直线与椭圆位置关系专题经典课件讲义.doc
- 格式:pdf
- 大小:188.91 KB
- 文档页数:12
直线与椭圆的位置关系专题讲义知识点1直线与椭圆位置关系、弦长问题:2 2 . .例2、直线y=kx+1与焦点在x轴上的椭圆x /9+y /m=1总有公共点,求实数m的取值范围是( ) A、1/2 < m< 9 B 、9v m< 10 C 、1< m< 9 D 、1v m< 9将直线方程y kx b (或x my b )代入椭圆方程:2 2x2 b2 1(aa bb整理得到关于x (或y)的一个兀一次方程Ax2 Bx C 0 (或Ay2By 当直线l与椭圆相交;0),C 0)当_____________ 直线I与椭圆相切;当_____________ 直线I与椭圆相离。
2 2若直线I : y kx b与椭圆■x21(a ba b弦长公式:0)相交于A, B两点,|AB| ____________________或| AB | ___________________焦点弦:若弦过圆锥曲线的焦点叫焦点弦;通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦叫通径。
通径公式为: 练习、若直线y kx 1(k R)与椭圆例3、求直线x—y+ 1=0被椭圆2x16x2例1.当m为何值时,直线y=x+m与椭圆一162y 1相交?相切?相离?92练习、已知椭圆:—92—1恒有公共点,求实数m的取值范围 ______________m2y 1截得的弦长41'右顶点为A,过左焦点R作倾斜角为三的直线交椭圆于M、N两点,求弦MN的长及AMN的面积。
练习、直线y=mxH与椭圆1(A— (22 /m=( )3r 4(D45 x2+4y2=1有且只有一个交点,则B)- ( C)3知识点2:中点弦问题(点差法)2 2例4 椭圆—Z 1内有一点P (2, 1),求经过P并且以P为中点的弦所在直线方程。
16 4 练习、已知椭圆2 2y x1的一条弦的斜率为75 2513,它与直线x -的交点恰为这条弦的中点M , 求点M的坐标。
直线与椭圆专题讲义题型一:直线与椭圆的位置关系1.若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( ) A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠52.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C : (1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.思维升华:研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.题型二:弦长及弦中点问题命题点1:弦长问题典例 斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( ) A .2 B.455 C.4105 D.8105命题点2:弦中点问题典例 已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 命题点3:椭圆与向量等知识的综合典例 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),e =12,其中F 是椭圆的右焦点,焦距为2,直线l 与椭圆C 交于点A ,B ,线段AB 的中点横坐标为14,且AF →=λFB →(其中λ>1). (1)求椭圆C 的标准方程;(2)求实数λ的值.思维升华:(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2](3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.跟踪训练已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点. (1)若直线l 的方程为y =x -4,求弦MN 的长;(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式.题型三:高考中求椭圆的离心率问题典例1 已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是 典例2如图,设椭圆方程为x 2a2+y 2=1(a >1). (1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.反馈练习1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( ) A .至多为1B .2C .1D .0 2.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.43B.53C.54D.1033.中心为(0,0),一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是( )A.2x 275+2y 225=1 B.x 275+y 225=1 C.x 225+y 275=1 D.2x 225+2y 275=1 4.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线与椭圆C 交于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 23=1 C.x 24+y 23=1 D.x 25+y 24=15.从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24 B.12 C.22 D.326.已知椭圆E 的左、右焦点分别为F 1,F 2,过F 1且斜率为2的直线交椭圆E 于P ,Q 两点,若△PF 1F 2为直角三角形,则椭圆E 的离心率为( )A.53 B.23 C.23 D.137.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是( )A .4B .3C .2D .18.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF ,若|AB |=10,|AF |=6,cos ∠ABF =45,则椭圆C 的离心率e =________. 9.P 为椭圆x 29+y 28=1上的任意一点,AB 为圆C :(x -1)2+y 2=1的任一条直径,则P A →·PB →的取值范围是______.10.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 1的直线l 与椭圆交于A ,B 两点.若|AB |∶|BF 2|∶|AF 2|=3∶4∶5,则椭圆C 的离心率为________.11.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点、上顶点分别为A ,B ,且|AB |=52|BF |. (1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.12.设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.。