高考专项练习题3:简单的逻辑连接词、全称量词与存在量词
- 格式:pdf
- 大小:148.08 KB
- 文档页数:3
考点03 简单的逻辑联结词、全称量词与存在量词 1、已知命题“∃x ∈[1,2],x 2+2x +a≥0”为真命题,则实数a 的取值X 围是____.【答案】[-8,+∞)【解析】原命题的否定为∀x ∈[1,2],x 2+2x +a<0.因为y =x 2+2x 在区间[1,2]上单调递增,所以x 2+2x≤8<-a ,所以a<-8.根据含有逻辑联结词的命题的真假判断,可知原命题中a 的取值X 围是a<-8的补集,即a≥-8,故a 的取值X 围是[-8,+∞).2、若命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值X 围是________.【答案】[-22,22]【解析】因为“∃x ∈R,2x 2-3ax +9<0”为假命题,则“∀x ∈R,2x 2-3ax +9≥0”为真命题.因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.3、已知命题;命题是增函数.若“”为假命题且“”为真命题,则实数m 的取值X 围为_______.【答案】[1,2)【解析】命题p :∀x ∈R ,x 2+1>m ,解得:m <1;命题q :指数函数f (x )=(3-m )x 是增函数,则3-m >1,解得:m <2,若“p∧q”为假命题且“p∨q”为真命题,则p ,q 一真一假,p 真q 假时:无解, p 假q 真时: ,解得:1≤m<2, 故答案为:[1,2).4、现有下列命题:①命题“∃x ∈R ,x 2+x +1=0”的否定是“∃x ∈R ,x 2+x +1≠0”;②若集合A ={x |x >0},B ={x |x ≤-1},则A ∩(∁R B )=A ;③函数f (x )=sin(ωx +φ)(ω>0)是偶函数的充要条件是φ=k π+π2(k ∈Z); ④若非零向量a ,b 满足|a |=|b |=|a -b |,则b 与a -b 的夹角为60°.其中为真命题的是________.【答案】②③【解析】命题①假,因为其中的存在符号没有改;命题②真,因为∁R B =(-1,+∞),所以A ∩(∁R B )=A ;命题③真,若φ=k π+π2(k ∈Z),则f (x )=sin(ωx +k π+π2)=±cos ωx 为偶数;命题④假,因为|a |=|b |=|a -b |,所以由三角形法则可得|a |, |b |的夹角为60°,b 与(a -b )的夹角为120°.所以填写答案为②③.5、已知命题p :∃x ∈[0,π2],cos 2x +cos x -m =0为真命题,则实数m 的取值X 围是________. 【答案】[-1,2]【解析】依题意,cos 2x +cos x -m =0在x ∈[0,π2]上恒成立,即cos 2x +cos x =m .令f (x )=cos 2x +cos x =2cos 2x +cos x -1=2(cos x +14)2-98,由于x ∈[0,π2],所以cos x ∈[0,1],于是f (x )∈[-1,2],因此实数m 的取值X 围是[-1,2].6、已知命题p 1:存在x 0∈R ,使得x 20+x 0+1<0成立;p 2:对任意x ∈[1,2],x 2-1≥0.以下命题: ①(綈p 1)∧(綈p 2);②p 1∨(綈p 2);③(綈p 1)∧p 2;④p 1∧p 2.其中为真命题的是________(填序号).【答案】③【解析】∵方程x 20+x 0+1=0的判别式Δ=12-4=-3<0,∴x 20+x 0+1<0无解,故命题p 1为假命题,綈p 1为真命题;由x 2-1≥0,得x ≥1或x ≤-1.∴对任意x ∈[1,2],x 2-1≥0,故命题p 2为真命题,綈p 2为假命题.∵綈p 1为真命题,p 2为真命题,∴(綈p 1)∧p 2为真命题. 7、设命题p :函数f(x)=⎝ ⎛⎭⎪⎫a -32x是R 上的减函数;命题q :函数g (x )=x 2-4x +3在区间[0,a ]上的值域为[-1,3].若“p 且q ”为假命题,“p 或q ”为真命题,某某数a 的取值X 围. 【答案】⎝ ⎛⎭⎪⎫32,2∪⎣⎢⎡⎦⎥⎤52,4 【解析】因为“p 且q ”为假命题,“p 或q ”为真命题,所以命题p ,q 中有且仅有一个命题为真命题.若命题p 为真,则0<a -32<1,所以32<a <52; 若命题q 为真,则g (x )=x 2-4x +3=(x -2)2-1在[0,a ]上的值域为[-1,3],故⎩⎪⎨⎪⎧a ≥2,a 2-4a +3≤3,解得2≤a ≤4. ①若p 真q 假,则⎩⎪⎨⎪⎧32<a <52,a <2或a >4,所以32<a <2; ②若p 假q 真,则⎩⎪⎨⎪⎧2≤a ≤4,a ≤32或a ≥52, 所以52≤a ≤4. 综上所述,实数a 的取值X 围为⎝ ⎛⎭⎪⎫32,2∪⎣⎢⎡⎦⎥⎤52,4. 8、已知m 、n 是不同的直线,α、β是不重合的平面.命题p :若α∥β,n ⊂α,m ⊂β,则m ∥n ;命题q :若m ⊥α,n ⊥β,m ∥n ,则α∥β;下面的命题中,真命题的序号是________(写出所有真命题的序号).①p ∨q ;②p ∧q ;③p ∨綈q ;④綈p ∧q .【答案】①④【解析】∵命题p 是假命题,命题q 是真命题.∴綈p 是真命题,綈q 是假命题,∴p ∨q 是真命题,p ∧q 是假命题,p ∨綈q 是假命题,綈p ∧q 是真命题.9、写出下列命题的否定,并判断真假.(1)∃x 0∈R ,x 20-4=0;(2)∀T =2k π(k ∈Z),sin(x +T )=sin x ;(3)集合A 是集合A ∪B 或A ∩B 的子集;(4)a ,b 是异面直线,∃A ∈a ,B ∈b ,使AB ⊥a ,AB ⊥b .【解析】它们的否定及其真假分别为:(1)∀x ∈R ,x 2-4≠0(假命题).(2)∃T 0=2k π(k ∈Z),sin(x +T 0)≠sin x (假命题).(3)存在集合A 既不是集合A ∪B 的子集,也不是A ∩B 的子集(假命题).(4)a ,b 是异面直线,∀A ∈a ,B ∈b ,有AB 既不垂直于a ,也不垂直于b (假命题).10、命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立,q :函数f (x )=(3-2a )x是增函数,若p 或q 为真,p 且q 为假,某某数a 的取值X 围.【答案】1≤a <2,或a ≤-2.【解析】设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.又因为函数f (x )=(3-2a )x 是增函数,所以3-2a >1,∴a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假. (1)若p 真q 假,则⎩⎪⎨⎪⎧ -2<a <2,a ≥1,∴1≤a <2;(2)若p 假q 真,则⎩⎪⎨⎪⎧ a ≤-2或a ≥2,a <1,∴a ≤-2.综上可知,所某某数a 的取值X 围为1≤a <2,或a ≤-2.11、已知a >0,设命题p :函数y =a x 在R 上单调递减,q :不等式x +|x -2a |>1的解集为R ,若p 和q 中有且只有一个命题为真命题,求a 的取值X 围.【答案】0<a ≤12或a ≥1 【解析】由函数y =a x 在R 上单调递减知0<a <1,所以命题p 为真命题时a 的取值X 围是0<a <1,令y =x +|x -2a |,则y =⎩⎪⎨⎪⎧ 2x -2a x ≥2a ,2a x <2a .不等式x +|x -2a |>1的解集为R ,只要y min >1即可,而函数y 在R 上的最小值为2a ,所以2a >1,即a >12.即q 真⇔a >12.若p 真q 假,则0<a ≤12;若p 假q 真,则a ≥1,所以命题p 和q 有且只有一个命题为真命题时a 的取值X 围是0<a ≤12或a ≥1. 12、已知m ∈R ,设命题p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0恒成立;命题q :∃x ∈[1,2],log 12(x 2-mx +1)<-1成立,如果“p ∨q ”为真命题,“p ∧q ”为假命题,某某数m 的取值X 围.【答案】{m |m <12或m =32} 【解析】若p 为真,则∀x ∈[-1, 1],4m 2-8m ≤x 2-2x -2恒成立.设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3,所以f (x )在区间[-1,1]上的最小值为-3,所以4m 2-8m ≤-3,解得12≤m ≤32, 所以当p 为真时,12≤m ≤32; 若q 为真,则∃x ∈[1,2], x 2-mx +1>2成立,所以∃x ∈[1,2],m <x 2-1x成立. 设g (x )=x 2-1x =x -1x , 易知g (x )在区间[1,2]上是增函数,所以g (x )的最大值为g (2)=32,所以m <32, 所以当q 为真时,m <32. 因为“p ∨q ”为真命题,“p ∧q ”为假命题,所以p 与q 必是一真一假,当p 真q 假时,⎩⎪⎨⎪⎧12≤m ≤32,m ≥32,所以m =32; 当p 假q 真时,⎩⎪⎨⎪⎧m <12或m >32,m <32,所以m <12. 综上所述,m 的取值X 围是{m |m <12或m =32}. 13、已知命题函数在内恰有一个零点;命题函数在上是减函数,若为真命题,则实数的取值X 围是___________. 【答案】【解析】命题p :函数f (x )=2ax 2﹣x ﹣1(a≠0)在(0,1)内恰有一个零点,则f (0)f (1)=﹣(2a ﹣2)<0,解得a >1;命题q :函数y=x 2﹣a 在(0,+∞)上是减函数,2﹣a <0,解得a >2.∴¬q :a ∈(﹣∞,2].∵p 且¬q 为真命题,∴p 与¬q 都为真命题,∴ 解得1<a≤2.则实数a 的取值X 围是(1,2].故答案为:(1,2].14、已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若“p 且q ”为假命题,“p 或q ”为真命题,某某数a 的取值X 围.【答案】(0,1]∪[4,+∞).【解析】因为函数y =a x在R 上单调递增,所以命题p :a >1.因为不等式ax 2-ax +1>0对∀x ∈R 恒成立,所以a >0且a 2-4a <0,解得0<a <4,所以命题q :0<a <4.因为“p 且q ”为假,“p 或q ”为真,所以p ,q 中必是一真一假.若p 真q 假,则⎩⎪⎨⎪⎧a >1,a ≥4,解得a ≥4; 若p 假q 真,则⎩⎪⎨⎪⎧0<a ≤1,0<a <4,解得0<a ≤1. 综上所述,a 的取值X 围为(0,1]∪[4,+∞).15、命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立,q :函数f (x )=(3-2a )x 是增函数,若p 或q 为真,p 且q 为假,某某数a 的取值X 围.【答案】1≤a <2,或a ≤-2【解析】设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.又因为函数f (x )=(3-2a )x 是增函数,所以3-2a >1,∴a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧ -2<a <2,a ≥1,∴1≤a <2;(2)若p 假q 真,则⎩⎪⎨⎪⎧ a ≤-2或a ≥2,a <1,∴a ≤-2.综上可知,所某某数a 的取值X 围为1≤a <2,或a ≤-2.16、已知a >0,设命题p :函数y =a x在R 上单调递减,q :不等式x +|x -2a |>1的解集为R ,若p 和q 中有且只有一个命题为真命题,求a 的取值X 围.【答案】0<a ≤12或a ≥1 【解析】由函数y =a x 在R 上单调递减知0<a <1,所以命题p 为真命题时a 的取值X 围是0<a <1,令y =x +|x -2a |,则y =⎩⎪⎨⎪⎧ 2x -2a x ≥2a ,2a x <2a .不等式x +|x -2a |>1的解集为R ,只要y min >1即可,而函数y 在R 上的最小值为2a ,所以2a >1,即a >12.即q 真⇔a >12.若p 真q 假,则0<a ≤12;若p 假q 真,则a ≥1,所以命题p 和q 有且只有一个命题为真命题时a 的取值X 围是0<a ≤12或a ≥1. 17、已知命题p :∃x ∈R ,|sin x |>a 有解;命题q :∀x ∈R ,ax 2+2ax +4>0恒成立.若命题“p 或q ”是真命题,命题“p 且q ”是假命题,某某数a 的取值X 围.【答案】(-∞,0)∪[1,4)【解析】命题p :∃x ∈R ,|sin x |>a 有解,则a <1;由命题q 得,a =0或⎩⎪⎨⎪⎧a >0,Δ<0,解得0<a <4, 所以命题q :0≤a <4.因为命题“p 或q ”是真命题,命题“p 且q ”是假命题,所以命题p ,q 中有且仅有一个真命题. 若p 真q 假,则⎩⎪⎨⎪⎧a <1,a ≥4或a <0,解得a <0;若p 假q 真,则⎩⎪⎨⎪⎧a ≥1,0≤a <4,解得1≤a <4. 综上所述,实数a 的取值X 围是(-∞,0)∪[1,4).18、设:实数x 满足,:实数x 满足. (1)若,且p ∧q 为真,某某数x 的取值X 围; (2)若且是的充分不必要条件,某某数a 的取值X 围.【答案】(1);(2)【解析】 (1)由得, 当时,,即为真时,. 由,得,得,即q 为真时,. 若为真,则真且真,所以实数的取值X 围是.(2)由得,,. 由,得,得. 设,,若p 是q 的充分不必要条件,则是的真子集,故,所以实数的取值X 围为.19、已知k 为实常数,命题p :方程x 22k -1+y 2k -1=1表示椭圆;命题q :方程x 24+y 2k -3=1表示双曲线. (1) 若命题p 为真命题,求k 的取值X 围;(2) 若命题“p 或q”为真命题,“p 且q”为假命题,求k 的取值X 围.【答案】(1) (1,+∞) (2) (-∞,1]∪[3,+∞)【解析】(1) 若命题p 为真命题,则⎩⎪⎨⎪⎧2k -1>0,k -1>0,2k -1≠k-1,解得k>1,即k 的取值X 围是(1,+∞).(2) 若命题q 为真命题,则k -3<0,即k<3.因为“p 或q”为真命题,“p 且q”为假命题,所以p ,q 必是一真一假.当p 真q 假时,⎩⎪⎨⎪⎧k>1,k≥3, 解得k≥3; 当p 假q 真时,⎩⎪⎨⎪⎧k≤1,k<3,解得k≤1. 综上所述,k 的取值X 围是(-∞,1]∪[3,+∞).。
高考第一轮复习简单的逻辑联结词、全称量词与存在量词练习一、选择题1.已知命题p :3≥3,q :3>4,则下列选项正确的是( ).A .“p 或q ”为假,“p 且q ”为假,“p ”为真B .“p 或q ”为真,“p 且q ”为假,“p ”为真C .“p 或q ”为假,“p 且q ”为假,“p ”为假D .“p 或q ”为真,“p 且q ”为假,“p ”为假2.下列命题中,正确的是( ).A .命题“任意的x ∈R ,x 2-x ≤0”的否定是“存在x ∈R ,x 2-x ≥0”B .命题“p 且q 为真”是命题“p 或q 为真”的必要不充分条件C .“若am 2≤bm 2,则a ≤b ”的否命题为真D .若实数x ,y ∈[-1,1],则满足x 2+y 2≥1的概率为π43.已知函数f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2,设h (x )=f (x )g (x ),则下列说法不正确的是( ).A .存在x ∈R ,f ⎝⎛⎭⎫x +π2=g (x ) B .任意的x ∈R ,f ⎝⎛⎫x -π2=g (x ) C .任意的x ∈R ,h (-x )=h (x )D .任意的x ∈R ,h (x +π)=h (x )4.(2011广东深圳调研)若命题“p 或q ”与命题“非p ”都是真命题,则( ).A .命题p 不一定是假命题B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 与命题q 同真同假5.若命题p :任意的x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( ).A .a ≤-3或a ≥2B .a ≥2C .a >-2D .-2<a <26.下列命题:①任意的x ∈R ,不等式x 2+2x >4x -3均成立;②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >c b”的逆否命题是真命题; ④若命题p :任意的x ∈R ,x 2+1≥1,命题q :存在x ∈R ,x 2-x -1≤0,则命题p 且(q )是真命题.其中真命题为( ).A .①②③B .①②④C .①③④D .②③④二、填空题7.设命题p :c 2<c 和命题q :任意的x ∈R ,x 2+4cx +1>0.若p 和q 有且仅有一个成立,则实数c 的取值范围是__________.8.已知p (x ):x 2+2x -m >0,且p (1)是假命题,p (2)是真命题,则实数m 的取值范围为__________.9.(2012江西赣州联考)设有两个命题:p :不等式21+4>>23xm x x ⎛⎫- ⎪⎝⎭对一切实数x 恒成立;q :f (x )=-(7-2m )x 是R 上的减函数,如果“p 且q ”为真命题,则实数m 的取值范围是__________.三、解答题10.写出下列命题的否定,并判断真假.(1)存在x 0∈R ,2040x -=;(2)任意的T =2k π(k ∈Z ),sin(x +T )=sin x ;(3)集合A 是集合A ∪B 或A ∩B 的子集;(4)a ,b 是异面直线,存在A ∈a ,B ∈b ,使AB ⊥a ,AB ⊥b .11.设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根.求使p 或q 为真,p 且q 为假的实数m 的取值范围.12.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式200220x ax a ++,若命题“p 或q ”是假命题,求a 的取值范围.参考答案一、选择题1.D 解析:因为p 真,q 假,由含有逻辑联结词的命题的真值表可以判断,“p 或q ”为真,“p 且q ”为假,p 为假.2.C 解析:A 中否定不能有等号,B 中命题“p 且q 为真”是命题“p 或q 为真”的充分不必要条件,D 中概率计算错误,故选C.3.C 解析:对于A ,f ⎝⎛⎭⎫x +π2=-sin x ,g (x )=sin x ,若f ⎝⎛⎭⎫x +π2=g (x ), 只需sin x =0,即x =k π,k ∈Z ,故存在x ∈R ,f ⎝⎛⎭⎫x +π2=g (x ); 对于B ,f ⎝⎛⎭⎫x -π2=sin x =g (x ),即任意的x ∈R ,f ⎝⎛⎭⎫x -π2=g (x ),故B 正确; 对于C ,由于h (x )=f (x )g (x )=sin x cos x =12sin 2x 为奇函数, 即h (-x )=-h (x ),故C 不正确;对于D ,由h (x )=12sin 2x 知,其最小正周期为π,故D 正确. 综上,A ,B ,D 正确,C 不正确,故选C.4.B 解析:命题“p 或q ”与命题“非p ”都是真命题,则p 为假命题,q 为真命题.5.B 解析:依题意,a +2>0且Δ=16-4(a +2)(a -1)≤0,解得a ≥2.6.A 解析:由x 2+2x >4x -3推得x 2-2x +3=(x -1)2+2>0恒成立,故①正确;根据基本不等式可知,要使不等式log 2x +log x 2≥2成立,需要x >1,故②正确;由a >b >0得0<1a <1b ,又c <0,可得c a >c b,则可知其逆否命题为真命题,故③正确;命题p 是真命题,命题q 为真命题,所以p 且(q )为假命题,所以选A.二、填空题7.⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫12,1 解析:p :由c 2<c 得0<c <1; q :由Δ=16c 2-4<0,得-12<c <12. 要使p 和q 有且仅有一个成立,实数c 的取值范围为⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫12,1. 8.[3,8) 解析:p (1):3-m >0,即m <3.p (2):8-m >0,即m <8.∵p (1)是假命题,p (2)是真命题,∴3≤m <8.9.1<m <3 解析:p 为真命题,则有1<m ≤4;q 为真命题,则有7-2m >1,即m <3,∴1<m <3.三、解答题10.解:它们的否定及其真假分别为:(1)任意的x ∈R ,x 2-4≠0(假命题).(2)存在T 0=2k π(k ∈Z ),sin(x +T 0)≠sin x (假命题).(3)存在集合A 既不是集合A ∪B 的子集,也不是A ∩B 的子集(假命题).(4)a ,b 是异面直线,任意的A ∈a ,B ∈b ,有AB 既不垂直于a ,也不垂直于b (假命题).11.解:由⎩⎪⎨⎪⎧Δ1=4m 2-4>0,x 1+x 2=-2m >0 得m <-1,∴p :m <-1;由Δ2=4(m -2)2-4(-3m +10)<0知-2<m <3,∴q :-2<m <3.由p 或q 为真,p 且q 为假可知,命题p ,q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧m <-1,m ≥3或m ≤-2,此时m ≤-2; 当p 假q 真时,⎩⎪⎨⎪⎧m ≥-1,-2<m <3,此时-1≤m <3. ∴m 的取值范围是(-∞,-2]∪[-1,3).12.解:由2x 2+ax -a 2=0得(2x -a )(x +a )=0,∴x =a 2或x =-a ,∴当命题p 为真命题时,⎪⎪⎪⎪a 2≤1或|-a |≤1,∴|a |≤2.又“只有一个实数x 0满足x 02+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p 或q ”为真命题时,|a |≤2.∵命题“p 或q ”为假命题,∴a >2或a <-2,即a 的取值范围为{a |a >2或a <-2}.。
1.3简单的逻辑联结词,全称量词与存在量词
1. 逻辑连接词
(1)一般地,用联结词“且”把命题p和q联结起来,就得到一个新命题,记作p∧q,读作“p且q”
(2)一般地,用联结词“或”把命题p和q联结起来,就得到一个新命题,记作p∨q,读作“p或q”
(3)一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定”
(4)命题p∧q,p∨q,¬p的真假判断,如下表:
2.全称量词与存在量词
(1)常见的全称量词有“任意一个”“一切”“每一个”“任给”“所有的”等. (2)常见的存在量词有“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.
(3)全称量词用符号“”表示;存在量词用符号“”表示.
3.全称命题与特称命题
(1)含有全称量词的命题,叫做全称命题.“对中任意一个有成立”可
用符号简记为
(2) 含有存在量词的命题,叫做特称命题. “中存在元素有成立”
可用符号简记为
4.含有一个量词的命题的否定
注意:(1)全称命题的否定是特称命题,特称命题的否定是全称命题
(2)命题的“否定”与命题的“否命题”是两个不同的概念.对一个命题进行否定,就是要对其结论进行否定,而否命题是既否定条件又否定结论。
1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“或”“且”“非”.(2)命题p∧q、p∨q、﹁p的真假判断2.(1)全称量词和存在量词常用结论(1)含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与﹁p→真假相反.(2)含有一个量词的命题的否定规律是“改量词,否结论”.(3)“p∨q”的否定是“(﹁p)∧(﹁q)”,“p∧q”的否定是“(﹁p)∨(﹁q)”.(4)逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)命题p∧q为假命题,则命题p、q都是假命题.()(2)命题p和﹁p不可能都是真命题.()(3)若命题p、q至少有一个是真命题,则p∨q是真命题.()(4)写特称命题的否定时,存在量词变为全称量词.()(5)∃x0∈M,p(x0)与∀x∈M,﹁p(x)的真假性相反.()答案:(1)×(2)√(3)√(4)√(5)√二、易错纠偏常见误区|(1)全称命题或特称命题的否定出错;(2)不会利用真值表判断命题的真假;(3)判断命题真假时忽视对参数的讨论.1.命题“正方形都是矩形”的否定是________.答案:存在一个正方形,这个正方形不是矩形2.已知命题p:若x>y,则-x<-y;命题q:若1x>1y,则x<y.在命题①p∧q;②p∨q;③p∧(﹁q);④(﹁p)∨q中,真命题是________.(填序号)解析:由不等式的性质可知,命题p是真命题,命题q为假命题,故①p∧q 为假命题;②p∨q为真命题;③﹁q为真命题,则p∧(﹁q)为真命题;④﹁p为假命题,则(﹁p)∨q为假命题.答案:②③3.若p:∀x∈R,ax2+4x+1>0是假命题,则实数a的取值范围为________.答案:(-∞,4]含有逻辑联结词的命题的真假判断(自主练透)1.命题p:若sin x>sin y,则x>y;命题q:x2+y2≥2xy.下列命题为假命题的是( )A .p ∨qB .p ∧qC .qD .﹁p解析:选B .取x =π3,y =5π6,可知命题p 是假命题;由(x -y )2≥0恒成立,可知命题q 是真命题,故﹁p 为真命题,p ∨q 是真命题,p ∧q 是假命题.2.(2019·高考全国卷Ⅲ)记不等式组⎩⎨⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②﹁p ∨q ③p ∧﹁q ④﹁p ∧﹁q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④解析:选A .通解:作出不等式组表示的平面区域D 如图中阴影部分所示,直线2x +y =9和直线2x +y =12均穿过了平面区域D ,不等式2x +y ≥9表示的区域为直线2x +y =9及其右上方的区域,所以命题p 正确;不等式2x +y ≤12表示的区域为直线2x +y =12及其左下方的区域,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .优解:在不等式组表示的平面区域D 内取点(7,0),点(7,0)满足不等式2x +y ≥9,所以命题p 正确;点(7,0)不满足不等式2x +y ≤12,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .3.(2020·高考全国卷Ⅱ)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题是________.(填序号)①p1∧p4②p1∧p2③﹁p2∨p3④﹁p3∨﹁p4解析:方法一:对于p1,由题意设直线l1∩l2=A,l2∩l3=B,l1∩l3=C,则由l1∩l2=A,知l1,l2共面,设此平面为α,由B∈l2,l2⊂α,知B∈α,由C∈l1,l1⊂α,知C∈α,所以l3⊂α,所以l1,l2,l3共面于α,所以p1是真命题.对于p2,当A,B,C三点不共线时,过A,B,C三点有且仅有一个平面;当A,B,C三点共线时,过A,B,C的平面有无数个,所以p2是假命题,﹁p2是真命题.对于p3,若空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p3是假命题,﹁p3是真命题.对于p4,若直线l⊂平面α,直线m⊥平面α,则m⊥l,所以p4是真命题,﹁p4是假命题.故p1∧p4为真命题,p1∧p2为假命题,﹁p2∨p3为真命题,﹁p3∨﹁p4为真命题.综上可知,真命题的序号是①③④.方法二:对于p1,由题意设直线l1∩l2=A,l2∩l3=B,l1∩l3=C,则A,B,C三点不共线,所以此三点确定一个平面α,则A∈α,B∈α,C∈α,所以AB⊂α,BC⊂α,CA⊂α,即l1⊂α,l2⊂α,l3⊂α,所以p1是真命题.以下同方法一.答案:①③④判断含有逻辑联结词命题真假的步骤全称命题与特称命题(多维探究) 角度一 全称命题、特称命题的否定(1)(2021·成都市诊断性检测)已知命题p :∀x ∈R ,2x -x 2≥1,则﹁p为( )A .∀x ∉R ,2x -x 2<1B .∃x 0∉R ,2x 0-x 20<1C .∀x ∈R ,2x -x 2<1D .∃x 0∈R ,2x 0-x 20<1(2)(2021·沈阳市教学质量监测(一))命题p :∀x ∈(0,+∞),x 13≠x 15,则﹁p 为( )A .∃x 0∈(0,+∞),x 130=x 15B .∀x ∈(0,+∞),x 13=x 15C .∃x 0∈(-∞,0),x 130=x 15D .∀x ∈(-∞,0),x 13=x 15【解析】 (1)全称命题的否定是特称命题,所以﹁p :∃x 0∈R ,2x 0-x 20<1.(2)由全称命题的否定为特称命题知,﹁p 为∃x 0∈(0,+∞),x 130=x 150,故选A .【答案】 (1)D (2)A全称命题与特称命题的否定(1)改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写;(2)否定结论:对原命题的结论进行否定. 角度二 全称命题、特称命题的真假判断(1)下列命题中的假命题是( )B .∀x ∈R ,2x -1>0C .∃x 0∈R ,lg x 0<1D .∃x 0∈R ,sin x 0+cos x 0=2 (2)下列命题中的假命题是( ) A .∀x ∈R ,e x >0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sin π2x 0=1【解析】 (1)A 显然正确;由指数函数的性质知2x -1>0恒成立,所以B 正确;当0<x <10时,lg x <1,所以C 正确;因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以-2≤sin x +cos x ≤2,所以D 错误.(2)对于B .当x =0时,x 2=0,因此B 中命题是假命题. 【答案】 (1)D (2)B全称命题与特称命题真假的判断方法命题名称真假 判断方法一 判断方法二 全称命题真 所有对象使命题为真 否定为假 假 存在一个对象使命题为假 否定为真 特称命题真 存在一个对象使命题为真 否定为假 假所有对象使命题为假否定为真[提醒] 因为命题p 与﹁p 的真假性相反,因此不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.1.下列命题正确的是( ) A .∃x 0∈R ,x 20+2x 0+3=0 B .x >1是x 2>1的充分不必要条件D .若a >b ,则a 2>b 2解析:选B .对于x 2+2x +3=0,Δ=-8<0,故方程无实根,即∃x 0∈R ,x 20+2x 0+3=0错误,即A 错误;x 2>1⇔x <-1或x >1,故x >1是x 2>1的充分不必要条件,故B 正确; 当x ≤1时,x 3≤x 2,故∀x ∈N ,x 3>x 2错误,即C 错误; 若a =1,b =-1,则a >b ,但a 2=b 2,故D 错误.故选B . 2.已知f (x )=sin x -x ,命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,﹁p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0 C .p 是真命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0D .p 是真命题,﹁p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0解析:选C .易知f ′(x )=cos x -1<0,所以f (x )在⎝ ⎛⎭⎪⎫0,π2上是减函数,因为f (0)=0,所以f (x )<0,所以命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0是真命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0,故选C .由命题的真假确定参数的取值范围(典例迁移)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,求实数m 的取值范围.【解】 依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是真命题时,则有Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.所以实数m 的取值范围为[2,+∞).【迁移探究1】 (变问法)在本例条件下,若p ∧q 为真,求实数m 的取值范围.解:依题意知p ,q 均为真命题,当p 是真命题时,有m <0; 当q 是真命题时,有-2<m <2, 由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 【迁移探究2】 (变问法)在本例条件下,若p ∧q 为假,p ∨q 为真,求实数m 的取值范围.解:若p ∧q 为假,p ∨q 为真,则p ,q 一真一假. 当p 真q 假时⎩⎪⎨⎪⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2.所以m 的取值范围是(-∞,-2]∪[0,2).根据命题的真假求参数取值范围的策略(1)全称命题可转化为恒成立问题,特称命题转化为存在性问题. (2)含逻辑联结词问题:①求出每个命题是真命题时参数的取值范围; ②根据题意确定每个命题的真假;③由各个命题的真假列关于参数的不等式(组)求解.1.若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值范围是______. 解析:因为命题“∃t ∈R ,t 2-2t -a <0”为假命题,所以命题“∀t ∈R ,t 2-2t-a≥0”为真命题,所以Δ=(-2)2-4×1×(-a)=4a+4≤0,即a≤-1.答案:(-∞,-1]2.已知命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数.若p或q是真命题,p且q是假命题,则实数a的取值范围是________.解析:命题p等价于Δ=a2-16≥0,即a≤-4或a≥4;命题q等价于-a4≤3,即a≥-12.由p或q是真命题,p且q是假命题知,命题p和q一真一假.若p 真q假,则a<-12;若p假q真,则-4<a<4.故a的取值范围是(-∞,-12)∪(-4,4).答案:(-∞,-12)∪(-4,4)[A级基础练]1.命题“∀x>0,xx-1>0”的否定是()A.∃x<0,xx-1≤0B.∃x>0,0≤x≤1C.∀x>0,xx-1≤0 D.∀x<0,0≤x≤1解析:选B.因为xx-1>0,所以x<0或x>1,所以xx-1>0的否定是0≤x≤1,所以命题的否定是∃x>0,0≤x≤1,故选B.2.已知命题p:∃m∈R,f(x)=2x-mx是增函数,则﹁p为()A.∃m∈R,f(x)=2x-mx是减函数B.∀m∈R,f(x)=2x-mx是减函数C.∃m∈R,f(x)=2x-mx不是增函数D.∀m∈R,f(x)=2x-mx不是增函数解析:选D.由特称命题的否定可得﹁p为“∀m∈R,f(x)=2x-mx不是增函数”.3.已知命题p,q,则“﹁p为假命题”是“p∧q是真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.充分性:若﹁p为假命题,则p为真命题,由于不知道q的真假性,所以推不出p∧q是真命题.必要性:p∧q是真命题,则p,q均为真命题,则﹁p为假命题.所以“﹁p为假命题”是“p∧q是真命题”的必要不充分条件.4.已知命题p:若a>|b|,则a2>b2;命题q:若x2=4,则x=2.下列说法正确的是()A.“p∨q”为真命题B.“p∧q”为真命题C.“﹁p”为真命题D.“﹁q”为假命题解析:选A.由a>|b|≥0,得a2>b2,所以命题p为真命题.因为x2=4⇔x =±2,所以命题q为假命题.所以“p∨q”为真命题,“p∧q”为假命题,“﹁p”为假命题,“﹁q”为真命题.综上所述,可知选A.5.(2021·广州市阶段训练)已知命题p:∀x∈R,x2-x+1<0;命题q:∃x ∈R,x2>2x.则下列命题中为真命题的是()A.p∧q B.(﹁p)∧qC.p∧(﹁q) D.(﹁p)∧(﹁q)解析:选B.当x=1时,x2-x+1=1>0,所以p为假命题,﹁p为真命题.当x=3时,x2>2x,所以q为真命题,﹁q为假命题.所以p∧q为假命题,(﹁p)∧q 为真命题,p∧(﹁q)为假命题,(﹁p)∧(﹁q)为假命题,故选B.6.已知命题p:f(x)=x3-ax的图象关于原点对称;命题q:g(x)=x cos x的图象关于y轴对称.则下列命题为真命题的是()A.﹁p B.qC.p∧q D.p∧(﹁q)解析:选D .对于f (x )=x 3-ax ,有f (-x )=(-x )3-a (-x )=-(x 3-ax )=-f (x ),为奇函数,其图象关于原点对称,所以p 为真命题;对于g (x )=x cos x ,有g (-x )=(-x )cos(-x )=-x cos x =-g (x ),为奇函数,其图象关于原点对称,所以q 为假命题,则﹁p 为假命题,p ∧q 为假命题,p ∧(﹁q )为真命题,故选D .7.已知命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,则实数a 的取值范围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析:选D .因为命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,所以其否定“∀x ∈R ,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D .8.设命题p :若定义域为R 的函数f (x )不是偶函数,则∀x ∈R ,f (-x )≠f (x ).命题q :f (x )=x |x |在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误的是( )A .p 为假命题B .﹁q 为真命题C .p ∨q 为真命题D .p ∧q 为假命题解析:选C .函数f (x )不是偶函数,仍然有∃x ∈R ,使得f (-x )=f (x ),p 为假命题;f (x )=x |x |=⎩⎪⎨⎪⎧x 2(x ≥0),-x 2(x <0)在R 上是增函数,q 为假命题.所以p ∨q 为假命题,故选C .9.已知命题p :方程x 2-2ax -1=0有两个实数根;命题q :函数f (x )=x +4x 的最小值为4.给出下列命题:①p ∧q ;②p ∨q ;③p ∧(﹁q );④(﹁p )∨(﹁q ),其中真命题的个数为( )A .1B .2C .3D .4解析:选C.由于Δ=4a2+4>0,所以方程x2-2ax-1=0有两个实数根,即命题p是真命题;当x<0时,f(x)=x+4x的值为负值,故命题q为假命题.所以p∨q,p∧(﹁q),(﹁p)∨(﹁q)是真命题,故选C.10.命题p的否定是“对所有正数x,x>x+1”,则命题p可写为____________________.解析:因为p是﹁p的否定,所以只需将全称量词变为特称量词,再对结论否定即可.答案:∃x0∈(0,+∞),x0≤x0+111.已知命题p:x2+4x+3≥0,q:x∈Z,且“p∧q”与“﹁q”同时为假命题,则x=________.解析:若p为真,则x≥-1或x≤-3,因为“﹁q”为假,则q为真,即x∈Z,又因为“p∧q”为假,所以p为假,故-3<x<-1,得x=-2.答案:-212.已知命题p:f(x)=1-2mx2在区间(0,+∞)上是减函数;命题q:不等式x2-2x>m-1的解集为R.若命题“p∨q”为真,则实数m的取值范围是________;若“p∧q”为假,则实数m的取值范围是________.解析:对于命题p,由f(x)=1-2mx2在区间(0,+∞)上是减函数,得1-2m>0,解得m<12;对于命题q,不等式x2-2x>m-1的解集为R等价于不等式(x-1)2>m 的解集为R,因为(x-1)2≥0恒成立,所以m<0.若p∨q为真,则p,q中至少有一个为真,所以m<12;若p∧q为假,则p,q至少有一个为假.若p为假,则m≥12;若q为假,则m≥0,所以m≥0.答案:⎝ ⎛⎭⎪⎫-∞,12 [)0,+∞ [B 级 综合练]13.(2020·河北九校第二次联考)下面有四个命题:①“∀x ∈R ,e x >0”的否定是“∃x 0∈R ,e x 0≤0”;②命题“若θ=π6,则cos θ=32”的否命题是“若θ=π6,则cos θ≠32”;③“ln m <ln n ”是“e m <e n ”的必要不充分条件;④若命题p 为真命题,q 为假命题,则p ∨q 为真命题.其中所有正确命题的序号是( )A .①②④B .①③C .①④D .②④解析:选C .由全称命题的否定可知,命题①正确;否命题是对条件和结论都进行否定,故否命题应是“若θ≠π6,则cos θ≠32”,命题②错误;ln m <ln n⇒0<m <n ⇒e m <e n ,e m <e n ⇒m <n ,当m ,n 均为负数时,ln m 和ln n 无意义,则推不出ln m <ln n ,因此“ln m <ln n ”是“e m <e n ”的充分不必要条件,所以命题③错误;当p 为真命题或q 为真命题时,命题p ∨q 就为真命题,命题④正确.故选C .14.(2021·贵阳市四校联考)给出下列三个命题:①命题p :∀x ∈R ,sin x ≤1,则﹁p :∃x 0∈R ,sin x 0>1;②在△ABC 中,若sin 2A =sin 2B ,则角A 与角B 相等;③命题:“若tan x =3,则x =π3”的逆否命题是假命题. 以上正确命题的序号是( )A .①②③B .①②C .①③D .②③解析:选C .①中,根据全称命题的否定为特称命题,知﹁p :∃x 0∈R ,sin x 0>1,故①正确;②中,在△ABC 中,若sin 2A =sin 2B ,则有2A =2B 或2A +2B=π,所以角A与角B相等或互余,故②错误;③中,因为命题:“若tan x=3,则x=π3”是假命题,所以其逆否命题是假命题,故③正确.综上所述,正确命题的序号是①③,故选C.[C级提升练]15.短道速滑队组织6名队员(含赛前系列赛积分最靠前的甲、乙、丙三名队员在内)进行冬奥会选拔赛,记“甲得第一名”为p,“乙得第二名”为q,“丙得第三名”为r,若p∨q是真命题,p∧q是假命题,(﹁q)∧r是真命题,则选拔赛的结果为()A.甲得第一名,乙得第二名,丙得第三名B.甲得第二名,乙得第一名,丙得第三名C.甲得第一名,乙得第三名,丙得第二名D.甲得第一名,乙没得第二名,丙得第三名解析:选D.由(﹁q)∧r是真命题,得﹁q为真命题,q为假命题(乙没得第二名),且r为真命题(丙得第三名);p∨q是真命题,由于q为假命题,只能p 为真命题(甲得第一名),这与p∧q是假命题相吻合;由于还有其他三名队员参赛,只能肯定其他队员得第二名,乙没得第二名,故选D.16.能够说明命题p:∃x0∈R,x20+2ax0+a≤0是假命题的一个实数a是________.解析:因为p为假命题,所以﹁p为真命题.又﹁p:∀x∈R,x2+2ax+a>0,故Δ=4a2-4a<0,解得0<a<1,可取a=12(区间(0,1)内的数均可).答案:12(答案不唯一,在区间(0,1)内任一数均可)。
考点03 简单的逻辑联结词、全称量词与存在量词1.“∀x∈R,x2-πx≥0”的否定是()A.∀x∈R,x2-πx<0B.∀x∈R,x2-πx≤0C.∃x0∈R,x20-πx0≤0 D.∃x0∈R,x20-πx0<0【答案】D【解析】全称命题的否定是特称命题,所以“∀x∈R,x2-πx≥0”的否定是“∃x0∈R,x20-πx0<0”.故选D. 2.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数【答案】C【解析】.将原命题的条件和结论互换的同时进行否定即得逆否命题,因此“若x,y都是偶数,则x+y也是偶数”的逆否命题是“若x+y不是偶数,则x,y不都是偶数”,所以选C.3.下列命题错误的是()A.命题“ ,”的否定是“,”;B.若是假命题,则,都是假命题C.双曲线的焦距为D.设,是互不垂直的两条异面直线,则存在平面,使得,且【答案】B【解析】对于选项A,由于特称命题的否定是特称命题,所以命题“ ,”的否定是“,”,是正确的.对于选项B, 若是假命题,则,至少有一个是假命题,所以命题是假命题.对于选项C, 双曲线的焦距为2c=2,所以是真命题.对于选项D, 设,是互不垂直的两条异面直线,则存在平面,使得,且,是真命题.故答案为:B.4.在射击训练中,某战士射击了两次,设命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是()A.(¬p)∨(¬q)为真命题B.p∨(¬q)为真命题C.(¬p)∧(¬q)为真命题D.p∨q为真命题【答案】A【解析】.命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题¬p是“第一次射击没击中目标”,命题¬q是“第二次射击没击中目标”,故命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是(¬p)∨(¬q)为真命题,故选A.5.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞) B.(-∞,3) C.(1,3) D.【答案】C【解析】由“”是真命题可知命题p,q均为真命题,若命题p为真命题,则:,解得:,若命题q为真命题,则:,即,综上可得,实数a的取值范围是,表示为区间形式即.本题选择C选项.6.已知a,b都是实数,那么“2a>2b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】.充分性:若2a>2b,则2a-b>1,∴a-b>0,即a>b.当a=-1,b=-2时,满足2a>2b,但a2<b2,故由2a>2b不能得出a2>b2,因此充分性不成立.必要性:若a2>b2,则|a|>|b|.当a=-2,b=1时,满足a2>b2,但2-2<21,即2a<2b,故必要性不成立.综上,“2a>2b”是“a2>b2”的既不充分也不必要条件.故选D.7.已知命题,使;命题,都有,下列结论中正确的是A.命题“p∧q”是真命题B.命题“p∧q”是真命题C.命题“p∧q”是真命题D.命题“p∨q”是假命题【答案】A【解析】由判断,所以为假命题;命题,所以为真命题,所以命题“p∧q”是真命题,故选A.8.已知命题p :存在x 0∈R ,x 0-2>lg x 0;命题q :任意x ∈R ,x 2+x +1>0.给出下列结论: ①命题“p 且q ”是真命题;②命题“p 且¬q ”是假命题; ③命题“¬p 或q ”是真命题;④命题“p 或¬q ”是假命题. 其中所有正确结论的序号为( ) A .②③ B .①④ C .①③④ D .①②③【答案】D【解析】对于命题p ,取x 0=10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,方程x 2+x +1=0,Δ=1-4×1<0,故方程无解,即任意x ∈R ,x 2+x +1>0,所以命题q 为真命题.综上“p 且q ”是真命题,“p 且¬q ”是假命题,“¬p 或q ”是真命题,“p 或¬q ”是真命题,即正确的结论为①②③.故选D.9.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.12<a <1 D .a ≤0或a >1【答案】A【解析】.因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合可得a ≤0或a >1.观察选项,根据集合间的关系{a |a <a |a ≤0或a >1},故选A.10.下列命题正确的是( ) A . 命题的否定是:B . 命题中,若,则的否命题是真命题C . 如果为真命题,为假命题,则为真命题,为假命题D .是函数的最小正周期为的充分不必要条件【答案】D【解析】在A 中,命题的否定是:,故A 错误;在B 中,命题中,若,则的否命题是假命题,故B 错误;在C 中,如果为真命题,为假命题,则与中一个是假命题,另一个是真命题,故C 错误;在D 中,∴ω=1⇒函数f (x )=sin ωx-cos ωx 的最小正周期为2π,函数f (x )=sin ωx-cos ωx 的最小正周期为2π⇒ω=±1.∴是函数的最小正周期为的充分不必要条件,故D 正确.故选:D .11.设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 【答案】C【解析】.|a -3b |=|3a +b |⇔|a -3b |2=|3a +b |2⇔a 2-6a ·b +9b 2=9a 2+6a ·b +b 2⇔2a 2+3a ·b -2b 2=0,又∵|a |=|b |=1,∴a ·b =0⇔a ⊥b ,故选C.12.(2018·温州模拟)下面四个条件中,使a >b 成立的充分不必要条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 3【答案】A【解析】.由选项中的不等式可得a >b ,a >b 推不出选项中的不等式.选项A 中,a >b +1>b ,反之a >b 推不出a >b +1;选项B 中,a >b >b -1,反之a >b -1推不出a >b ,为必要不充分条件;选项C 为既不充分也不必要条件;选项D 为充要条件,故选A.13.已知命题p :对任意x ∈(0,+∞),log 4x <log 8x ;命题q :存在x ∈R ,使得tan x =1-3x ,则下列命题为真命题的是( ) A .p ∧q B .(¬p )∧(¬q ) C .p ∧(¬q ) D .(¬p )∧q 【答案】D【解析】.当x =1时,log 4x =log 8x ,所以命题p 是假命题;函数y =tan x 的图象与y =1-3x 的图象有无数个交点,所以存在x ∈R ,使得tan x =1-3x ,即命题q 是真命题,故(¬p )∧q 是真命题,选D. 14.有关下列说法正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的必要不充分条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则¬p :∀x ∈R ,x 2-x -1<0 C .命题“若x 2-1=0,则x =1或x =-1”的否命题是“若x 2-1≠0,则x ≠1或x ≠-1” D .命题p 和命题q 有且仅有一个为真命题的充要条件是(¬p ∧q )∨(¬q ∧p )为真命题 【答案】D【解析】对于A ,由f (0)=0,不一定有f (x )是奇函数,如f (x )=x 2;反之,函数f (x )是奇函数,也不一定有f (0)=0,如f (x )=1x.∴“f (0)=0”是“函数f (x )是奇函数”的既不充分也不必要条件.故A 错误;对于B ,若p :∃x 0∈R ,x 20-x 0-1>0,则¬p :∀x ∈R ,x 2-x -1≤0.故B 错误;对于C ,命题“若x 2-1=0,则x =1或x =-1”的否命题是“若x 2-1≠0,则x ≠1且x ≠-1”.故C 错误;对于D ,若命题p 和命题q 有且仅有一个为真命题,不妨设p 为真命题,q 为假命题,则¬p ∧q 为假命题,¬q ∧p 为真命题,则(¬p ∧q )∨(¬q ∧p )为真命题;反之,若(¬p ∧q )∨(¬q ∧p )为真命题,则¬p ∧q 或¬q ∧p 至少有一个为真命题.若¬p ∧q 真,¬q ∧p 假,则p 假q 真;若¬p ∧q 假,¬q ∧p 真,则p 真q 假;不可能¬p ∧q 与¬q ∧p 都为真.故命题p 和命题q 有且仅有一个为真命题的充要条件是(¬p ∧q )∨(¬q ∧p )为真命题.故选D.15.若“∀x ∈⎣⎡⎦⎤-π4,π3,m ≤tan x +2”为真命题,则实数m 的最大值为________. 【答案】1【解析】由x ∈⎣⎡⎦⎤-π4,π3可得-1≤tan x ≤ 3.∴1≤tan x +2≤2+3,∵“∀x ∈⎣⎡⎦⎤-π4,π3,m ≤tan x +2”为真命题,∴实数m 的最大值为1.16.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :x 2-3x +2<0的解集是{x |1<x <2}.现有以下结论: ①命题“p ∧q ”是真命题;②命题“p ∧¬q ”是假命题; ③命题“¬p ∨q ”是真命题;④命题“¬p ∨¬q ”是假命题. 其中正确结论的序号为________. 【答案】①②③④【解析】∵当x =π4时,tan x =1,∴命题p 为真命题,命题¬p 为假命题. 由x 2-3x +2<0,解得1<x <2, ∴命题q 为真命题,命题¬q 为假命题.∴命题“p ∧q ”是真命题,命题“p ∧¬q ”是假命题,命题“¬p ∨q ”是真命题,命题“¬p ∨¬q ”是假命题. 17.已知函数f (x )=a 2x -2a +1.若命题“∀x ∈(0,1),f (x )≠0”是假命题,则实数a 的取值范围是________. 【答案】⎝⎛⎭⎫12,1∪(1,+∞)【解析】已知函数f (x )=a 2x -2a +1,命题“∀x ∈(0,1),f (x )≠0”是假命题, ∴原命题的否定是“∃x 0∈(0,1),使f (x 0)=0”是真命题,显然a ≠0.∴f (1)f (0)<0, 即(a 2-2a +1)(-2a +1)<0, 即(a -1)2(2a -1)>0, 解得a >12,且a ≠1,∴实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞).18.设p :实数a 满足不等式3a ≤9,q :函数f (x )=13x 3+3(3-a )2x 2+9x 无极值点.已知“p ∧q ”为真命题,并记为r ,且t :a 2-⎝⎛⎭⎫2m +12a +m ⎝⎛⎭⎫m +12>0,若r 是¬t 的必要不充分条件,则正整数m 的值为________. 【答案】1【解析】若p 为真,则3a ≤9,得a ≤2.若q 为真,则函数f (x )无极值点,∴f ′(x )=x 2+3(3-a )x +9≥0恒成立, 得Δ=9(3-a )2-4×9≤0,解得1≤a ≤5. ∵“p ∧q ”为真命题, ∴p 、q 都为真命题,∴⎩⎪⎨⎪⎧a ≤2,1≤a ≤5⇒1≤a ≤2. ∵a 2-⎝⎛⎭⎫2m +12a +m ⎝⎛⎭⎫m +12>0, ∴(a -m )⎣⎡⎦⎤a -⎝⎛⎭⎫m +12>0, ∴a <m 或a >m +12,即t :a <m 或a >m +12,从而¬t :m ≤a ≤m +12,∵r 是¬t 的必要不充分条件, ∴¬t ⇒r ,r ⇒/ ¬t , ∴⎩⎪⎨⎪⎧m ≥1,m +12<2或⎩⎪⎨⎪⎧m >1,m +12≤2, 解得1≤m ≤32,又∵m ∈N *,∴m =1.。
第3节简单的逻辑联结词、全称量词与存在量词考纲要求 1.了解逻辑联结词“或”、“且”、“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p∧q,p∨q,綈p的真假判断p q p∧q p∨q 綈p真真真真假真假假真假假真假真真假假假假真2.全称量词与存在量词(1)全称量词:短语“所有的”、“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题和特称命题名称全称命题特称命题结构对M中的任意一个x,有p(x)成立存在M中的一个x0,使p(x0)成立简记∀x∈M,p(x)∃x0∈M,p(x0)否定∃x0∈M,綈p(x0)∀x∈M,綈p(x)1.含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与綈p→真假相反.2.含有一个量词的命题的否定规律是“改量词,否结论”.3.“p∨q”的否定是“(綈p)∧(綈q)”,“p∧q”的否定是“(綈p)∨(綈q)”.4.逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)命题“5>6或5>2”是假命题.()(2)命题綈(p∧q)是假命题,则命题p,q中至少有一个是假命题.()(3)“长方形的对角线相等”是特称命题.()(4)∃x0∈M,p(x0)与∀x∈M,綈p(x)的真假性相反.()答案(1)×(2)×(3)×(4)√解析(1)错误.命题p∨q中,p,q有一真则真.(2)错误.p∧q是真命题,则p,q都是真命题.(3)错误.命题“长方形的对角线相等”是全称命题.2.已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为()A.1B.2C.3D.4答案 B解析p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.3.命题:“∃x0∈R,x20-ax0+1<0”的否定为________.答案∀x∈R,x2-ax+1≥04.(2020·唐山模拟)已知命题p:f(x)=x3-ax的图象关于原点对称;命题q:g(x)=x cos x的图象关于y轴对称.则下列命题为真命题的是()A.綈pB.qC.p∧qD.p∧(綈q)答案 D解析根据题意,对于f(x)=x3-ax,有f(-x)=(-x)3-a(-x)=-(x3-ax)=-f(x),为奇函数,其图象关于原点对称,p为真命题;对于g(x)=x cos x,有g(-x)=(-x)cos(-x)=-x cos x,为奇函数,其图象关于原点对称,q为假命题,则綈p为假命题,q为假命题,p∧q 为假命题,p∧(綈q)为真命题.5.(2021·郑州质检)已知命题p:∀x>0,3x>1;命题q:若a<b,则a2<b2,下列命题为真命题的是()A.p∧qB.p∧(綈q)C.(綈p)∧qD.(綈p)∧(綈q)答案 B解析p:∀x>0,3x>1为真命题,则綈p为假命题,取a=-2,b=-1,则a2>b2,所以q为假,綈q为真命题,因此p ∧(綈q )为真命题.6.(2021·合肥调研)能说明命题“∀x ∈R 且x ≠0,x +1x ≥2”是假命题的x 的值可以是________(写出一个即可). 答案 -1(任意负数) 解析 当x >0时,x +1x ≥2,当且仅当x =1时取等号, 当x <0时,x +1x ≤-2,当且仅当x =-1时取等号, ∴x 的取值为负数即可,例如x =-1.考点一 含有逻辑联结词的命题1.(2020·西安检测)已知命题p :若a >|b |,则a 2>b 2;命题q :m ,n 是直线,α为平面,若m ∥α,n ⊂α,则m ∥n .下列命题为真命题的是( ) A.p ∧q B.p ∧(綈q ) C.(綈p )∧q D.(綈p )∧(綈q )答案 B解析 若a >|b |,则a 2>b 2,∴p 真,对于命题q :由m ∥α,n ⊂α,则m 与n 异面或平行,∴q 假,则綈q 为真,因此p ∧(綈q )为真命题.2.(2021·成都调研)已知命题p :函数y =2sin x +sin x ,x ∈(0,π)的最小值为22;命题q :若a ·b =0,b ·c =0,则a ·c =0.下列命题为真命题的是( ) A.(綈p )∧q B.p ∨q C.p ∧(綈q )D.(綈p )∧(綈q )答案 D解析命题p:函数y=2sin x+sin x,x∈(0,π),由基本不等式成立的条件可知,y>22sin x·sin x=22,等号取不到,所以命题p是假命题.命题q:取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,所以命题q是假命题.所以綈p为真,綈q为真.因此,只有(綈p)∧(綈q)为真命题.3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(綈p)∨(綈q)B.p∧(綈q)C.(綈p)∧(綈q)D.p∨q答案 A解析命题p是“甲降落在指定范围”,则綈p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则綈q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”“甲没降落在指定范围,乙降落在指定范围”“甲没降落在指定范围,乙没降落在指定范围”.所以命题“至少有一位学员没有降落在指定范围”可表示为(綈p)∨(綈q).4.(2020·全国Ⅱ卷)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1∧p4;②p1∧p2;③綈p2∨p3;④綈p3∨綈p4.答案 ①③④解析 p 1是真命题,两两相交不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为空间三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3, 綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题. 感悟升华 1.“p ∨q ”,“p ∧q ”,“綈p ”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成形式;(2)判断其中命题p ,q 的真假;(3)确定“p ∨q ”“p ∧q ”“綈p ”形式命题的真假.2.p ∧q 形式是“一假必假,全真才真”,p ∨q 形式是“一真必真,全假才假”,綈p 与p 的真假性相反.考点二 全称量词与存在量词【例1】 (1)(2021·江南十校联考)已知f (x )=sin x -tan x ,命题p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)<0,则( )A.p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B.p 是假命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 C.p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 D.p 是真命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 (2)已知命题p :∀x ∈N *,⎝⎛⎭⎫12x ≥⎝⎛⎭⎫13x,命题q :∃x ∈R ,2x +21-x =22,则下列命题中是真命题的是( ) A.p ∧qB.(綈p )∧qC.p ∧(綈q )D.(綈p )∧(綈q )答案 (1)C (2)A解析 (1)当x ∈⎝⎛⎭⎫π4,π2时,sin x <1,tan x >1. 此时sin x -tan x <0,故命题p 为真命题.由于命题p 为特称命题,所以命题p 的否定为全称命题, 则綈p 为:∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0. (2)由y =⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫13x的图象的位置关系, 知∀x ∈N *,⎝⎛⎭⎫12x ≥⎝⎛⎭⎫13x成立,p 为真命题. 又2x +21-x ≥22x ·21-x =22,当且仅当2x =21-x ,即x =12时,上式取等号,则q 为真命题.因此p ∧q 为真命题.感悟升华 1.全称命题与特称命题的否定与一般命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.2.判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立即可.【训练1】 (1)已知集合A 是奇函数集,B 是偶函数集.若命题p :∀f (x )∈A ,|f (x )|∈B ,则綈p 为( )A.∀f (x )∈A ,|f (x )|∉BB.∀f (x )∉A ,|f (x )|∉BC.∃f (x )∈A ,|f (x )|∉BD.∃f (x )∉A ,|f (x )|∉B(2)(2020·兰州诊断)已知命题p :“∃x 0∈R ,1x 0+1>0”的否定是“∀x ∈R ,1x +1<0或x +1=0”;命题q :“x <2 021”的一个充分不必要条件是“x <2 020”,则下列命题为真命题的是( ) A.p ∧q B.綈q C.p ∧(綈q ) D.(綈p )∧q答案 (1)C (2)A解析 (1)全称命题的否定为特称命题需:改写量词,否定结论. ∴綈p :∃f (x )∈A ,|f (x )|∉B .(2)命题p :“∃x 0∈R ,1x 0+1>0”的否定是“∀x ∈R ,1x +1<0或x +1=0”,故命题p 是真命题.命题q :“x <2 021”的一个充分不必要条件是“x <2 020”,为真命题. 故p ∧q 为真命题,其余为假命题. 考点三 由命题的真假求参数【例2】 (1)已知命题p :∀x ∈R ,2x <3x ,命题q :∃x ∈R ,x 2=2-x ,若命题(綈p )∧q 为真命题,则x 的值为( ) A.1 B.-1 C.2D.-2(2)(经典母题)已知f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________. 答案 (1)D (2)⎣⎡⎭⎫14,+∞ 解析 (1)因为綈p :∃x ∈R ,2x ≥3x ,要使(綈p )∧q 为真,所以綈p 与q 同时为真. 由2x≥3x,得⎝⎛⎭⎫23x≥1,所以x ≤0.①由x 2=2-x ,得x =1或x =-2.② 由①②知x =-2.(2)当x ∈[0,3]时,f (x )min =f (0)=0, 当x ∈[1,2]时,g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min , 得0≥14-m ,所以m ≥14.【迁移】 本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是______________________________________. 答案 ⎣⎡⎭⎫12,+∞解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,对∀x 1∈[0,3],∀x 2∈[1,2]使得f (x 1)≥g (x 2)等价于f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.感悟升华 1.由含逻辑联结词的命题真假求参数的方法步骤: (1)求出每个命题是真命题时参数的取值范围; (2)根据每个命题的真假情况,求出参数的取值范围. 2.全称命题可转化为恒成立问题.3.含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决.【训练2】 (2021·豫北名校联考)已知p :函数f (x )=x 2-(2a +4)x +6在(1,+∞)上是增函数,q :∀x ∈R ,x 2+ax +2a -3>0,若p ∧(綈q )是真命题,则实数a 的取值范围为________. 答案 (-∞,-1]解析 依题意,p 为真命题,綈q 为真命题. 若p 为真命题,则2a +42≤1,解得a ≤-1.①若綈q 为真命题,则∃x 0∈R ,x 20+ax 0+2a -3≤0成立. ∴a 2-4(2a -3)≥0,解之得a ≥6或a ≤2.②结合①②,知a ≤-1,即实数a 的取值范围是(-∞,-1].A级基础巩固一、选择题1.命题p:“∀x>1,x2-1>0”,则綈p为()A.∀x>1,x2-1≤0B.∀x≤1,x2-1≤0C.∃x0>1,x20-1≤0D.∃x0≤1,x20-1≤0答案 C解析命题p:“∀x>1,x2-1>0”,则綈p:∃x0>1,x20-1≤0.2.(2020·贵阳检测)给出两个命题:p:“事件A与事件B对立”的充要条件是“事件A与事件B 互斥”;q:偶函数的图象一定关于y轴对称,则下列命题是假命题的是()A.p∨qB.p∧qC.(綈p)∨qD.(綈p)∧q答案 B解析由于“事件A与事件B对立”是“事件A与事件B互斥”的充分不必要条件,故命题p 是假命题.又q为真命题,因此p∨q,(綈p)∨q,(綈p)∧q均为真命题,p∧q为假命题.3.命题“∃x0∈R,1<f(x0)≤2”的否定形式是()A.∀x∈R,1<f(x)≤2B.∃x0∈R,1<f(x0)≤2C.∃x0∈R,f(x0)≤1或f(x0)>2D.∀x∈R,f(x)≤1或f(x)>2答案 D解析 特称命题的否定是全称命题,原命题的否定形式为:∀x ∈R ,f (x )≤1或f (x )>2. 4.已知命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,则实数a 的取值范围为( )A.(-∞,0)B.[0,4]C.[4,+∞)D.(0,4)答案 D解析 因为命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,所以其否定为“∀x ∈R ,4x 2+(a -2)x +14>0”是真命题.则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4.5.命题p :函数y =log 2(x -2)的单调递增区间是[1,+∞),命题q :函数y =13x +1的值域为(0,1).下列命题是真命题的为( ) A.p ∧q B.p ∨q C.p ∧(綈q ) D.綈q 答案 B解析 由于y =log 2(x -2)的单调递增区间是(2,+∞), 所以命题p 是假命题.由3x >0,得3x +1>1,所以0<13x +1<1,所以函数y =13x +1的值域为(0,1),故命题q 为真命题,綈q 为真命题.所以p ∧q 为假命题,p ∨q 为真命题,p ∧(綈q )为假命题,綈q 为假命题.6.已知函数f (x )=a 2x -2a +1.若命题“∀x ∈(0,1),f (x )≠0”是假命题,则实数a 的取值范围是( ) A.⎝⎛⎭⎫12,1 B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1∪(1,+∞)答案 D解析 ∵函数f (x )=a 2x -2a +1, 命题“∀x ∈(0,1),f (x )≠0”是假命题,∴原命题的否定:“∃x 0∈(0,1),使f (x 0)=0”是真命题, ∴f (1)f (0)<0,即(a 2-2a +1)(-2a +1)<0, ∴(a -1)2(2a -1)>0,解得a >12,且a ≠1,∴实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞).7.已知命题p :∀x >0,e x >x +1,命题q :∃x ∈(0,+∞),ln x ≥x ,则下列命题正确的是( ) A.p ∧q B.(綈p )∧q C.p ∧(綈q ) D.(綈p )∧(綈q )答案 C解析 令f (x )=e x -x -1,则f ′(x )=e x -1,当x >0时, f ′(x )>0,所以f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0,即e x >x +1,则命题p 真; 令g (x )=ln x -x ,x >0,则g ′(x )=1x -1=1-x x ,当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0, 即当x =1时,g (x )取得极大值,也是最大值, 所以g (x )max =g (1)=-1<0,∴g (x )<0在(0,+∞)上恒成立,则命题q 假, 因此綈q 为真,故p ∧(綈q )为真.8.已知命题p :“∀x ∈[0,1],a ≥e x ”;命题q :“∃x 0∈R ,使得x 20+4x 0+a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围为( )A.[e ,4]B.(-∞,e]C.[e ,4)D.[4,+∞)答案 A解析 若命题“p ∧q ”是真命题,那么命题p ,q 都是真命题.由∀x ∈[0,1],a ≥e x ,得a ≥e ;由∃x 0∈R ,使x 20+4x 0+a =0,得Δ=16-4a ≥0,则a ≤4,因此e ≤a ≤4. 二、填空题9.命题“∀x ∈R ,f (x )·g (x )≠0”的否定是____________. 答案 ∃x 0∈R ,f (x 0)·g (x 0)=0解析 命题“∀x ∈R ,f (x )·g (x )≠0”的否定是“∃x 0∈R ,f (x 0)·g (x 0)=0”.10.若“∀x ∈⎣⎡⎦⎤-π4,π3,m ≤tan x +2”为真命题,则实数m 的最大值为________. 答案 1解析 由x ∈⎣⎡⎦⎤-π4,π3,得1≤tan x +2≤2+ 3. ∵“∀x ∈⎣⎡⎦⎤-π4,π3,m ≤tan x +2”为真命题,则m ≤1. ∴实数m 的最大值为1.11.下列四个命题:p 1:任意x ∈R ,2x >0;p 2:存在x ∈R ,x 2+x +1≤0;p 3:任意x ∈R , sin x <2x ;p 4:存在x ∈R ,cos x >x 2+x +1.其中是真命题的为________. 答案 p 1,p 4解析 ∀x ∈R ,2x >0恒成立,∴p 1是真命题. 又x 2+x +1=⎝⎛⎭⎫x +122+34>0,∴p 2是假命题.由sin ⎝⎛⎭⎫-32π=1>2-32π,∴p 3是假命题. 取x =-12时,cos ⎝⎛⎭⎫-12>cos ⎝⎛⎭⎫-π6=32, 但x 2+x +1=34<32,∴p 4为真.综上,p 1,p 4为真命题,p 2,p 3是假命题.12.(2021·安徽六校联考)若命题“∃x 0∈R ,使得k >x 20+1成立”是假命题,则实数k 的取值范围是________. 答案 (-∞,1]解析 “∃x 0∈R ,使得k >x 20+1成立”是假命题等价于“∀x ∈R ,都有k ≤x 2+1恒成立”是真命题.因为x 2+1≥1,即x 2+1的最小值为1,要使k ≤x 2+1恒成立,只需k ≤(x 2+1)min ,即k ≤1.B 级 能力提升13.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A.∀x ∈R ,∃n ∈N *,使得n <x 2 B.∀x ∈R ,∀n ∈N *,使得n <x 2 C.∃x ∈R ,∃n ∈N *,使得n <x 2 D.∃x 0∈R ,∀n ∈N *,使得n <x 20 答案 D解析 改变量词,否定结论.∴该命题的否定应为:∃x 0∈R ,∀n ∈N *,使得n <x 20.14.(2019·全国Ⅲ卷)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题 ①p ∨q ;②綈p ∨q ;③p ∧綈q ;④綈p ∧綈q . 这四个命题中,所有真命题的编号是( ) A.①③ B.①② C.②③ D.③④答案 A解析 由不等式组画出平面区域D ,如图阴影部分所示,在图中画出直线2x +y =9,可知p 为真命题,綈p 为假命题,作出直线2x +y =12,2x +y ≤12表示直线及其下方区域,易知命题q 为假命题;命题綈q 为真命题;∴p ∨q 为真,綈p ∨q 为假,p ∧綈q 为真,綈p ∧綈q 为假. 故真命题的编号为①③.15.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解;命题q :若m =19,则f [f (-1)]=0,那么,下列命题为真命题的是____________(填序号).①p ∧q ;②(綈p )∧q ;③p ∧(綈q );④(綈p )∧(綈q ). 答案 ②解析 因为3x >0,当m <0时,m -x 2<0, 所以命题p 为假命题,命题綈p 为真命题; 当m =19时,因为f (-1)=3-1=13,所以f [f (-1)]=f ⎝⎛⎭⎫13=19-f ⎝⎛⎭⎫132=0, 所以命题q 为真命题,命题綈q 为假命题; 逐项检验可知,只有(綈p )∧q 为真命题.16.已知命题p :∃x 0∈R ,(m +1)(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q为假命题,则实数m的取值范围为________.答案(-∞,-2]∪(-1,+∞)解析由命题p:∃x0∈R,(m+1)(x20+1)≤0可得m≤-1;由命题q:∀x∈R,x2+mx+1>0恒成立,得Δ=m2-4<0,可得-2<m<2,若p∧q为真命题,则-2<m≤-1,因为p∧q为假命题,所以m≤-2或m>-1.。
考点简单的逻辑联结词、全称量词与存在量词知识梳理1.简单的逻辑联结词(1) 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联接词.(2) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(3) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(4) 一个命题p的否定记作¬p,读作“非p”或“p的否定”.2.复合命题及其真假判断(1) 复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题.(2) 复合命题p∧q,p∨q,非p以及其真假判断:简记为:p∧q中p、q有假则假,同真则真;p∨q有真为真,同假则假;p与¬p必定是一真一假.3. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“”表示.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,都有p(x)成立”可用符号简记为x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“”表示.含有存在量词的命题,叫做存在性命题.存在性命题“存在M中的一个x,使p(x)成立”可用符号简记为x∈M,p(x),读作“存在一个x属于M,使p(x)成立”.4. 含有一个量词的命题的否定x ∈M ,p (x ),,典例剖析题型一 含有一个量词的命题的否定例1 命题“存在一个无理数,它的平方是有理数”的否定是_________________________. 答案 任意一个无理数,它的平方不是有理数解析 根据特称命题的否定是全称命题可知,原命题的否定为“任意一个无理数,它的平方不是有理数”.变式训练 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :任意x ∈A,2x ∈B ,则p 是________.答案 存在x ∈A,2x ∉B解析 命题p :任意x ∈A,2x ∈B 是一个全称命题,其命题的否定p 应为:存在x ∈A,2x ∉B . 解题要点 ①要写一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”;②在写出全称命题(或存在性命题)的否定时,一般要在两个地方做出变化:一是量词符号,全称量词要改为存在量词,存在量词要改为全称量词;二是命题中结论要进行否定. ③弄清命题的否定与否命题的区别“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论.题型二 复合命题真假判断例2 下列命题中的假命题是________.①存在x ∈R ,sin x =52②存在x ∈R ,log 2x =1 ③任意x ∈R ,(12)x >0 ④任意x ∈R ,x 2≥0 答案 ①解析 因为任意x ∈R ,sin x ≤1<52,所以①是假命题;对于②,存在x =2,log 2x =1;对于③,根据指数函数图象可知,任意x ∈R ,(12)x >0;对于④,根据二次函数图象可知,任意x ∈R ,x 2≥0.变式训练 已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是________.①p∧q②p∧q③p∧q④p∧q答案④解析因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、p为假命题,q为真命题,p∧q、p∧q为假命题,p∧q为真命题,故选④.解题要点若要判断一个含有逻辑联结词的命题即复合命题的真假,其步骤如下:(1)判断复合命题的结构;(2)判断构成这个命题的每个简单命题的真假;(3)依据“或”——有真则真,“且”——有假则假,“非”——真假相反,作出判断即可.题型三由命题真假求参数范围例3命题“存在x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围为________.答案[-22,22]解析由题可知原命题的否定“任意x∈R,2x2-3ax+9≥0”为真命题,因此只需Δ=9a2-4×2×9≤0,即-22≤a≤2 2.变式训练已知命题p:“任意x∈[1,2],x2-a≥0”,命题q:“存在x∈R,使x2+2ax +2-a=0”,若命题“p且q”是真命题,则实数a的取值范围是________.答案{a|a≤-2或a=1}解析由题意知,p为真,则a≤1;q为真,即方程x2+2ax+2-a=0有实数解,从而Δ≥0,解得a≤-2或a≥1,∵“p且q”为真命题,∴p、q均为真命题,∴a≤-2或a=1.解题要点以命题真假为依据求参数的取值范围时,首先求出两命题分别为真时参数满足的条件,然后依据“p且q”“p或q”“¬p”形式命题的真假,列出含有参数的不等式(组)求解.当堂练习x≥”的否定为.1. 命题“对任意x∈R,都有202.若p,q是两个简单命题,且“p或q”是假命题,则必有.(填序号)①p真q真②p真q假③p假q假④p假q真3.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是.(填序号)①¬p或q②p且q③¬p且¬q④¬p或¬q4.已知p:2+2=5,q:3>2,则下列判断正确的是.(填序号)①“p或q”为假,“非q”为假②“p或q”为真,“非q”为假②“p且q”为假,“非p”为假④“p且q”为真,“p或q”为假5.已知命题p:若x>y,则-x<-y,命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是.课后作业1.命题“对任意的x∈R,x3-x2+1≤0”的否定是_______.(填序号)①不存在x∈R,x3-x2+1≤0 ②存在x∈R,x3-x2+1≤0③存在x∈R,x3-x2+1>0 ④对任意的x∈R,x3-x2+1>02.下列命题中正确的是_______.(填序号)①若p∨q为真命题,则p∧q为真命题②“x=5”是“x2-4x-5=0”的充分不必要条件③命题“若x<-1,则x2-2x-3>0”的否定为:“若x≥-1,则x2-2x-3≤0”④已知命题p:x∈R,x2+x-1<0,则¬p:∃x∈R,x2+x-1≥03.已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是_______.(填序号)①p∧q②¬p∧¬q③¬p∧q④p∧¬q4.已知命题p:x0∈R,x20+2x0+2≤0,则¬p为____________________.5.对于下述两个命题p:对角线互相垂直的四边形是菱形;q:对角线互相平分的四边形是菱形.则命题“p∨q”、“p∧q”、“¬p”中真命题的个数为_______.6.下列命题中的假命题是_______.(填序号)①x∈R,2x-1>0 ②x∈N*,(x-1)2>0 ③x∈R,lg x<1 ④x∈R,tan x=2 7.若命题“x0∈R,使得x20+mx0+2m-3<0”为假命题,则实数m的取值范围是_______.答案[2,6]8.已知命题p:x∈R,2x2-2x+1≤0,命题q:x∈R,使sin x+cos x=2,则下列判断:①p且q是真命题;②p或q是真命题;③q是假命题;④非p是真命题其中正确的是_______.(填序号)9.命题“x∈R,|x|≤0”的否定是“________________”.10.若命题“x∈R使x2+2x+m≤0”是假命题,则m的取值范围是______________.11.命题:“对任意k>0,方程x2+x-k=0有实根”的否定是________.12.命题“任意两个等边三角形都相似”的否定为________________________.13.若命题“∀x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是________.当堂练习1. 答案对任意x∈R,使得20x<2.答案③解析∵“p或q”为假命题,∴p,q均为假命题.3.答案④解析不难判断命题p为真命题,命题q为假命题,从而¬p或¬q为真命题.4.答案②解析∵p为假命题,q为真命题,∴p或q真,非q假.5.答案②③解析当x>y时,-x<-y,故命题p为真命题,从而¬p为假命题.当x>y时,x2>y2不一定成立,故命题q为假命题,从而¬q为真命题.由真值表知,①p∧q为假命题;②p∨q为真命题;③p∧(¬q)为真命题;④(¬p)∨q为假命题.课后作业1.答案③2.答案②解析若p∨q为真命题,则p,q有可能一真一假,此时p∧q为假命题,故①错;易知由“x=5”可以得到“x2-4x-5=0”,但反之不成立,故②正确;选项③错在把命题的否定写成了否命题;特称命题的否定是全称命题,故④错.3.答案④解析依题意,命题p是真命题.由x>2⇒x>1,而x>1x>2,因此“x>1”是“x>2”的必要不充分条件,故命题q是假命题,则¬q是真命题,p∧¬q是真命题,选④.4.答案∀x∈R,x2+2x+2>0解析根据含有量词的命题的否定形式,所以该题中¬p为:x∈R,x2+2x+2>0. 5.答案 1解析由题可得p假q假,∴p∧q,p∨q均为假命题,¬p为真命题.6.答案②解析①项,∵x∈R,∴x-1∈R,由指数函数性质得2x-1>0;②项,∵x∈N*,∴当x=1时,(x-1)2=0与(x-1)2>0矛盾;③项,当x=110时,lg 110=-1<1;④项,当x∈R时,tan x∈R,∴x∈R,tan x=2.故选②. 7.答案[2,6]解析 ∵命题“x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,∴命题“x ∈R ,使得x 2+mx +2m -3≥0”为真命题,∴Δ≤0,即m 2-4(2m -3)≤0,∴2≤m ≤6.8.答案 ②④解析 由题意知p 假q 真,故②④正确.9.答案 x ∈R ,|x |>0解析 根据“x ∈M ,p (x )”的否定为“x ∈M ,p (x )”可直接写出答案. 10.答案 m >1解析 由题意得x 2+2x +m >0恒成立,∴4-4m <0,得m >1.11.答案 存在k >0,方程x 2+x -k =0无实根12.答案 存在两个等边三角形,它们不相似13.答案 [-8, 0]解析 当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0. 综上,-8≤a ≤0.。
§1.3 简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p 且q 、p 或q 、非p 的真假判断2.全称量词和存在量词(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示. (2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示. 3.全称命题、特称命题及含一个量词的命题的否定知识拓展1.含有逻辑联结词的命题真假的判断规律(1)p ∨q :p ,q 中有一个为真,则p ∨q 为真,即有真为真. (2)p ∧q :p ,q 中有一个为假,则p ∧q 为假,即有假即假. (3)綈p :与p 的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p ,则q ”的否定是“若p ,则綈q ”,否命题是“若綈p ,则綈q ”.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.( √ ) (2)命题p 和綈p 不可能都是真命题.( √ ) (3)若命题p ,q 中至少有一个是真命题,则p ∨q 是真命题.( √ ) (4)“全等三角形的面积相等”是特称命题.( × )(5)命题綈(p ∧q )是假命题,则命题p ,q 中至少有一个是真命题.( × ) 题组二 教材改编2.[P18B 组]已知p :2是偶数,q :2是质数,则命题綈p ,綈q ,p ∨q ,p ∧q 中真命题的个数为( )A .1B .2C .3D .4 答案 B解析 p 和q 显然都是真命题,所以綈p ,綈q 都是假命题,p ∨q ,p ∧q 都是真命题. 3.[P28T6(4)]命题“正方形都是矩形”的否定是_______________________________. 答案 存在一个正方形,这个正方形不是矩形 题组三 易错自纠4.已知命题p ,q ,“綈p 为真”是“p ∧q 为假”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由綈p 为真知,p 为假,可得p ∧q 为假;反之,若p ∧q 为假,则可能是p 真q 假,从而綈p 为假,故“綈p 为真”是“p ∧q 为假”的充分不必要条件,故选A. 5.下列命题中, 为真命题的是( )A .∀x ∈R ,-x 2-1<0B .∃x 0∈R ,x 20+x 0=-1C .∀x ∈R ,x 2-x +14>0 D .∃x 0∈R ,x 20+2x 0+2<0 答案 A6.若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.答案 1 解析 ∵函数y =tan x 在⎣⎡⎦⎤0,π4上是增函数,∴y max =tan π4=1.依题意知,m ≥y max ,即m ≥1. ∴m 的最小值为1.题型一 含有逻辑联结词的命题的真假判断1.设命题p :函数y =log 2(x 2-2x )的单调增区间是[1,+∞),命题q :函数y =13x+1的值域为(0,1),则下列命题是真命题的为( )A .p ∧qB .p ∨qC .p ∧(綈q )D .綈q 答案 B 解析 函数y =log 2(x 2-2x )的单调增区间是(2,+∞),所以命题p 为假命题.由3x >0,得0<13x +1<1,所以函数y =13x +1的值域为(0,1),故命题q 为真命题.所以p ∧q 为假命题,p ∨q 为真命题,p ∧(綈q )为假命题,綈q 为假命题.故选B.2.(2017·山东)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧(綈q )C .(綈p )∧qD .(綈p )∧(綈q ) 答案 B解析 ∵x >0,∴x +1>1,∴ln(x +1)>ln 1=0. ∴命题p 为真命题,∴綈p 为假命题.∵a >b ,取a =1,b =-2,而12=1,(-2)2=4,此时a 2<b 2,∴命题q 为假命题,∴綈q 为真命题. ∴p ∧q 为假命题,p ∧(綈q )为真命题,(綈p )∧q 为假命题,(綈p )∧(綈q )为假命题.故选B.3.已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :在空间中,对于三条不同的直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a ∥c .对以上两个命题,有以下命题: ①p ∧q 为真;②p ∨q 为假;③p ∨q 为真;④(綈p )∨(綈q )为假. 其中,正确的是________.(填序号)答案 ②解析 命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交. 思维升华 “p ∨q ”“p ∧q ”“綈p ”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p 、q 的真假;(3)确定“p ∧q ”“p ∨q ”“綈p ”等形式命题的真假.题型二 含有一个量词的命题命题点1 全称命题、特称命题的真假典例 (2017·韶关南雄二模)下列命题中的假命题是( )A .∀x ∈R,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x 0∈R ,lg x 0<1D .∃x 0∈R ,tan x 0=2 答案 B解当x ∈N *时,x -1∈N ,可得(x -1)2≥0,当且仅当x =1时取等号,故B 不正确;易知A ,C ,D 正确,故选B. 命题点2 含一个量词的命题的否定典例 (1)命题“∀x ∈R ,⎝⎛⎭⎫13x >0”的否定是( )A .∃x 0∈R ,⎝⎛⎭⎫130x <0 B .∀x ∈R ,⎝⎛⎭⎫13x ≤0 C .∀x ∈R ,⎝⎛⎭⎫13x <0 D .∃x 0∈R ,⎝⎛⎭⎫130x ≤0答案 D解析 全称命题的否定是特称命题,“>”的否定是“≤”.(2)(2017·河北五个一名校联考)命题“∃x 0∈R,1<f (x 0)≤2”的否定形式是( )A .∀x ∈R,1<f (x )≤2B .∃x 0∈R,1<f (x 0)≤2C .∃x 0∈R ,f (x 0)≤1或f (x 0)>2D .∀x ∈R ,f (x )≤1或f (x )>2 答案 D 解析 特称命题的否定是全称命题,原命题的否定形式为“∀x ∈R ,f (x )≤1或f (x )>2”.思维升华 (1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立. (2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; ②对原命题的结论进行否定.跟踪训练 (1)下列命题中的真命题是( )A .∃x 0∈R ,使得sin x 0+cos x 0=32 B .∀x ∈(0,+∞),e x >x +1C .∃x 0∈(-∞,0),2x 0<3x 0D .∀x ∈(0,π),sin x >cos x 答案 B解析 ∵sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2<32,故A 错误;设f (x )=e x -x -1,则f ′(x )=e x -1, ∴f (x )在(0,+∞)上为增函数,又f (0)=0, ∴∀x ∈(0,+∞),f (x )>0,即e x >x +1,故B 正确;当x <0时,y =2x 的图象在y =3x 的图象上方,故C 错误;∵当x ∈⎝⎛⎭⎫0,π4时,sin x <cos x ,故D 错误.故选B. (2)(2017·福州质检)已知命题p :“∃x 0∈R , -x 0-1≤0”,则綈p 为( )A .∃x 0∈R , -x 0-1≥0B .∃x 0∈R , -x 0-1>0C .∀x ∈R ,e x -x -1>0D .∀x ∈R ,e x -x -1≥0答案 C 解析 根据全称命题与特称命题的否定关系,可得綈p 为“∀x ∈R ,e x -x -1>0”,故选C. 题型三 含参命题中参数的取值范围典例 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________.答案 [-12,-4]∪[4,+∞) 解析 若命题p 是真命题,则Δ=a 2-16≥0,即a ≤-4或a ≥4;若命题q 是真命题,则-a4≤3,即a ≥-12.∵p ∧q 是真命题,∴p ,q 均为真,∴a 的取值范围是[-12,-4]∪[4,+∞).(2)已知f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.答案 ⎣⎡⎭⎫14,+∞解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m , 由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.引申探究本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是______答案 ⎣⎡⎭⎫12,+∞ 解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决. 跟踪训练 (1)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞) D .(-3,1) 答案 B解析 原命题的否定为∀x ∈R,2x 2+(a -1)x +12>0,由题意知,其为真命题,即Δ=(a -1)2-4×2×12<0,则-2<a -1<2,即-1<a <3.(2)已知p :∃x 0∈R ,mx 20+1≤0,q :∀x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[2,+∞)B ..(-∞,-2]C .(-∞,-2]∪[2,+∞)D D .[-2,2] 答案 A 解析 依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时, 则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题,得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2. 常用逻辑用语考点分析 有关四种命题及其真假判断、充分必要条件的判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等偏下.解决这类问题应熟练把握各类知识的内在联系. 一、命题的真假判断0e x 0e x 0e x典例1 (1)(2017·佛山模拟)已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立. 答案 B(2)(2018届全国名校大联考)已知命题p :∀x ∈R,3x <5x ;命题q :∃x 0∈R ,x 30=1-x 20,则下列命题中为真命题的是( ) A .p ∧q B .(綈p )∧q C .p ∧(綈q ) D .(綈p )∧(綈q ) 答案 B解析 若x =0,则30=50=1,∴p 是假命题,∵方程x 3=1-x 2有解,∴q 是真命题,∴(綈p )∧q 是真命题.二、充要条件的判断:典例2 (1)(2017·广东广雅中学、江西南昌二中联考)已知命题甲是“⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x 2+xx -1≥0”,命题乙是“{x |log 3(2x +1)≤0}”,则下列说法正确的是( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 解析 x 2+xx -1≥0等价于x (x +1)(x -1)≥0且x ≠1,解得-1≤x ≤0或x >1.由log 3(2x +1)≤0,得0<2x +1≤1,得-12<x ≤0.∴甲是乙的必要条件,但不是乙的充分条件.故选B.(2)(2017·湖北七市联考)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|2=2.当r ∈(0,1)时,直线与圆相离,圆C 上没有到直线的距离为1的点;当r =1时,直线与圆相离,圆C 上只有1个点到直线的距离为1;当r ∈(1,2)时,直线与圆相离,圆C 上有2个点到直线的距离为1;当r =2时,直线与圆相切,圆C 上有2个点到直线的距离为1;当r ∈(2,3)时,直线与圆相交,圆C 上有2个点到直线的距离为1.综上,当r ∈(0,3)时,圆C 上至多有2个点到直线的距离为1,又由圆C 上至多有2个点到直线的距离为1,可得0<r <3,故p 是q 的充要条件,故选C. 三、求参数的取值范围典例3 (1)已知命题p :∀x ∈[0,1],a ≥e x ,命题q :∃x 0∈R ,x 20+4x 0+a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是__________.解析 命题“p ∧q ”是真命题,p 和q 均是真命题.当p 是真命题时,a ≥(e x )max =e ;当q 为真命题时,Δ=16-4a ≥0,a ≤4,所以a ∈[e,4].(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,3,∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是________. 解析 ∵x ∈⎣⎡⎦⎤12,3,∴f (x )≥2x ·4x=4,当且仅当x =2时,f (x )min =4,当x ∈[2,3]时,g (x )min =22+a =4+a ,依题意知f (x )min ≥g (x )min ,即4≥a +4,∴a ≤0. 答案 (-∞,0]课时达标 第3讲一、选择题1.(2016·浙江卷)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2D 解析 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式为“∃x ∈R ,∀n ∈N *,使得n <x 2”.故选D.2.(2019·北京朝阳期中)已知命题p :∀x ∈R,2x >0;命题q :在曲线y =cos x 上存在斜率为2的切线,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题解析 易知命题p 是真命题,对于命题q ,y ′=-sin x ,设切点坐标为(x 0,cos x 0),则切线斜率k =-sin x 0≠2,即不存在x 0∈R ,使得-sin x 0=2,所以命题q 为假命题,所以綈q 为真命题,所以p ∧(綈q )是真命题,故C 项正确.3.(2019·忻州二中期末)已知命题p :x >2是x 2>4的充要条件,命题q :若a c 2>b c2,则a >b ,那么( )A .“p 或q ”为真B .“p 且q ”为真C .p 真q 假D .p ,q 均为假 A 解析 由已知得命题p 是假命题,命题q 是真命题,根据真值表可知A 项正确. 4.已知命题p :∃x 0∈R ,tan x 0=1;命题q :∀x ∈R ,x 2>0.下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧(綈q )是假命题C .命题(綈p )∨q 是真命题D .命题(綈p )∧(綈q )是假命题D 解析 取x 0=π4,有tan π4=1,故命题p 是真命题;当x =0时,x 2=0,故命题q 是假命题.再根据复合命题的真值表,知D 项正确.5.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( )A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)D 解析 命题p 的否定是綈p :∃x ∈R ,ax 2+ax +1<0成立,即不等式ax 2+ax +1<0有解.当a =0时,1<0,不等式无解;当a >0时,要使不等式有解,则a 2-4a >0,解得a >4;当a <0时,不等式显然有解.综上,a 的取值范围是(-∞,0)∪(4,+∞).故选D.6.(2019·太原模拟)已知命题p :∃x 0∈R ,e x 0-mx 0=0,q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .[0,2]C .RD .∅B 解析 若p ∨(綈q )为假命题,则p 假q 真.命题p 为假命题时,有0≤m <e ;命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(綈q )为假命题时,m 的取值范围是[0,2]. 二、填空题7.已知函数f (x )的定义域为(a ,b ),若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则f (a +b )=________.解析 若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则“∀x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=0.答案 08.命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________.解析 由题可知“∀x ∈R,2x 2-3ax +9≥0”为真命题,所以可得Δ=(-3a )2-4×2×9≤0,解得-22≤a ≤2 2. 答案 [-22,22]9.(2019·黄冈中学期中)下列结论:①若命题p :∃x ∈R ,sin x =-1;命题q :∀x ∈R ,x 2-x +1>0;则命题p ∧(綈q )是假命题; ②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________.解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧(綈q )为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确,所以正确结论的序号为①③. 答案 ①③ 三、解答题10.(2019·岳阳一中月考)已知命题p :(x +1)(x -5)≤0,命题q :1-m ≤x ≤1+m (m >0).(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,p ∨q 为真命题,p ∧q 为假命题,求实数x 的取值范围.解析 (1)设使命题p 成立的集合为A ,命题q 成立的集合为B ,则A ={x |-1≤x ≤5},B ={x |1-m ≤x ≤1+m },所以A ⊆B ,所以⎩⎪⎨⎪⎧m >0,1+m ≥5,1-m ≤-1,解得m ≥4.故实数m 的取值范围为[4,+∞).(2)根据条件可知p ,q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧-1≤x ≤5,x >6或x <-4,无解.当p 假q 真时,⎩⎪⎨⎪⎧x >5或x <-1,-4≤x ≤6,解得-4≤x <-1或5<x ≤6.故实数x 的取值范围为[-4,-1)∪(5,6].11.(2019·忻州二中期中)已知命题p :存在a >0,使函数f (x )=ax 2-4x 在(-∞,2]上单调递减;命题q :存在a ∈R ,使∀x ∈R,16x 2-16(a -1)x +1≠0.若命题p ∧q 为真命题,求实数a 的取值范围.解析 若p 为真,则对称轴x =--42a =2a 在区间(-∞,2]的右侧,即2a ≥2,所以0<a ≤1.若q 为真,则方程16x 2-16(a -1)x +1=0无实数根.所以Δ=[-16(a -1)]2-4×16<0,所以12<a <32.因为命题p ∧q 为真命题,所以命题p ,q 都为真,所以⎩⎪⎨⎪⎧0<a ≤1,12<a <32,所以12<a ≤1.故实数a 的取值范围为⎝⎛⎦⎤12,1. 12.已知命题p :∃x ∈[0,2],log 2(x +2)<2m ;命题q :关于x 的方程3x 2-2x +m 2=0有两个相异实数根.(1)若(綈p )∧q 为真命题,求实数m 的取值范围;(2)若p ∨q 为真命题,p ∧q 为假命题,求实数m 的取值范围.解析 令f (x )=log 2(x +2),则f (x )在(-2,+∞)上是增函数,故当x ∈[0,2]时,f (x )最小值为f (0)=1,故若p 为真,则2m >1,m >12;对于q :Δ=4-12m 2>0,即m 2<13时,方程3x 2-2x +m 2=0有两相异实数根,所以-33<m <33. (1)若(綈p )∧q 为真,则实数m 满足⎩⎨⎧m ≤12,-33<m <33,故-33<m ≤12,即实数m 的取值范围为⎝⎛⎦⎤-33,12. (2)若p ∨q 为真命题,p ∧q 为假命题,则p ,q 一真一假,若p 真q 假,则实数m 满足⎩⎨⎧m >12,m ≤-33或m ≥33,即m ≥33; 若p 假q 真,则实数m 满足⎩⎨⎧m ≤12,-33<m <33,即-33<m ≤12.综上所述,实数m 的取值范围为⎝⎛⎦⎤-33,12∪⎣⎡⎭⎫33,+∞.13.[选做题]命题p :f (x )=-x 2+2ax +1-a 在x ∈[0,1]时的最大值不超过2,命题q :正数x ,y 满足x +2y =8,且a ≤2x +1y恒成立,若p ∨(綈q )为假命题,求实数a 的取值范围.解析 当a ≤0时,f (x )max =f (0)=1-a ≤2,解得-1≤a ≤0; 当0<a <1时,f (x )max =f (a )=a 2-a +1≤2,解得0<a <1; 当a ≥1时,f (x )max =f (1)=a ≤2,解得1≤a ≤2. 所以使命题p 为真的a 的取值范围是[-1,2]. 由x +2y =8得x 8+y4=1,又x ,y 都是正数,所以2x +1y =⎝⎛⎭⎫2x +1y ⎝⎛⎭⎫x 8+y 4=12+⎝⎛⎭⎫x 8y +y 2x ≥12+2x 8y ·y2x=1,当且仅当⎩⎪⎨⎪⎧x 8y =y 2x ,x +2y =8,即⎩⎪⎨⎪⎧x =4,y =2时,等号成立,故⎝⎛⎭⎫2x +1y min =1.因为a ≤2x +1y 恒成立,所以a ≤1,所以使命题q 为真的a 的取值范围是(-∞,1].因为p ∨(綈q )为假命题,所以p 假q 真,所以⎩⎪⎨⎪⎧a <-1或a >2,a ≤1,则a <-1,故实数a 的取值范围是(-∞,-1).。