膜过滤技术
- 格式:doc
- 大小:100.42 KB
- 文档页数:10
水处理膜过滤技术深度解析及优缺点比较如今,超过 23 亿人生活在水资源紧张的国家,如何尽可能有效地管理这一宝贵资源?这个问题显得尤为重要。
现如今,水过滤过程依赖于高性能而又节约成本的膜材料,高性能的水处理膜材料能够承受高压、高温环境和持续的化学暴露。
纳滤膜:能截留纳米级(0.001微米)的物质。
纳滤膜的操作区间介于超滤和反渗透之间,其截留有机物的分子量约为200-800左右,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。
纳滤膜的运行压力一般3.5-30bar。
反渗透膜:是最精细的一种膜分离产品,其能有效截留所有溶解盐份及分子量大于100的有机物,同时允许水分子通过。
反渗透膜广泛应用于海水及苦咸水淡化、锅炉补给水、工业纯水及电子级高纯水制备、饮用纯净水生产、废水处理和特种分离等过程。
超滤膜:能截留1-20nm之间的大分子物质和蛋白质。
超滤膜允许小分子物质和溶解性固体(无机盐)等通过,同时将截留下胶体、蛋白质、微生物和大分子有机物,超滤膜的运行压力一般1-5bar。
超滤膜及纳滤和反渗透的区别超滤膜:超滤膜是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。
纳滤:纳滤,介于超滤与反渗透之间。
现在主要用作水厂或工业脱盐。
脱盐率达百分之90以上。
反渗透脱盐率达99%以上但若对水质要求不是特别高,利用纳滤可以节约很大的成本。
反渗透:反渗透,是利用压力表差为动力的膜分离过滤技术,目前已广泛运用于科研、医药、食品、饮料、海水淡化等领域。
用作太空水、纯净水、蒸馏水等制备;酒类制造及降度用水;医药、电子等行业用水的前期制备;化工工艺的浓缩、分离、提纯及配水制备;锅炉补给水除盐软水;海水、苦咸水淡化;造纸、电镀、印染等行业用水及废水处理。
膜过滤技术原理及应用天津大学化工学院王志教授内容1、固液分离膜2、微滤过程3、超滤过程4、渗滤过程5、纳滤过程6、膜过滤通量衰减及其防治7、膜器及膜过程设计1、固液分离膜¾微滤膜:膜孔径0.02-10μm ¾超滤膜:膜孔径1-100nm膜结构¾膜结构的层次形态结构结晶态结构分子态结构形态结构表层结构¾无孔,致密,平滑¾球形小瘤¾聚集体,凹凸¾开放的网络孔¾孔洞,针孔,亮点过渡层与支撑层结构¾近似球形孔(海绵状结构)¾指状孔或大孔穴不同类型膜横断面示意图不对称聚砜超滤膜横截面——海绵状(蜂窝状)孔结构指状孔结构陶瓷微滤膜(a)阳极氧化法(表面)(b)烧结法(图上部为横断面)微孔陶瓷膜扫描电镜照片聚合物微滤膜(a)相转化法, (b)拉伸法;(c)径迹蚀刻法中空纤维超滤膜2 微滤过程2.1 特性1. 分离目的: 得到不含粒子的液体或气体2. 截留物的尺寸与性质:0.02-10 mm 粒子3.透过膜的物质:不含粒子的液体或气体4. 推动力: 压力差, ∼0.2 MPa5. 传质/选择性机理: 筛分6. 供料和渗透物的相态: 液体或气体7. 流动形式: “死端过滤(dead-endfiltration)”或“错流过滤(cross-flow filtration)”2.2 死端过滤与错流过滤的比较2.3 微滤应用¾制药工业的消毒:制药产品中细菌的去除;去除制药产品及其原料中的有机和无机粒子。
¾抗生素的澄清¾哺乳动物细胞的微过滤¾饮料的澄清:啤酒,葡萄酒,矿泉水。
¾半导体生产工业中流体的纯化:空气过滤,化学试剂过滤,去离子水过滤。
¾分析化验:微生物化验,粒子污染的监测,微孔膜上细胞生长的研究。
¾反渗透或超滤的预处理。
3 超滤过程3.1 特性1.分离目的:得到无大分子溶质的溶液,无小分子溶质的大分子溶质溶液,或大分子溶质的分级。
微孔滤膜过滤技术摘要:微孔滤膜过滤技术作为一门新型的高效分离、浓缩、提纯及净化技术, 近30 年来发展迅速, 已经在石油化工、轻工纺织、食品、医药、环保等多个领域得到广泛应用[1] 。
膜分离技术具有操作简单、占地面积小, 处理过程中无相变及不会产生新的污染物质、分离效果好等优点, 近年来在水处理领域中得到广泛应用。
本文就膜过滤的研究进展,膜材料以及它的应用作简要综述。
关键词:微孔滤膜; 过滤技术; 除菌;应用正文:20 世纪80 年代以来,生命科学和生物工程技术的发展日新月异,生物产品(如酶、抗体、抗原、受体) 的种类越来越多. 这些制品通常是从发酵液中或天然产品中提取,再经纯化而得到的产品. 由于目标产物产量小,通常又与底物、细胞等混杂在一起,浓度很低,且生物产品与传统的化工产品不一样,它们一般都具有生物活性,对分离操作条件要求比较苛刻. 传统的化工分离方法如精馏、沉降、结晶等都难以达到要求.膜分离是20 世纪60 年代以来发展较快的一项分离技术,它具有操作条件温和、无污染、无相变等特点,在许多方面都得到了应用,象微滤、超滤已应用于生物化工和医药行业中. 膜分离是根据分子大小不同来实现分离的,一般相对分子质量相差10倍以上的物系才具有分离作用,因此它还远远不能满足生化分离的需要. 而生物亲和作用是生物分子之间的可逆专一性识别作用,具有极高的选性.[2]20 世纪70 年代以来,利用生物亲和相互作用,分离蛋白质等生物大分子的亲和纯化技术迅速发展. 其中亲和层析技术已得到广泛应用,但是亲和层析法亦存在许多难以克服的缺点: 1) 亲和载体价格昂贵,使用寿命短;2) 色谱柱易堵塞和污染,需对原料进行预处理以除去颗粒性杂质;3) 难以实现连续操作和规模放大. 目前亲和层析法仅局限于价值极高的生物活性物质的小批量纯化. 为克服膜过滤和亲和层析的缺点,发展了亲和2膜过滤技术,不仅利用了生物分子的识别性能,分离低浓度的生物制品,而且微孔滤膜的渗透性及通量大,能在纯化的同时实现浓缩,此外还有操作方便、设备简单、便于大规模生产的特点,发展前景引人瞩目。
膜过滤技术
膜过滤技术是指利用特定的膜来将高分子物质和低分子物质分离的技术。
膜过滤技术被广泛地应用在石油、化工、冶金、食品、矿产资源、医药、生物和环保等领域,被广泛用于过滤、分离、浓缩和回收的地方,可
有效的改善过滤性能和仪器的性能。
膜过滤技术包括逆流膜过滤、渗透膜过滤、微滤膜过滤以及混合膜过
滤等多种,其中,微滤膜过滤是应用最多的,它和渗透膜过滤共同被使用
于水处理领域,可以有效地去除悬浮物、有机物、病原体等,从而实现水
质的净化。
此外,膜过滤技术在食品加工领域也占有重要的地位,可以有效的过
滤掉悬浮物、细菌、微生物等,保留食品饱和营养成分,使食品口感更好,也可以用于发酵产物的膜浓缩,从而节省大量的用水。
因此,膜过滤技术的出现和发展,不仅提高了水质的淨化效果,而且
改善了食品的质量,提高了能源的利用率,也减少了病原体对人类健康的
危害,因而受到了广泛的欢迎。
膜过滤器原理膜过滤器是一种常用的分离技术,它基于膜的选择性透过性,将混合物中的溶质和溶剂分离开来。
膜过滤器的原理可以简单地描述为:通过膜孔的大小和形状,选择性地允许某些物质通过,而阻止其他物质通过。
膜过滤器的膜材料通常由聚合物、陶瓷或金属等制成。
这些材料具有微孔或超微孔结构,可以根据需要选择不同的孔径大小。
膜过滤器的孔径大小决定了能够通过的溶质的分子大小范围。
膜过滤器的工作原理可以分为两种类型:压力驱动和重力驱动。
在压力驱动的膜过滤器中,混合物通过施加压力使溶质通过膜孔,而溶剂则被阻止。
这种方法常用于液体处理和气体分离。
而在重力驱动的膜过滤器中,溶液通过重力作用力驱动,使溶质通过膜孔,而溶剂则被阻止。
这种方法常用于水处理和废水处理。
膜过滤器的选择取决于需要分离的物质和所需的分离效果。
常见的膜过滤器包括微滤膜、超滤膜、纳滤膜和反渗透膜。
微滤膜的孔径较大,可以过滤掉悬浮物、细菌和大分子物质;超滤膜的孔径较小,可以过滤掉胶体、蛋白质和有机物;纳滤膜的孔径更小,可以过滤掉溶解物和离子;而反渗透膜的孔径最小,可以过滤掉溶解物、离子和微生物。
膜过滤器的应用非常广泛。
在食品和饮料工业中,膜过滤器常用于澄清果汁、脱盐水和浓缩液体。
在制药工业中,膜过滤器常用于分离和纯化药物。
在环保领域,膜过滤器常用于废水处理和水再利用。
在生物技术领域,膜过滤器常用于细胞培养和蛋白质分离。
膜过滤器的优点在于操作简单、效率高、占用空间小、无需添加化学药剂,并且可以实现连续操作。
然而,膜过滤器也存在一些限制,如易受污染、需要定期清洗和更换膜等。
膜过滤器是一种基于膜的分离技术,通过选择性透过性将混合物中的溶质和溶剂分离开来。
它具有广泛的应用领域,并且具有许多优点。
随着科学技术的不断发展,膜过滤器将在更多领域发挥重要作用,为我们的生活和工业生产带来更多便利和效益。
陶瓷膜过滤器是一种常见的膜分离技术,用于液体或气体中的固体颗粒和溶质的分离。
它采用由陶瓷材料制成的多孔膜,具有微孔或超微孔结构,通过物理筛选和表面吸附作用实现分离过程。
以下是陶瓷膜过滤器的工作原理:
1. 孔隙过滤:陶瓷膜具有多个微孔或超微孔,可以控制其孔径大小。
当待过滤
的流体通过陶瓷膜时,大于孔径的固体颗粒、胶体或悬浮物无法通过孔隙,被滞留在膜表面,而较小的分子和溶质则可以通过膜孔,完成过滤。
2. 表面吸附:除了物理筛选作用,陶瓷膜还具有表面吸附能力。
部分溶质分子
可能会被膜表面的吸附力吸附,从而阻止它们通过膜孔。
这种表面吸附作用可以进一步提高过滤器的分离效果,使更小的分子也被滞留在膜表面。
3. 反冲洗:随着过滤的进行,膜表面会逐渐堵塞,导致过滤效率下降。
为了清
洁和恢复膜的过滤性能,陶瓷膜过滤器通常会进行反冲洗操作。
反冲洗过程使用逆向的流体流动,通过膜孔向反方向冲刷,以清除堵塞的固体颗粒和溶质,从而恢复膜的过滤效率。
陶瓷膜过滤器具有较高的耐腐蚀性、耐温性和机械强度,适用于广泛的工业和环境应用,如水处理、食品和饮料生产、化工、医药等领域。
它能够高效地分离和去除悬浮物、微生物、颗粒、色素、重金属等物质,实现精细过滤和分离纯化的目的。
膜过滤技术及其应用摘要:陶瓷膜过程作为一门新型的高效分离、浓缩、提纯及净化技术, 近30 年来发展迅速, 已经在石油化工、轻工纺织、食品、医药、环保等多个领域得到广泛应用[1] 。
膜分离技术具有操作简单、占地面积小, 处理过程中无相变及不会产生新的污染物质、分离效果好等优点, 近年来在水处理领域中得到广泛应用。
本文就膜过滤的研究进展,膜材料以及它的应用作简要叙述。
关键词:滤膜; 分离技术;应用引言随着科技和工业化生产的发展,能源、资源、三废治理等问题更加受到重视。
尤其是生物化工、精细化工、能源材料等高技术领域的迅速发展,对液、固分离技术的研究和开发提出更高的要求,高分离精度、高运行效率的微孔过滤技术及微孔过滤材料愈来愈引起人们的重视。
微孔陶瓷材料由于具有孔隙率高、透气阻力小、可控孔径、清洗再生方便以及耐高温、高压、耐化学介质腐蚀等特点,在许多领域具有较大的应用市场[1]。
以微孔陶瓷材料做过滤介质的陶瓷微过滤技术及陶瓷过滤装置由于其不仅解决了高温、高压、强酸碱和化学溶剂介质等难过滤问题,而且由于本身具有过滤精度高、洁净状态好以及容易清洗、使用寿命长等特点,目前已在石油、化工、制药、食品、环保和水处理等领域得到广泛应用。
20 世纪70 年代以来,利用生物亲和相互作用,分离蛋白质等生物大分子的亲和纯化技术迅速发展。
其中亲和层析技术已得到广泛应用,但是亲和层析法亦存在许多难以克服的缺点: (1) 亲和载体价格昂贵,使用寿命短;(2) 色谱柱易堵塞和污染,需对原料进行预处理以除去颗粒性杂质;(3) 难以实现连续操作和规模放大[2]。
目前亲和层析法仅局限于价值极高的生物活性物质的小批量纯化. 为克服膜过滤和亲和层析的缺点,发展了亲和膜过滤技术,不仅利用了生物分子的识别性能,分离低浓度的生物制品,而且膜的渗透性及通量大,能在纯化的同时实现浓缩,此外还有操作方便、设备简单、便于大规模生产的特点,展前景引人瞩目。
一膜过滤的分类1.1 微孔过滤膜微孔过滤膜的孔径O.1~l0微米,多为对称性多孔膜,可分离大的胶体粒子和悬浮微粒,适用在低压(<0.3Mpa)条件下过滤,如应用于制备无菌水、药品、饮料和酒类过滤。
我国湖北阳新药械制造厂、温州市东瓯水处理器材厂为主要厂商[3]。
1.2 超滤膜孔径为0.001~0.1微米,一般为非对称性膜。
可分离淀粉、果胶及悬浮固形物等大的合成分子。
截留分子量范围一般为500到50万。
纯水工作压力为0.3Mpa,一般在常温下进行操作。
特别适用于热敏性物质的浓缩与分离。
如应用超滤装置对乳制品、生物制品、果酒、果汁的分离和提纯、蛋白质浓缩、饮用纯净水等。
随着生物技术的飞速发展。
超滤膜分离技术在生物技术中的应用越来越广泛。
目前已在酶制剂、疫苗、药物、基因生物制品、农用抗菌素、钩端螺旋体菌苗和马血清生物制剂的分离、浓缩和提纯中应用。
近年来在酶膜应器中.大规模细胞培养方面也有新的进展。
国内的主要厂商有中国科学院上海原子核研究所和上海生生饮用水有限公司。
1.3 反渗透膜其孔径0.000 l~0.0ol微米.工作压力比超滤膜的高。
通常反渗透膜运行的切割分子量小于500。
能截留盐或小分子量有机物,使水选择性通过或气体通过。
如应用在海水脱盐、天然气提纯、回收有机物蒸气、气体分离技术、制备富氧空气、干燥氮气、氧氮分离、氢氮分离、果汁和蔬菜汁加工等。
从合成氨气中回收氢,亦适用于石化行业中的尾气提纯.属2O世纪9O年代的世界高新技术。
国外为满足各种不同用途的需要,增加薄膜强度及使用寿命,已开发薄膜与金属网的复合物,薄膜与优选织物的复合物。
双层、3层、强化薄膜及带电荷薄膜等新品种。
1.4 纳滤膜过滤精度孔径0.000 5-0.0o5微米,切割分子量为200~l 000;持留通过纳滤膜的溶质介于传统分离范围的超滤和反渗透之间,如盐类。
适用范围为海水淡化、超纯水、多糖、乳酸、酪素和抗菌素浓缩等。
2 膜过滤的应用2. 1 医药行业中的应用[4]早在一百多年前,国外就有微孔滤膜的生产,但只是在近30年才在制药行业得到应用,用于医院大输液的过滤仅有十几年的历史。
一般过滤除菌处理流程是由粗过滤、预过滤和除菌过滤3个过滤单元组成,各过滤单元选用的基本准则是粗过滤价格要便宜,预过滤精度要合适,除菌过滤必须可靠。
除菌方式包括:筛分拦截、嵌入拦截、扩散拦截和吸附拦截。
在我国制药业已经使用微滤(滤膜孔径< 0. 22μm)技术对澄清的药液再次除菌、除热原。
亦有使用超滤方法去除抗生素中热原物质,此法是一种通过美国食品与药品管理局( FDA)认证的除热原方法,其原理是使用孔径小于热原分子量的超滤膜截断热原,让料液通过,具有设备操作简便、材质不污染料液、获得率高、质量好、劳动强度小的优点,可广泛应用于针剂、原料、注射用水等产品的生产。
我国上海生物制品研究所,采用MilliPore 293型滤器对重组干扰素αlb及γ进行过滤除菌,过滤后对干扰素活性无影响,热原物质均能达到肌肉注射标准,无菌检测合格。
山东泰安生物制品研究所,应用微滤(滤膜孔径0. 22μm)技术对胸腺素注射液进行除菌过滤,并试用于蛋白制品、转移因子的除菌,其除菌过滤效果稳定可靠,损失率少;但不同制品其过滤速度有较大差别,胸腺素、转移因子等制剂可直接用微孔滤膜代替石棉板除菌,对于未澄清、粘度大的制品可在除菌前采用0. 8μm以上的滤膜预滤,再行除菌,可达到满意效果。
2. 2食品工业上的应用传统的食品消毒方法,多采用加热杀菌法,但会给食品的品质带来不利的影响,如变色、变味、营养损失等。
随着人们生活和消费水平的提高以及科学技术的发展,一些非加热的消毒技术应运而生,并逐渐在实践中得到推广应用,过滤即是常用的手段之一。
在糖厂、酒厂及清凉饮料厂,过滤除菌技术常用于去除粗糖液、酒及水质中可能污染的细菌。
日本早已把过滤技术应用于鲜啤酒生产。
其目的是除去混浊悬浮物(主要是酒花树脂、单宁、蛋白质等)及酵母、乳酸菌等微生物,改善口味和提高透明度。
美国、德国、日本等发达国家在二十世纪80年代初已在生鲜啤酒生产中采用了滤膜过滤技术,而且应用相当普遍。
国内使用微孔膜错流过滤技术,应用于葡萄酒澄清工艺中,减少了产品的氧化,避免了芳香物、营养素和功能成分(如白黎芦醇等)的损失。
亦有使用中空纤维超滤膜分离技术对成品醋进行过滤,可在保留食醋原有盐分、氨基酸、总酸度、pH值、还原糖等有效成分的同时,有效去除细菌、大分子有机物、悬浮颗粒杂质及部分有毒有害物质,其感官指标和微生物指标远低于GBl 8187 - 2000固态发酵标准。
[5]2. 3检验领域的应用2.3.1在临床检验中的应用国内医疗单位,在生化检验中使用不同孔径的微孔滤膜分离蛋白质,可以选择性地截留血清或体液中各种不同分子量大小的蛋白质。
该方法简便、经济、用量少,是临床检验和科研工作中一种方便的分离蛋白质方法;在微生物检验中能提高结核菌及痢疾杆菌的检出率;在免疫学检验中利用硝酸纤维素膜- EL ISA法可以检测HBcAg,方法是将待测血清中乙肝病毒颗粒先与抗HBc作用,形成较大的免疫复合物颗粒,经过滤浓集于NC膜上,然后在3mol/L NaCNS作用下裂解,暴露出HBcAg,与HRP - 抗HBc反应后显色,在此微孔滤膜起浓缩作用。
2.3.2 微生物限度检查在检测75%乙醇溶液的微生物限度时,取一定量的75%乙醇溶液用孔径0. 45μm薄膜过滤,再用无菌生理盐水反复冲洗,在无菌状态下移至营养琼脂平板,同时以无菌生理盐水滤膜作阴性对照,在30℃条件下培养,观测结果。
在检测含抑菌成分的药品微生物限度(细菌、霉菌酵母菌数)时,使用滤膜过滤法与洗脱法比较,结果洗脱法不能正确反映被检品染菌量,平均回收率仅为13% ,而滤膜过滤法能定量反映被检品的染菌量,平均回收率达97% ,且操作方便、步骤少。
该法采用了陶瓦盖,所得菌落饱满、凸现,便于观察、计数和分类定性。
在检测使用中消毒剂的微生物污染状况时,使用滤膜过滤法可去除抑菌物质,较真实的反映实际情况。
在检测液体食品和饮料中细菌总数和大肠菌群数、酵母菌、霉菌时,采用滤膜过滤的方法,灵敏性、准确性较高,检出率高,可以代替平皿倾注法、多管发酵法。
用滤膜过滤法在细菌培养过程中其代谢产物和拮抗物质不易横向扩散,有利于菌落的独立生长,避免菌落的迁延现象,排除了优势菌群的干扰,菌落易于分辨,提高了实验的准确性。
2.3.3 水质检测[5]滤膜过滤技术在水质微生物检验方面应用很广,现行的国际标准ISO386 - 2 - 1988就是用滤膜法对铜绿假单胞菌进行测定和计数。
ISO7899 - 1984也是用滤膜法对粪链球菌进行测定和计数。
美国学者ThomasM等人曾用这些技术调查了哈得孙河口粪链球菌的情况。
滤膜可以滤过大量水样,通过加大取样量,对样品进行浓缩,这对于纯净水等采用直接取样法不易检出阳性的样品,可以提高检出率,具有实际应用价值。
滤膜过滤与荧光技术相结合,可用来检测大肠菌群,即采用能被β- GAD酶水解产生强荧光物4 - 甲基伞形酮(4- Mu)的4 - 甲基伞形基- β- 半乳糖苷(简称MUGAL)为底物,与滤膜技术相结合,使大肠菌群在微孔膜上形成特殊的荧光斑点,以此来定量检测饮用水及公共用品中的大肠菌群。
以下是陶瓷膜过滤在水质检测中工艺流程。
图一不同类型的陶瓷膜1、原料泵2、反冲泵图二陶瓷膜工艺流程2.3.4 消毒剂鉴定中的应用在臭氧水对微生物的杀灭效果鉴定中,因臭氧水机连续不断的产生臭氧水,且臭氧在水中的溶解度低、极易降解挥发,故将新发生的臭氧水直接流到染菌滤膜(孔径= 0.45μm)上,同时开启抽气泵抽滤,使臭氧水连续不断的作用至预定时间,来测定臭氧水机的杀菌效果。
因滤膜孔径小于细菌直径,阻碍了细菌随水流失,避免了样机出水冲洗掉的细菌数被误算为已杀灭的细菌数,使实验结果更准确。
在对植物消毒剂杀菌试验的过程中,分别采用过滤法及稀释法去除残留药物,过滤法以贴膜的方式培养细菌,测得对大肠杆菌、金黄色葡萄球菌的杀灭率较稀释法为高,表明过滤法有较好的去除残留药物作用。
在对中草药消毒剂杀菌试验的过程中,分别采用3%吐温80、1%卵磷脂与滤膜过滤法来去除残留的消毒剂,发现对金黄色葡萄球菌的杀灭率,滤膜法为低,表明前者所致细菌的复苏率较滤膜法为低。
采用微孔滤膜过滤和比浊法测试不同浓度的氧氟沙星喷雾剂稀释液的体外杀菌效果,同时用菌落计数法进行比较,并在扫描电镜下观察受作用后的菌态的变化。
发现微孔滤膜可拦截供试菌,再用灭菌蒸馏水冲洗氧氟沙星作用后的带菌滤膜可视为药物已无残余。
与比浊法、菌落计数法相比,可得到等同的实验结果,并且更简便、快捷。
2.3.5 微菌落技术中的应用细菌微菌落技术由于具有快速、经济、实用的特点,国外学者已将其用于水、乳等食品的细菌数快速定量测定,将滤膜过滤法与其相结合,以抽滤方式将待测水样lml接种于混合纤维素膜上,然后贴在琼脂平板上37℃培养12 h,取下膜透明处理、沙黄染色后显微镜计数。