函数③若以上两个式子都不满足,则()x f 为非奇非偶函数④若以上两个式子都满足,则()x f 既是奇函数又是偶函数函数。
函数定义域与值域1.函数的概念本节我们将学习一种特殊的对应—映射。
看下面的例子:设A ,B 分别是两个集合,为简明起见,设A ,B 分别是两个有限集求平方B B说明:(2)(3)(4)这三个对应的共同特点是:映射:设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射 记作:B A f : 映射与函数的区别:3.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式(2)列表法:就是列出表格来表示两个变量的函数关系(3)图象法:就是用函数图象表示两个变量之间的关系4.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;(5)应用题求函数解析式常用方法有待定系数法等5 区间的表示:],[}|{b a b x a x =≤≤ ),[}|{b a b x a x =<≤ ],(}|{b a b x a x =≤< ),(}|{b a b x a x =<< ],(}|{b b x x -∞=≤ ),[}|{+∞=≤a x a x6 如果A ,B 都是非空的数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,记作y=f(x),其中x ∈A ,y ∈B.原象的集合A 叫做函数y=f(x)的定义域,象的集合C (C ⊆B )叫做函数y=f(x)的值域.函数符号y=f(x)表示“y 是x 的函数”,有时简记作函数f(x). 明确函数的三要素:定义域、值域、解析式二 典型例题例1.若函数y =f(x)的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数y =f(x)的图象可能是 ( )变式:设集合M={x |0≤x ≤2},N={y |0≤y ≤2},从M 到N 有4种对应如下图所示:其中能表示为M 到N 的函数关系的为( ) A 1 B 2 C 3 D 4 例2.给出下列两个集合,A B A B →及的对应f :①{}{}1,0,1,1,0,1:A B f A=-=-,中的数的平方; ②{}{}0,1,1,0,1:A B f A==-,中的数的开方; ③Z,:A B Q f A ==,中的数的倒数;④{},:A R B f A==正实数,中的数取绝对值; ⑤{}{}1234,246810:2,,A B f n m n A m B ===∈∈,,,,,,,,其中; 其中是A 到B 的函数有 个.例3、下列各组函数表示同一函数的是( )①f(x)=|x|,g(x)=⎩⎨⎧<-≥)0()0(x x x x ②f(x)=242--x x ,g(x)=x+2③f(x)=2x ,g(x)=x+2 ④f(x)=1122-+-x x g(x)=0 x ∈{-1,1}A.①③B.①C.②④D.①④例4、求下列函数的定义域: ⑴221533x x y x --=+- ⑵211()1x y x -=-+ ⑶021(21)4111y x x x =+--+-例5.若函数)12(-x f 的定义域为[]3,3-,则()f x 的定义域为 ____________.变式1、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
2.知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
例5.已知函数2,0(),00,0x x f x x x π⎧>⎪==⎨⎪<⎩,则((3))f f -=( )A .0B .πC .2πD .9例6.设函数()22,22,2x x f x x x ⎧+≤=⎨>⎩,若()38f a =,则a = .例7求函数的解析式1.若2)12(x x f =-,求)(x f2.若12)1(2+=+x x f ,求)(x f3.若一次函数)(x f 满足x x f f 21)]([+=,求)(x f变式:根据下列条件分别求出函数)(x f 的解析式 (1)221)1(xx x x f +=+ x x f x f 3)1(2)()2(=+ (3)13)2(2++=-x x x f例8求下列函数的值域。
()()[)3,1,121∈-=x x x f()()[)4,1,3422∈+-=x x x x f()()[)5,3,223∈-=x x x f()()124+-=x x x f例9、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )A 、(-∞,+∞)B 、(0,43]C 、(43,+∞)D 、[0, 43)例10 、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤课后练习1、下列四个图像中,是函数图像的是( )。
A .(1)B .(1)、(3)、(4)C .(1)、(2)、(3)D .(3)(4) 2.判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, 33()g x x =;⑸21)52()(-=x x f ,52)(2-=x x f 。
A 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸3.设集合B A ,是两个集合,①{}x y x f y y B R A =→>==:,0,;②{}{}x y x f R y y B x x A ±=→∈=>=:,,0;③{}{}23:,41,21-=→≤≤=≤≤=x y x f y y B x x A .则上述对应法则f 中,能构成A 到B 的映射的个数是( )A .3B .2C .1D .0 4.下列各组函数表示相等函数的是(A )392--=x x y 与3+=x y (B )12-=x y 与1-=x y(C ))0(0≠=x x y 与)0(1≠=x y (D )Z x x y ∈+=,12与Z x x y ∈-=,12 5.函数f (x )=xx 212-的定义域为( )A .(0,2)B .(-∞,0)∪(2,+∞)C .(2,+∞)D .(0,]∪[2,+∞)6.已知函数f (x )的定义域为(﹣1,0),则函数f (2x+1)的定义域为( ) A .(﹣1,1) B .(-1,-21) C .(﹣1,0) D .(21,1) OyxxyyyOOO(1)(2)(3)(4)7.函数1()1f x x =+的定义域是( ) A .(,1)-∞-∪1+∞(-,) B. [3,)-+∞C. [3,1)--∪(1,)-+∞D.(1,)-+∞8.已知函数y=f (2x+1)定义域是[﹣1,0],则y=f (x+1)的定义域是( ) A .[﹣1,1] B .[0,2] C .[﹣2,0] D .[﹣2,2]9.函数03()()2f x x =--的定义域是( ). A .33(2,)(,)22-+∞ B .3(2,)2-C .3(,)2+∞ D .(2,)-+∞10.已知()23231f x x x -=-+,则()1f =( )A .15B .21C .3D .011.已知2()(1)()2f x f x f x +=+,(1)1()f x N +=∈,猜想()f x 的表达式为( )A .422x + B .21x + C .11x + D .221x + 12.若2f (x)+f (-x) =3x ,则函数的解析式为()f x =13.已知2211()11x x f x x--=++,则()f x 的解析式为()f x =___________. 14.已知1)1(+=+x x f ,则函数)(x f 的解析式为 . 15.已知2(1)f x x -=,则 ()f x = .16. 函数y =的定义域为 .17.函数562---=x x y 的值域为 18、已知函数f x ()的定义域是(]01,,则g x f x a f x a a ()()()()=+⋅--<≤120的定义域为 。
19.设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;20.已知()f x 满足12()()3f x f x x+=,求()f x21 已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;22.已知函数()a ax x x f +-=22.(1)当1=a 时,求函数()x f 在[]3,0上的值域;(2)是否存在实数a ,是函数()a ax x x f +-=22的定义域为[]1,1-,值域为[]2,2-?若存在,求出a 的值;若不存在,请说明理由.23.已知函数()()14,12+=+=x x g x x f 的定义域都是集合A ,函数()x f 和()x g 的值域分别为S 和T .(1)若[]T S A ⋂=求,2,1;(2)若[]m A ,0=且T S =,求实数m 的值;(3)若对于集合A 的每一个数x 都有()()x g x f =,求集合A .24.求函数23y x =-+25.(1)求函数y =(2)求函数322+-=x x y 在区间[]3,0上的值域.26.已知二次函数bx ax x f +=2)(满足,0)2(=f 且方程x x f =)(有等根. (Ⅰ)求)(x f 的解析式; (Ⅱ)求)(x f 的值域;(Ⅲ)是否存在实数m 、)(n m n <,使)(x f 的定义域为],[n m 、值域为]4,4[n m .若存在,求出n m ,的值;若不存在,请说明理由.。