高中物理 反冲运动的应用
- 格式:doc
- 大小:135.05 KB
- 文档页数:2
5反冲运动火箭[目标定位] 1.生疏反冲运动,能举出几个反冲运动的实例.2.结合动量守恒定律对反冲现象做出解释;进一步提高运用动量守恒定律分析和解决实际问题的力量.3.了解火箭的飞行原理及打算火箭最终速度大小的因素.一、反冲运动1.反冲:依据动量守恒定律,假如一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必定向相反的方向运动.2.反冲现象的应用及防止(1)应用:农田、园林的喷灌装置是利用反冲使水从喷口喷出时,一边喷水一边旋转,可以自动转变喷水的方向.(2)防止:用枪射击时,由于枪身的反冲会影响射击的精确性,所以用步枪射击时要把枪身抵在肩部,以削减反冲的影响.想一想为什么反冲运动系统动量守恒?答案反冲运动是系统内力作用的结果,虽然有时系统所受的合外力不为零,但由于系统内力远远大于外力,所以系统的总动量是守恒的.二、火箭1.工作原理:火箭的工作原理是反冲运动,其反冲过程动量守恒.它靠向后喷出的气流的反冲作用而获得向前的速度.2.影响火箭获得速度大小的因素(1)喷气速度:现代液体燃料火箭的喷气速度约为2__000~4__000 m/s.(2)火箭的质量比:指火箭起飞时的质量与火箭除燃料外的箭体质量之比,打算于火箭的结构和材料.现代火箭的质量比一般小于10.喷气速度越大,质量比越大,火箭获得的速度越大.一、对反冲运动的理解1.反冲运动的特点及遵循的规律(1)特点:是物体之间的作用力与反作用力产生的效果.(2)条件:①系统不受外力或所受外力之和为零;②内力远大于外力;③系统在某一方向上不受外力或外力分力之和为零;(3)反冲运动遵循动量守恒定律.2.争辩反冲运动应留意的两个问题(1)速度的反向性对于原来静止的整体,抛出部分具有速度时,剩余部分的反冲与抛出部分必定相反.(2)速度的相对性一般都指对地速度.例1图16-5-1质量相等的A、B两球之间压缩一根轻质弹簧,静置于光滑水平桌面上,当用板拦住小球A而只释放B球时,B球被弹出落到距桌边水平距离为s的地面上,如图16-5-1所示.若再次以相同力压缩该弹簧,取走A左边的挡板,将A、B同时释放,则B球的落地点距桌边()A.s2 B.2s C.s D.22s答案D解析挡板拦住A球时,弹簧的弹性势能全部转化为B球的动能,有E p=12m v2B,挡板撤走后,弹性势能被两球平分,则有E p=2×12m v B′2,由以上两式解得v B′=22v B,由于B球抛出后做平抛运动,s=v0t=v02hg所以D对.针对训练图16-5-2如图16-5-2所示是一门旧式大炮,炮车和炮弹的质量分别是M 和m ,炮筒与地面的夹角为α,炮弹出口时相对于地面的速度为v 0.不计炮车与地面的摩擦,求炮身向后反冲的速度v 为________.答案 m v 0cos αM解析 取炮弹与炮车组成的系统为争辩对象,因不计炮车与地面的摩擦,所以水平方向动量守恒.炮弹放射前,系统的总动量为零,炮弹放射后,炮弹的水平分速度为v 0cos α,依据动量守恒定律有:m v 0cos α-M v =0所以炮车向后反冲的速度为v =m v 0cos αM .二、火箭的原理1.火箭燃料燃尽时火箭获得的最大速度由喷气速度v 和质量比Mm (火箭起飞时的质量与火箭除燃料外的箭体质量之比)两个因素打算.2.火箭喷气属于反冲类问题,是动量守恒定律的重要应用.在火箭运动的过程中,随着燃料的消耗,火箭本身的质量不断减小,对于这一类的问题,可选取火箭本身和在相互作用的时间内喷出的全部气体为争辩对象,取相互作用的整个过程为争辩过程,运用动量守恒的观点解决问题.例2 一火箭喷气发动机每次喷出m =200 g 的气体,气体离开发动机喷出时的速度v =1 000 m/s.设火箭质量M =300 kg ,发动机每秒钟喷气20次. (1)当第三次喷出气体后,火箭的速度多大? (2)运动第1 s 末,火箭的速度多大? 答案 (1)2 m/s (2)13.5 m/s解析 火箭喷气属反冲现象,火箭和气体组成的系统动量守恒,运用动量守恒定律求解. (1)选取整体为争辩对象,运用动量守恒定律求解. 设喷出三次气体后火箭的速度为v 3,以火箭和喷出的三次气体为争辩对象,据动量守恒定律得:(M -3m )v 3-3m v =0,故v 3=3m v M -3m=2 m/s(2)发动机每秒钟喷气20次,以火箭和喷出的20次气体为争辩对象,依据动量守恒定律得:(M -20m )v 20-20m v=0,故v 20=20m vM -20m=13.5 m/s.借题发挥 分析火箭类问题应留意的三个问题(1)火箭在运动过程中,随着燃料的燃烧,火箭本身的质量不断减小,故在应用动量守恒定律时,必需取在同一相互作用时间内的火箭和喷出的气体为争辩对象.留意反冲前、后各物体质量的变化.(2)明确两部分物体初、末状态的速度的参考系是否为同一参考系,假如不是同一参考系要设法予以调整,一般状况要转换成对地的速度.(3)列方程时要留意初、末状态动量的方向.反冲物体速度的方向与原物体的运动方向是相反的. 三、反冲运动的应用——“人船模型” 1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题. 2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1.(3)应用此关系时要留意一个问题:即公式v 1、v 2和x 一般都是相对地面而言的. 例3图16-5-3如图16-5-3所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开头从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少?。
6.反冲现象火箭学习目标:1.了解反冲运动和反冲运动在生活中的应用.2.能够应用动量守恒定律解决反冲运动问题.3.知道火箭的飞行原理,了解我国航天技术的发展.一、反冲现象1.定义根据动量守恒定律,如果一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必然向相反的方向运动,这个现象叫作反冲.2.反冲原理反冲运动的基本原理是动量守恒定律,如果系统的一部分获得了某一方向的动量,系统的其他部分就会在这一方向的反方向上获得同样大小的动量.3.公式若系统的初始动量为零,则动量守恒定律的形式变为0=m1v1+m2v2,此式表明,做反冲运动的两部分的动量大小相等、方向相反,而它们的速率与质量成反比.利用动量守恒定律解决反冲问题时,速度通常是以地面为参考系的速度,而不是系统内两物体的相对速度.二、火箭1.原理火箭的飞行应用了反冲的原理,靠喷出气流的反冲作用来获得巨大速度.2.影响火箭获得速度大小的因素一是喷气速度,二是火箭喷出物质的质量与火箭本身质量之比.喷气速度越大,质量比越大,火箭获得的速度越大.1.思考判断(正确的打“√”,错误的打“×”)(1)做反冲运动的两部分的动量一定大小相等,方向相反.(√)(2)章鱼、乌贼的运动利用了反冲的原理.(√)(3)火箭点火后离开地面向上运动,是地面对火箭的反作用力作用的结果.(×)(4)在没有空气的宇宙空间,火箭仍可加速前行.(√)(5)火箭发射时,火箭获得的机械能来自于燃料燃烧释放的化学能.(√)2.运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是() A.燃料推动空气,空气反作用力推动火箭B.火箭发动机用力将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭C.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭D.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭B[火箭工作中,动量守恒,当向后喷气时,则火箭受一向前的推力从而使火箭加速,故只有B正确.]3.(多选)2019年春节上映的国产科幻大片《流浪地球》中有这样的情节:为了自救,人类提出一个名为“流浪地球”的大胆计划,即倾全球之力在地球表面建造上万座发动机,推动地球离开太阳系,用2 500年的时间奔往另外一个栖息之地.这个科幻情节中有反冲运动的原理.现实中的下列运动,属于反冲运动的有()A.汽车的运动B.直升机的运动C.火箭的运动D.反击式水轮机的运动CD[汽车的运动利用了汽车的牵引力,不属于反冲运动,故A错误;直升机的运动利用了空气的反作用力,不属于反冲运动,故B错误;火箭的运动是利用喷气的方式获得动力的,属于反冲运动,故C正确;反击式水轮机的运动利用了水的反冲作用而获得动力,属于反冲运动,故D正确.]对反冲运动的理解取一只药瓶或一个一端有孔的蛋壳,在其盖上钻一小孔(瓶盖与瓶子需密封),再取一块厚泡沫塑料,参照图做成船的样子,并在船上挖一凹坑,以容纳盛酒精的容器(可用金属瓶盖).用两段铁丝,弯成环状以套住瓶的两端,并将铁丝的端头分别插入船中.将一棉球放入容器中,并倒入少量酒精,在瓶中装入半瓶开水.将船放入水中,点燃酒精棉球后一会儿产生水蒸气,当水蒸气从药瓶盖的孔中喷出时,小船便能勇往直前了.小船向前运动体现了什么物理原理?提示:反冲原理.(1)物体的不同部分在内力作用下向相反方向运动.(2)在反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理.(3)在反冲运动中,由于有其他形式的能转化为机械能,所以系统的总动能增加.2.反冲运动的应用与防止(1)利用有益的反冲运动反击式水轮机是使水从转轮的叶片中流出,使转轮由于反冲而旋转,从而带动发电机发电;喷气式飞机和火箭都是靠喷出气流的反冲作用而获得巨大的速度.(2)避免有害的反冲运动射击时,子弹向前飞去,枪身向后发生反冲,这就会影响射击准确性等.3.处理反冲运动应注意的问题(1)速度的方向对于原来静止的整体,抛出部分与剩余部分的运动方向必然相反.在列动量守恒方程时,可任意规定某一部分的运动方向为正方向,则反方向的速度应取负值.(2)相对速度问题在反冲运动中,有时遇到的速度是两物体的相对速度.此类问题中应先将相对速度转换成对地的速度后,再列动量守恒定律方程.(3)变质量问题如在火箭的运动过程中,随着燃料的消耗,火箭本身的质量不断减小,此时必须取火箭本身和在相互作用的短时间内喷出的所有气体为研究对象,取相互作用的这个过程为研究过程来进行研究.【例1】反冲小车静止放在水平光滑玻璃上,点燃酒精,蒸汽将橡皮塞水平喷出,小车沿相反方向运动.如果小车运动前的总质量M=3 kg,水平喷出的橡皮塞的质量m=0.1 kg.(1)若橡皮塞喷出时获得的水平速度v=2.9 m/s,求小车的反冲速度;(2)若橡皮塞喷出时速度大小不变,方向与水平方向成60°角,小车的反冲速度又如何(小车一直在水平方向运动)?思路点拨:(1)小车和橡皮塞组成的系统所受外力之和为零,系统总动量为零.(2)小车和橡皮塞组成的系统在水平方向动量守恒.[解析](1)以橡皮塞运动的方向为正方向,根据动量守恒定律有m v+(M-m)v′=0v′=-mM-m v=-0.13-0.1×2.9 m/s=-0.1 m/s负号表示小车的运动方向与橡皮塞运动的方向相反.(2)以橡皮塞运动的水平分运动方向为正方向,有m v cos 60°+(M-m)v″=0v ″=-m v cos 60°M -m =-0.1×2.9×0.53-0.1m/s =-0.05 m/s 负号表示小车的运动方向与橡皮塞运动的水平分运动的方向相反.[答案] (1)0.1 m/s ,方向与橡皮塞运动的方向相反(2)0.05 m/s ,方向与橡皮塞运动的水平分运动的方向相反反冲运动和碰撞、爆炸有相似之处,相互作用力常为变力,且作用力大,一般都满足内力≫外力,所以反冲运动可用动量守恒定律来处理.[跟进训练]1.如图所示,自动火炮连同炮弹的总质量为M ,当炮管水平,火炮车在水平路面上以v 1的速度向右匀速行驶中,发射一枚质量为m 的炮弹后,自动火炮的速度变为v 2,仍向右行驶,则炮弹相对炮筒的发射速度v 0为( )A.m (v 1-v 2)+m v 2mB.M (v 1-v 2)mC.M (v 1-v 2)+2m v 2mD.M (v 1-v 2)-m (v 1-v 2)m B [炮弹相对地的速度为v 0+v 2.由动量守恒定律得M v 1=( M -m )v 2+m (v 0+v 2),得v 0=M (v 1-v 2)m.]火箭以飞船为参考系,设小物体的运动方向为正方向,则小物体的动量的改变量为Δp 1=Δmu对人和小物体组成的系统,在人抛出小物体的过程中动量守恒,则由动量守恒定律得0=Δp 1+Δp 2,则人的动量的改变量为Δp 2=-Δp 1=-Δmu .设人的速度的改变量为Δv ,因为Δp 2=m Δv ,则由以上表达式可知Δv =-Δmu m .我国早在宋代就发明了火箭,在箭杆上捆一个前端封闭的火药筒,火药点燃后生成的燃气以很大的速度向后喷出,火箭就会向前运动.请思考:(1)古代火箭的运动是否为反冲运动?(2)火箭飞行利用了怎样的工作原理?提示:(1)火箭的运动是反冲运动.(2)火箭靠向后连续喷射高速气体飞行,利用了反冲原理.应用反冲运动,其反冲过程动量守恒.它靠向后喷出的气流的反冲作用而获得向前的速度.2.影响火箭最终速度大小的因素(1)喷气速度:现代火箭发动机的喷气速度约为2 000~5 000 m/s.(2)火箭的质量比:指火箭起飞时的质量与火箭除燃料外的箭体质量之比.现代火箭的质量比一般小于10.喷气速度越大,质量比越大,火箭获得的速度越大.3.火箭喷气属于反冲类问题,是动量守恒定律的重要应用.在火箭运动的过程中,随着燃料的消耗,火箭本身的质量不断减小,对于这一类的问题,可选取火箭本身和在相互作用的时间内喷出的全部气体为研究对象,取相互作用的整个过程为研究过程,运用动量守恒的观点解决问题.【例2】一火箭的喷气发动机每次喷出m=200 g的气体,气体离开发动机喷出时的速度v=1 000 m/s(相对地面),设火箭的质量M=300 kg,发动机每秒喷气20次,求当第三次气体喷出后,火箭的速度为多大?思路点拨:火箭喷气属反冲现象,火箭和气体组成的系统动量守恒,运用动量守恒定律求解.[解析]设喷出三次气体后火箭的速度为v3,以火箭和喷出的三次气体为研究对象,据动量守恒定律,得(M-3m)v3-3m v=0所以v3=3m vM-3m≈2 m/s.[答案] 2 m/s火箭类反冲问题解题要领1.两部分物体初、末状态的速度的参考系必须是同一参考系,且一般以地面为参考系.2.要特别注意反冲前、后各物体质量的变化.3.列方程时要注意初、末状态动量的方向,一般而言,反冲后两物体的运动方向是相反的.[跟进训练]2.总质量为M的火箭以速度v0飞行,质量为m的燃气相对于火箭以速率u向后喷出,则火箭的速度大小为()A.v0+muM B.v0-muMC.v0+mM-m(v0+u) D.v0+muM-mA[设喷出气体后火箭的速度大小为v,则燃气的对地速度为(v-u)(取火箭的速度方向为正方向),由动量守恒定律,得M v0=(M-m)v+m(v-u)解得v=v0+muM,A项正确.]1.下列图片所描述的事例或应用中,没有利用反冲运动原理的是()D[喷灌装置是利用水流喷出时的反冲作用而运动的,章鱼在水中前行和转向利用了喷出的水的反冲作用,火箭发射是利用喷气的方式而获得动力的,利用了反冲运动,故A、B、C不符合题意;码头边轮胎的作用是延长碰撞时间,从而减小作用力,没有利用反冲作用,故D符合题意.]2.质量相等的甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是()A.若甲最先抛球,则一定是v甲>v乙B.若乙最后接球,则一定是v甲>v乙C.只有甲先抛球,乙最后接球,才有v甲>v乙D.无论怎样抛球和接球,都是v甲>v乙B[因甲、乙及篮球组成的系统动量守恒,故最终甲、乙以及篮球的动量之和必为零.根据动量守恒定律有m1v1=(m2+m球)v2,因此最终谁接球谁的速度小,故B正确,A、C、D错误.]3.如图所示,装有炮弹的火炮总质量为m1,炮弹的质量为m2,炮弹射出炮口时对地的速率为v0,若炮管与水平地面的夹角为θ,则火炮后退的速度大小为(设水平地面光滑) ()A.m 2m 1v 0B.m 2v 0m 1-m 2C.m 2v 0cos θm 1-m 2D.m 2v 0cos θm 1C [炮弹和火炮组成的系统水平方向动量守恒,0=m 2v 0cos θ-(m 1-m 2)v ,得v =m 2v 0cos θm 1-m 2,选项C 正确.] 4.(多选)质量为m 的人在质量为M 的小车上从左端走到右端,如图所示,当车与地面摩擦不计时,那么( )A .人在车上行走,若人相对车突然停止,则车也突然停止B .人在车上行走的平均速度越大,则车在地面上移动的距离也越大C .人在车上行走的平均速度越小,则车在地面上移动的距离就越大D .不管人以什么样的平均速度行走,车在地面上移动的距离相同 AD [由于地面光滑,则人与车组成的系统动量守恒得:m v 人=M v 车,可知A 正确;设车长为L ,由m (L -x 车)=Mx 车得,x 车=m M +mL ,车在地面上移动的位移大小与人的平均速度大小无关,故D 正确,B 、C 均错误.]。
反冲问题【学习目标】1.知道什么是反冲运动,理解反冲运动的特点2.利用反冲运动的特点解决常见的问题3.知道火箭的飞行原理及用途问题一:反冲运动的理解1.如图所示,自行火炮连同炮弹的总质量为M,当炮管水平,火炮车在水平路面上以v1的速度向右匀速行驶中,发射一枚质量为m的炮弹后,自行火炮的速度变为v2,仍向右行驶,则炮弹相对炮筒的发射速度v0为()A. B.C. D.问题二:人船模型2.一辆小车置于光滑水平桌面上,车左端固定水平弹簧枪,右端安一网兜。
若从弹簧枪中发射一粒弹丸,恰好落在网兜内,结果小车将(空气阻力不计)()A.向左移一段距离B.留在原位置C.向右移一段距离D.做匀速直线运动问题三:反冲运动的综合问题3.A车的质量M1=20 kg,车上的人质量M=50 kg,他们一起从光滑的斜坡上h=0.45 m的高处由静止开始向下滑行,并沿光滑的水平面向右运动;此时质量M2=50 kg的B车正以速度v0=1.8 m/s沿光滑水平面向左迎面而来.为避免两车相撞,在两车相距适当距离时,A车上的人跳到B车上.为使两车不会发生相撞,人跳离A车时,相对于地面的水平速度应该多大?(g取10 m/s2)知识点1 反冲运动1.反冲运动的定义根据动量守恒定律,原来静止的系统在内力的作用下分裂成两个部分,当其中一部分向某个方向运动时,另一部分向相反方向运动,这就叫做反冲运动。
2.反冲运动的原理反冲运动是系统内力作用的结果。
在反冲运动的过程中,如果所受到的外力远远小于内力,那么反冲运动遵循动量守恒定律。
3.表达式若反冲运动前系统是静止的,则根据动量守恒定律有Mv1+mv2=0。
此式表明做反冲运动的两部分,它们的动量大小相等,方向相反,而它们的速率则与质量成反比。
4.反冲运动的特点(1)物体的不同部分在内力作用下向相反方向运动;(2)在反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理;(3)在反冲运动中,由于有其他形式的能转化为机械能,所以系统的总动能增加。
动量守恒定律的应用(反冲)【学习目标】1.了解什么是反冲运动和反冲运动在生活中的应用;2.知道火箭的飞行原理和主要用途;3.了解我国航天技术的发展.【要点梳理】要点诠释:要点一、反冲运动1.反冲运动(1)反冲:根据动量守恒定律,如果一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必然向相反的方向运动.这个现象叫做反冲.(2)反冲运动的特点:反冲运动是相互作用的物体之间的作用力与反作用力产生的效果.反冲运动过程中,一般满足系统的合外力为零或内力远大于外力的条件,因此可以运用动量守恒定律进行分析.(3)反冲现象的应用及防止:反冲是生活和生产实践中常见的一种现象,在许多场合,反冲是不利的,如大炮射击时,由于炮身的反冲,会影响炮弹的出口速度和准确性.为了减小反冲的影响,可增大炮身的阻力.但还有许多场合,恰好是利用了反冲,如反击式水轮机是应用反冲而工作的、喷气式飞机和火箭是反冲的重要应用,它们都是靠喷出气流的反冲作用而获得巨大速度的.(4)理解反冲运动与动量守恒定律.、组成的系统,A对B的作用反冲运动的产生是系统内力作用的结果,两个相互作用的物体A B力使B获得某一方向的动量,B对A的反作用力使A获得相反方向的动量,从而使A沿着与B的运动方向相反的方向做反冲运动.实际遇到的动量守恒问题通常有以下三种:①系统不受外力或所受外力之和为零,满足动量守恒的条件,可以用动量守恒定律解决反冲运动问题.②系统虽然受到外力作用,但内力远远大于外力,外力可以忽略,也可以用动量守恒定律解决反冲运动问题.③系统虽然所受外力之和不为零,系统的动量并不守恒,但系统在某一方向上不受外力或外力在该方向上的分力之和为零,则系统的动量在该方向上的分量保持不变,可以用该方向上动量守恒解决反冲运动问题.(5)在讨论反冲运动问题时,应注意以下几点.①速度的反向性.对于原来静止的整体,抛出部分具有速度时,剩余部分的反冲是相对于抛出部分来说的,两者运动方向必然相反.在列动量守恒方程时,可任意规定某一部分的运动方向为正方向,则反方向的另一部分的速度应取负值.质量为M 的物体以对地速度v 抛出一个质量为m 的物体,研究剩余部分对地反冲速度时,设v 的方向为正.列出的方程式为()0mv M m v +=-', 得'mv v M m=--.由于v '为待求速度,事先可不考虑其方向,由计算结果为负值,表示剩余部分的运动方向与抛出部分速度力向相反.由于我们已明确剩余部分与抛出部分反向,因此可直接列出两部分动量大小相等方程.即上例可列式为()'mv M m v =-, 'mv v M m=--.其中v '为剩余部分速率.②速度的相对性.反冲运动中存在相互作用的物体间发生相对运动,已知条件中告知的常常是物体的相对速度,在应用动量守恒定律时,应将相对速度转换为绝对速度(一般为对地速度).2.火箭(1)火箭:现代火箭是指一种靠喷射高温高压燃气获得反作用力向前推进的飞行器,是反冲运动的典型应用之一.(2)火箭的工作原理:动量守恒定律.当火箭推进剂燃烧时,从尾部喷出的气体具有很大的动量,根据动量守恒定律,火箭获得大小相等、方向相反的动量,因而发生连续的反冲现象,随着推进剂的消耗,火箭的质量逐渐减小,速度不断增大,当推进剂燃尽时,火箭即以获得的速度沿着预定的空间轨道飞行. (3)火箭飞行能达到的最大飞行速度,主要取决于两个因素: ①喷气速度:现代液体燃料火箭的喷气速度约为2.5 km/s ,提高到3 4 km/s ~需很高的技术水平. ②质量比(火箭开始飞行时的质量与火箭除燃料外的箭体质量之比),现代火箭能达到的质量比不超过10.(4)现代火箭的主要用途:利用火箭作为运载工具,例如发射探测仪器、常规弹头和核弹头、人造卫星和宇宙飞船.(5)我国的火箭技术已跨入了世界先进行列.要点二、反冲运动的模型 1.“人船模型”——反冲运动【例】如图所示,长为l 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?【解析】选人和船组成的系统为研究对象,由于人从船头走到船尾的过程中,系统在水平方向不受外力作用,所以水平方向动量守恒,人起步前系统的总动量为零.当人起步加速前进时,船同时向后加速运动;当人匀速前进时,船同时向后匀速运动,当人停下来时船也停止.设某一时刻人对地的速度为2v ,船对地的速度为1v ,选人前进的方向为正方向,根据动量守恒定律有:210mv Mv =-,即:21v Mv m=. 因为在人从船头走到船尾的整个过程中,每一时刻系统都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量成反比.从而可以得出判断:在人从船头走向船尾的过程中,人和船的平均速度也跟它们的质量成反比,即对应的平均动量12Mv mv =,而位移s vt =,所以有12Ms ms =,即21s Ms m=. 由图可知12s s l +=,解得1ms l M m =+,2M s l M m =+,12s s l s +==人相对船.“人船模型”是利用平均动量守恒求解的一类问题.适用条件是:(1)系统由两个物体组成且相互作用前静止,系统总动量为零;(2)在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向),注意两物体的位移是相对同一参照物的位移.在解题时要画出各物体的位移关系草图,找出各长度间的关系.此类问题也可以根据静止系统不受外力、系统质心位置不变的道理求解.利用这一模型还可以推广到其他问题上来解决大量的实际问题.2.火箭的最终速度火箭的工作原理就是动量守恒定律.当火箭推进剂燃烧时,从尾部喷出的气体具有很大的动量,根据动量守恒定律,火箭就获得数值相等、方向相反的动量,因而发生连续的反冲现象.随着推进剂的消耗,火箭逐渐减轻,加速度不断增大.当推进剂烧尽时,火箭即以获得的速度沿着预定的空间轨道飞行.根据动量守恒定律可以推导出单级火箭的最终速度公式(设火箭开始飞行时速度为零): 0lnsM v u M =, 式中u 是燃烧气体相对于火箭的喷射速度,0M 是火箭开始时的总质量,s M 是火箭喷气终了时剩下的壳体及其他附属设备的总质量,sM M 通常称为火箭的质量比. 上式是在未考虑空气阻力和地球引力的情况下推导出来的,由于空气阻力和地球引力的影响,火箭速度达不到公式中所给出的数值.但从这一公式可以看到提高火箭速度有两个办法,一是提高气体的喷射速度,二是提高质量比.而提高喷射速度的办法比提高质量比的办法更有效,但喷射速度的提高也有一定限度.【典型例题】类型一、反冲运动中的极值例1、(2014 长葛市三模)如下图所示,光滑水平地面上停放着甲、乙两辆相同的平板车,一根轻绳跨过乙车的定滑轮(不计定滑轮的质量和摩擦),绳的一端与甲车相连,另一端被甲车上的人拉在手中,已知每辆车和人的质量均为30 kg ,两车间的距离足够远.现在人用力拉绳,两车开始相向运动,人与甲车始终保持相对静止,当乙车的速度为0.5 m/s 时,停止拉绳.求(1)人在拉绳过程中做了多少功?(2)若人停止拉绳后,至少以多大速度立即从甲车跳到乙车才能使两车不发生碰撞?【答案】(1)W =5.625 J.;(2)当人跳离甲车的速度大于或等于0.5m/s 时,两车才不会相撞 【解析】(1)设甲、乙两车和人的质量分别为m 甲、m 乙和m 人,停止拉绳时,甲车的速度为v 甲,乙车的速度为v 乙,由动量守恒定律得 (m 甲+m 人)v 甲=m 乙v 乙 求得v 甲=0.25 m/s由功能关系可知,人拉绳过程做的功等于系统动能的增加量. W =12(m 甲+m 人)v 2甲+12m 乙v 2乙=5.625 J. (2)设人跳离甲时人的速度方向为正,大小为v 人,甲车的速度为'v 甲,人离开甲车前后由动量守恒定律得:(m +m )=m +m v v v 甲甲甲甲人人人’人跳到乙车时,人与车共同速度为'v 乙:()m v m v m m v -=+乙乙乙乙人人人’ 若两车不碰撞,则''v v ≤甲乙 代入得: 0.5m/s v ≥人当人跳离甲车的速度大于或等于0.5m/s 时,两车才不会相撞 【总结升华】注意不同物理过程中的不同研究对象。
反冲运动的应用
反冲运动很早就被人们应用。
根据文字记载,我国古代已是硕果累累。
三国时期,诸葛亮进攻郝昭时,“昭以火箭逆射云梯”。
唐末宋初发明火药后,《武林旧事》记载:“烟火起轮、走线流星”。
“流星”、“起火”就是利用火药点燃后产生的喷射推进力而前进的。
明代出版的《武备志》中记载了我国古代许多利用反冲运动制成的武器。
如“一窝蜂”、“火龙箭”、“火龙出水”、“飞空击贼震天雷炮”和“神火飞鸦”等。
最早的载人火箭的记录是明代一名叫万户的人,他坐在绑有几十支火箭的椅子上。
手拿两个大风筝,叫人点燃火箭,想使自己飞上天去,但他失败了,而且为此献出了生命。
他的为科学献身的精神是令人敬佩和值得我们学习的。
反冲运动在现代科学技术和国防现代化中也有广泛的应用。
反击式水轮机是大型水力发电站应用最广泛的水轮机。
它是靠水流的反冲作用旋转的。
我国早在70年代就能生产转轮直径5.5米,质量110吨,最大功率达30万千瓦的反击式水轮机。
喷气式飞机通过连续不断地向后喷射高速燃气,可以得到超过音速的飞行速度。
反冲运动并不是任何情况都是有利的。
例如为了减小大炮射击时反冲运动的影响,要在炮身上安装自动迅速复位的装置,后来还发明了无后坐力炮。