《机械优化设计》孙靖民 哈尔滨工业大学 课后答案
- 格式:pdf
- 大小:2.44 MB
- 文档页数:21
机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。
求设计变量向量[]12Tn x x x x =L 使 ()min f x → 且满足约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度梯度对优化设计有何意义答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。
(1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。
(2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。
梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。
负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。
2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最大的方向和数值。
解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ∇。
求f (x1,x2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x fx f x f 2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p ϖ2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。
机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。
求设计变量向量[]12Tn x x x x =L 使 ()min f x → 且满足约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。
(1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。
(2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。
梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。
负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。
2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最大的方向和数值。
解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ∇。
求f (x1,x2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x fx f x f 2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p ϖ2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。
解;由于函数变化率最大的方向就是梯度的方向, 这里用单位向量p 表示,函数变化率最大和数值时梯度的模|(x0)。
求f (x1, x2)在x0点处的梯度方向和数值,计算如下:1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、目标函数之后,优化设计问题就 可以表示成一般数学形式。
求设计变量向量x x 2 L x n J 使f (X )T min 且满足约束条件 h k (x) =0 (k =1,2,L I) g j (x)乞0 (j =1,2,L m)利用可行域概念,可将数学模型的表达进一步简练。
设同时满足g j (x)乞0 (j =1,2丄 m )和 n(x)=0 (k=1,2,L I)的设计点集合为R ,即R 为优化问题的可行域,则优化问题的数学模型可简练地写成 求x 使 min f(X) 符号“ •二”表示“从属于”。
x W R 在实际优化问题中,对目标函数一般有两种要求形式:目标函数极小化f(x)「. min 或目标函数极大化 f(x)—: max 。
由于求f(x)的极大化与求「f(x)的极小化等价,所以今后优化问题的数学表达一律采用目标函数极小 化形式。
1-2.简述优化设计问题的基本解法。
(不要抄书,要归纳) 答:求解优化问题可以用解析解法,也可以用数值的近似解法。
解析解法就是把所研究的对象用数学方程(数学模型)描述出来,然后再用数学解析方法(如微分、变分方法等)求出有 化解。
但是,在很多情况下,优化设计的数学描述比较复杂,因而不便于甚至不可能用解析方法求解;另外,有时对象本身的机 理无法用数学方程描述,而只能通过大量试验数据用插值或拟合方法构造一个近似函数式,再来求其优化解,并通过试验来验 证;或直接以数学原理为指导,从任取一点出发通过少量试验(探索性的计算) ,并根据试验计算结果的比较,逐步改进而求 得优化解。
9.图6-39所示为一对称的两杆支架,在支架的顶点承受一个载荷为2F=300000N , 支架之间的水平距离2B=1520mm ,若已选定壁厚T=2.5mm 钢管,密度/1083-6mm Kg ⨯=.7ρ,屈服极限700=s σMpa ,要求在满足强度与稳定性条件下设计最轻的支架尺寸。
[解] 1.建立数学模型 设计变量:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=H D x x x 21目标函数:221422577600101.2252)(x x HB D T x f +⨯=+=πρ 约束条件: 1)圆管杆件中的压应力σ应小于或等于y ο,即y TDHHB F σπσ≤+=22于是得2122157760019098.59)(x x x x g +=2)圆管杆件中的压应力α应小于或等于压杆稳定的临界应力c σ,由欧拉公式得钢管的压杆温度应力c σ222152222225776006.25102.6)8()(x x H B T D E AL EIC ++⨯=++==ππσ2式中 A ――圆管的截面积;L ――圆管的长度。
于是得0)6006.25)/(577(102.657760019098.59)(2221521222≤++⨯-+=-=x x x x x x g c σσ3) 设计变量的值不得小于或等于0于是得)(0)(2213≤-=≤-=x x g x x g2.从以上分析可知,该优化设计问题具有2个设计变量,4个约束条件,按优化方法程序的规定编写数学模型的程序如下:subroutine ffx(n,x,fx) dimension x(n) fx=1.225e-4*x(1)*sqrt(577600.0+x(2)*x(2)) endsubroutine ggx(n,kg,x,gx) dimension x(n),gx(kg)gx(1)=19098.59*sqrt(577600.0+x(2)*x(2))/(x(1)*x(2))-700.0 gx(2)=19098.59*sqrt(577600.0+x(2)*x(2))/(x(1)*x(2))- 1 2.6e5*(x(1)*x(1)+6.25)/(577600.0+x(2)*x(2)) gx(3)=-x(1) gx(4)=-x(2) end3.利用惩罚函数法(SUMT 法)计算,得到的最优解为:============== PRIMARY DATA ============== N= 2 KG= 4 KH= 0 X : .7200000E+02 .7000000E+03 FX: .9113241E+01GX: -.3084610E+03 -.8724784E+03 -.7200000E+02 -.7000000E+03 PEN = .9132947E+01R = .1000000E+01 C = .4000000E+00 T0= .1000000E-01 EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ============== IRC= 18 ITE= 39 ILI= 39 NPE= 229 NFX= 0 NGR= 57 R= .1717988E-06 PEN= .6157225E+01 X : .4868305E+02 .6988214E+03 FX: .6157187E+01GX: -.1204029E+03 -.1266042E-01 -.4868305E+02 -.6988207E+0310.图6-40所示为一箱形盖板,已知长度L=6000mm ,宽度b=600mm ,厚度mm t s 5承受最大单位载荷q=0.01Mpa ,设箱形盖板的材料为铝合金,其弹性模量MPa E 4107⨯=,泊松比3.0=μ,许用弯曲应力[]MPa 70=σ,许用剪应力[]MPa 45=τ,要求在满足强度、刚度和稳定性条件下,设计重量最轻的结构方案。
机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。
求设计变量向量[]12Tn x x x x =L 使 ()min f x → 且满足约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。
(1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。
(2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。
梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。
负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。
2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最大的方向和数值。
解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p表示,函数变化率最大和数值时梯度的模)0(x f ∇。
求f (x1,x2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x f x f x f 2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p ϖ2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。
机械优化设计课后答案【篇一:机械优化设计第5章习题参考答案】?4000.333?时, f(x*)??cjxj??5.567。
t第2题答案:x??2024840 0?,z??428。
*t第3题提示:求解方法可参考第四节中的应用实例。
第4题提示:如果设x1、x2、x3、x4、x5分别以Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ五种下料方式所用钢材的件数,则此问题的数学模型是:求一组xj(j?1,2,?,5)的值,满足下列限制条件x1?2x2 ?x4 ?100?2x3?2x4?x5 ?100???3x1?x2?2x3 ?3x5?100?xj?0 (j?1,2,?,5)??使总的尾料z?0.1x2?0.2x3?0.3x4?0.8x5 达到最小。
【篇二:《机械优化设计》复习题答案】xt>一、填空题1、用最速下降法求f(x)=100(x2- x12) 2+(1- x1) 2的最优解时,设x(0)=[-0.5,0.5]t,第一步迭代的搜索方向为 [-47,-50]t。
2、机械优化设计采用数学规划法,其核心一是,二是。
3、当优化问题是的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高趋势。
5、包含n个设计变量的优化问题,称为维优化问题。
6、函数 1txhx?btx?c的梯度为。
28模型的基本要素。
9、对于无约束二元函数f(x1,x2),若在x0(x10,x20)点处取得极小值,其必要条件是10约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数f(x)?x2?10x?36的极小点,初始搜索区间[a,b]?[?10,10],经第一次区间消去后得到的新区间为12、优化设计问题的数学模型的基本要素有、。
?1?h13、牛顿法的搜索方向dkkgk,其计算量且要求初始点在极小点置。
14、将函数f(x)=x12+x22-x1x2-10x1-4x2+60表示成1txhx?btx?c 的形式215、存在矩阵h,向量 d1,向量 d2,当满足t d1和向量 d2是关于h共轭。