西南大学2020秋季初等数论【0346】
- 格式:doc
- 大小:39.50 KB
- 文档页数:1
2020年⾃考《初等数论》专业考试题库及答案2020年⾃考《初等数论》专业考试题库及答案⼀填空题(每空2分)1.写出30以内的所有素数 2,3,5,7,11,13,17,19,23,29 .2.,(,)(,)(,)a b a b a b a b =设是任意两个不为零的整数,则 1 . 3.若,a b 是⾮零整数,则a 与b 互素的充要条件是存在整数,x y ,适1ax by +=4.写出180的标准分解式是 22235?? ,其正约数个数有 (2+1)(2+1)(1+1)=18个.5.,1,2,,a b a b L 设与是正整数则在中能被整除的整数恰有 []ab个.6.设,a b 是⾮零整数,c 是整数,⽅程ax by c +=有整数解(,x y )的充要条件是 (,)|a b c7. 若整数集合A 是模m 的完全剩余系,则A 中含有 m 个整数.8.?(3)= 2 ;?(4)= 2 .9.当p 素数时,(1)()p ?= 1p - ;(2)()k p ?= 1k k p p -- . 10.(),(,)1,1m m a m a ?=-≡设是正整数则 0 (mod ).m 11.,,p p a a a -≡设是素数则对于任意的整数有 0 (mod ).p 12.已知235(mod7)x +≡,则x ≡ 1 (mod 7).13.同余⽅程22(mod 7)x ≡的解是 4(mod7) . 14.同余⽅程2310120(mod 9)x x ++≡的解是 .X=6. . 15.(,)1n p =若,n p 是模的⼆次剩余的充要条件是 -121(mod ).p n p ≡ . 16.(,)1n p =若,n p 是模的⼆次⾮剩余的充要条件是 -121(mod ).p np ≡- .17.3()=5 -1 ; 4()=5 1 .18.,p 设是奇素数则2()p=218(1).p --.19.,p 设是奇素数则1()p = 1 ;-1()p= -12(-1).p .20. 5()=9 1 ; 2()=45-1 .⼆判断题(判断下列结论是否成⽴,每题2分). 1. ||,|a b a c x y Z a bx cy ?∈+且对任意的有.成⽴2. (,)(,),[,][,]a b a c a b a c ==若则.不成⽴3. 23|,|a b a b 若则.不成⽴4.(mod ),0,(mod ).a b m k k N ak bk mk ≡>∈?≡成⽴5.(mod )(mod ).ac bc m a b m ≡?≡不成⽴6. 22(mod ),(mod )(mod )a b m a b m a b m ≡≡≡-若则或⾄少有⼀个成⽴. 不成⽴ 7. 222(mod ),(mod )a b m a b m ≡≡若则.不成⽴8. 若x 通过模m 的完全剩余系,则x b +(b 是整数)通过模m 的完全剩余系. 成⽴ 9. 1212{,,,}{,,,}.m m a a a b b b L L 若与都是模m 的完全剩余系不成⽴1122{,,,}.m m a b a b a b m +++L 则也是模的完全剩余系不成⽴10.若(,)1a m =,x 通过模m 的简化剩余系,则ax b +也通过模m 的简化剩余系. 不成⽴ 11.12121212,,(,)1,()()().m m N m m m m m m ∈==若则成⽴12. 同余⽅程24330(mod15)x x -+≡和同余⽅程2412120(mod15)x x +-≡是同解的. 成⽴13. (mod ).ax b m ax my b ≡+=同余⽅程等价于不定⽅程成⽴14. 2,(mod ),() 1.am x a m m≡=当是奇素数时若有解则成⽴15. 2,()1,(mod ).a m x a m m=≡当不是奇素数时若则⽅程⼀定有解不成⽴三计算题1. (1859,1573)-求.(6分)解:1.(1859,1573)(1859,1573)(286,1573)(286,15732865)(286,143)(0,143)143-===-?===2.求 [-36,108,204].(8分)解:22232232.[36,108,204][36,108,204],3623,10823,2042317,[36,108,204]23171836.-==?=?=??∴=??=Q3. 求(125,17),以及x ,y ,使得125x +17y =(125,17).(10分)解:3.651,16-56-(17-26)36-173(125-177)-173125-2217.1253-17221,3,-22.x y =+==?=?=??=??∴??===由等式起逐步回代得4. 求整数x ,y ,使得1387x -162y =(1387,162).(10分)解:4.9421,19-429-4(11-9)59-4115(20-11)-411520-911520-9(71320)322097132(91-71)97132914171329141(16291)73914116273(13878162)41162731387625162.1=?+=?=?=??=??=??=??-?=?-?=?-?=?-?=?-?-=?-?=?-?-?=?-?∴由等式起逐步回代得38773162625 1.-=5. 12!.分解为质因数乘积(8分)6. ,10|199!k k 求最⼤的正整数使.(8分)7. [1+L 求(10分) 8. 81743.x y +=求⽅程的整数解(6分)9.求⽅程19 x +20y=1909的正整数数解。
填空题答案
1.7除29的商是 4 。
2.12除26的余数是 2 。
3.5的正因数是 1, 5 。
4.{4.5}= 0.5 。
5.[8.3] +[-8.3] = -1 。
6.30的最小质因数是 2 。
7.在所有质数中,是偶数的是 2 。
8.在所有质数中,最小的奇质数是 3 。
9.大于4小于16的素数有___5,7,11,13__ ____。
10.不定方程c by ax =+有整数解的充分必要条件是 (a ,b )|c 。
11.模5的最小非负完全剩余系是 0,1,2,3,4 。
12.模4的绝对最小完全剩余系是 -1,0,1,2 。
13.5555的个位数是 5 。
14.77的个位数是_______ 3 ________。
15.316的十进位表示中的个位数字是 1 。
16.66的个位数是 6 。
17.710被11除的余数是 1 。
18.(1516,600)= 4 。
19.6的所有正因数的和是 12 _。
20.24与60的最大公因数是 12 。
21.35的最小质因数是 5 。
22.46的个位数是 6 。
23.8的所有正因数的和是 15 _。
24.18的标准分解式为 23218⨯= 。
25.20的欧拉函数值)20(ϕ= 8 。
1.9x+11y=100的正整数解的个数是()A.0B.1C.2D.无穷【参考答案】: B2.题见图片A.AB.BC.CD.D【参考答案】: B3.题见图片A.AB.BC.CD.D【参考答案】: C4.被3除余1,被5除余4,被11除余5的最小正整数一定处于()的区间A.[10,20]B.[20,30]C.[30,40]D.[40,50]【参考答案】: D5.100!的末尾0的个数是()A.20B.21C.24D.25【参考答案】: C6.p为素数是2^(2^p)+1为素数的()A.充分条件B.必要条件C.充要条件D.既非充分也非必要条件【参考答案】: B7.。
A.AB.BC.CD.D【参考答案】: A8.整数202()A.能够写成两数平方和B.能够写成两数平方差C.都可以D.都不能【参考答案】: A9.题见图片A.AB.BC.CD.D10.题见图片A.AB.BC.CD.D 【参考答案】: B11.题见图片A.AB.BC.CD.D 【参考答案】: B12.。
A.AB.BC.CD.D13.题见图片A.AB.BC.CD.D【参考答案】: B14.100!最高能被45的()次幂整除A.20B.23C.24D.48【参考答案】: C15.题见下图A.AB.BC.CD.D【参考答案】: A16.题见图片A.AB.BC.CD.D【参考答案】: B17.a,b大于1且互素,则不定方程ax-by=ab的正整数解的个数是()A.0B.1C.2D.无穷【参考答案】: D18.。
A.AB.BC.CD.D【参考答案】: A19.题见图片A.AB.BC.CD.D 【参考答案】: B20.题见图片A.AB.BC.CD.D 【参考答案】: B21.题见图片A.AB.BC.CD.D 【参考答案】: B22.。
A.AB.BC.CD.D 【参考答案】: D23.。
A.AB.BC.CD.D 【参考答案】: A24.。
A.AB.BC.CD.D 【参考答案】: A25.题见图片A.AB.BC.CD.D 【参考答案】: B26.题面见图片A.错误B.正确【参考答案】: A27.题面见图片A.错误B.正确【参考答案】: B28.题面见图片A.错误B.正确【参考答案】: A29.题见图片A.错误B.正确【参考答案】: B 30.题见图片A.错误B.正确【参考答案】: B 31.题见图片A.错误B.正确【参考答案】: B 32.题见图片A.错误B.正确【参考答案】: B 33.题见图片A.错误B.正确【参考答案】: B34.题面见图片A.错误B.正确【参考答案】: B 35.题见图片A.错误B.正确【参考答案】: B 36.题见下图A.错误B.正确【参考答案】: A37.题面见图片A.错误B.正确【参考答案】: A 38.题见图片A.错误B.正确【参考答案】: B 39.题见下图A.错误B.正确【参考答案】: A40.题面见图片A.错误B.正确【参考答案】: B 41.题见图片A.错误B.正确【参考答案】: B42.题面见图片A.错误B.正确【参考答案】: B 43.题面见图片A.错误B.正确【参考答案】: AA.错误B.正确【参考答案】: B 45.题见下图A.错误B.正确【参考答案】: A 46.题见图片A.错误B.正确【参考答案】: B 47.题见图片A.错误B.正确【参考答案】: B48.题面见图片A.错误B.正确【参考答案】: AA.错误B.正确【参考答案】: A 50.题见下图A.错误B.正确【参考答案】: A。
2016年西南大学初等数论第四次作业证明题1. 设n 是整数,证明6 | n (n + 1)(2n + 1)。
证明:n (n + 1)(2n + 1) = n (n + 1)(n – 1) + n (n + 1)(n + 2)。
n (n + 1)(n – 1)是三个连续整数的积,n (n + 1)(n + 2)也是三个连续整数的积, 而三个连续整数的积可被6整除,所以6 | n (n + 1)(n – 1),6 | n (n + 1)(n + 2)。
由整出的性质可得6 | n (n + 1)(2n + 1)。
2. 设n 是整数,证明:n n -3|6。
证明:)1)(1(3+-=-n n n n n 。
由于)1)(1(+-n n n 是3个连续整数的积,所以n n -3|3。
由于)1(-n n 是2个连续整数的积,所以n n -3|2。
又(2,3)= 1,所以n n -3|6。
3. 设x ,y 均为整数。
证明:若y x 2|7+,则y x 610|7+。
证明:)2(37610y x x y x ++=+,因为y x 2|7+,所以)2(3|7y x +, 因为7|7,所以7|7x ,从而)2(37|7y x x ++,所以y x 610|7+4. 设x ,y 均为整数。
证明:若y x 9|5+,则y x 78|5+。
证明:y y x y x 65)9(878-+=+。
因为y x 9|5+,所以)9(8|5y x +。
又因为5|65,所以5|65y 。
从而y y x 65)9(8|5-+,所以y x 78|5+。
5.设x 是实数,n 是正整数,证明:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n x n x ][。
证明:设⎥⎦⎤⎢⎣⎡=n x a ,则1+<≤a n x a ,所以)1(+<≤a n x na 。
因为na 与n (a +1)都是整数,所以)1(][+<≤a n x na , 于是1][+<≤a n x a ,从而a n x =⎥⎦⎤⎢⎣⎡][,所以 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n x n x ][。
西南大学培训与继续教育学院课程考试试题卷学期:2020年秋季
课程名称【编号】:初等数论【0346】 A卷
考试类别:大作业满分:100分
1.解:整除的定义:
设a, b是任意两个整数,其中b不为零,若存在一个整数q使得a=bq,我们就说b 整除a,记为bla.这时b叫a的因数, a叫b的倍数.若这样的q不存在,则说b 不整除a.
6整除24.
8不整除42.
3.解:欧拉函数()a
ϕ是定义在正整数上的函数,它在正整数a上的值等于序列0,1,2,…,a-1中与a互质的数的个数。
(5)
ϕ=4
(6)
ϕ=2.
4.解:220=2²×5×11。
6.解如下图
8.解:素数除了1和自己就没有其他约数了.4m-1或4m+1,其中4m-1看成4m+3,即一切奇素数都可以表示成4m+3或4m+1的形式.因为,一切奇素数不可以写成4m的形式(约数4),但也不能写成4m+2(约数2).所以一切奇素数都可以表示成4m-1或4m+1的形式,即41
m±.
- 1 -。
附件4
西南大学
硕士研究生培养方案
(报表)
数学
专业名称计算数学
专业代码070102
西南大学研究生院制表
填表日期:2006年7月6日
修订日期:年月日
一、学科(专业)主要研究方向
二、培养目标与学制及应修学分
三、课程设置(包括前沿讲座、学术报告等)
注1、平台课即一级学科专业基础课1-2门,按一级学科范围设置
2、每个二级学科设专业课2-3门,按一级学科制定培养方案者须在备注栏内标明所属二级学科
3、必修环节在研究生毕业前必须完成,构成答辩的必备条件
4、高校教师在职攻读硕士增设“教育科学通论”、“现代教育技术”为必修课,免除“学术活动”、“社会、
教学和科研实践活动”二项必修环节
5、港、澳、台及外国留学生免除“马克思主义理论”和“第一外国语”课程的学习和考核,增设“中国概
况”为必修课。
四、培养方式与方法
五、科研能力与水平及学位论文的基本要求
六、需阅读的主要文献。