电力拖动控制系统
- 格式:doc
- 大小:245.00 KB
- 文档页数:4
电力拖动自动控制系统1. 介绍1.1 任务背景电力拖动自动控制系统是一种能够通过电力传动实现自动控制的技术系统。
该系统通过电动机驱动机械传动装置,实现对机械设备的运动控制和工作过程的自动化。
在工业生产中,电力拖动自动控制系统被广泛应用于各种生产过程中,提高了生产效率、质量和安全性。
1.2 目标本教案旨在介绍电力拖动自动控制系统的原理、应用和发展趋势,帮助学生理解和掌握该技术的基本概念、工作原理和应用场景,并培养学生的动手实践能力和解决问题的能力。
2. 原理2.1 电力拖动原理电力拖动自动控制系统的核心是电动机,通过电动机的转动来驱动机械设备。
电动机将电能转化为机械能,通过机械传动装置将动力传递给工作设备。
电动机的转速和扭矩可以通过控制电机的电压、电流等参数来实现调节。
2.2 控制原理电力拖动自动控制系统通过控制电动机的参数来实现对设备的自动控制。
控制系统可以根据预设的工艺要求和工作条件,自动调节电动机的转速、运行时间等参数。
控制系统通常包括传感器、执行器、控制器和人机界面等组成部分。
3. 应用3.1 工业应用电力拖动自动控制系统在工业领域有广泛的应用,例如生产线上的输送系统、机械加工设备、装配线等。
通过电力拖动自动控制系统,可以实现设备的精确控制,提高生产效率和质量,同时减少人力投入和工作风险。
3.2 交通运输应用电力拖动自动控制系统在交通运输领域也有重要的应用。
例如,电动车、地铁、高铁等交通工具都采用了电力拖动自动控制系统来驱动车辆。
通过该系统,可以实现对车辆的自动运行、刹车和悬挂等控制,提高了交通运输的安全性和舒适性。
4. 发展趋势4.1 智能化随着人工智能和物联网技术的发展,电力拖动自动控制系统也呈现出智能化的趋势。
未来的电力拖动自动控制系统将更加智能化,能够自动学习和优化控制策略,实现更高效、更精准的控制。
4.2 节能环保电力拖动自动控制系统也将朝着节能环保的方向发展。
通过优化控制策略和节能设备的应用,可以减少能源消耗和环境污染,实现可持续发展。
电力拖动自动控制系统电力拖动自动控制系统简介电力拖动自动控制系统包括:直流调速系统和交流调速系统。
直流调速系统包括:直流调速方法、直流调速电源和直流调速控制。
交流调速系统包括:交流调速系统的主要类型、交流变压调速系统、交流变频调速系统、绕线转子异步电机双馈调速系统——转差功率馈送型调速系统和同步电动机变压变频调速系统。
电力拖动自动控制系统课程内容介绍第一篇直流调速系统闭环反馈直流调速系统着重讨论基本的闭环控制系统及其分析与设计方法。
1.1 直流调速系统用的可控直流电源1.2 晶闸管-电动机系统(V-M系统)的主要问题1.3 直流脉宽调速系统的主要问题1.4 反馈控制闭环直流调速系统的稳态分析和设计1.5 反馈控制闭环直流调速系统的动态分析和设计1.6 比例积分控制规律和无静差调速系统根据前面分析,调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源。
本节介绍几种主要的可控直流电源。
常用的可控直流电源有以下三种旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。
静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。
直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。
1.1.1 旋转变流机组G-M系统工作原理由原动机(柴油机、交流异步或同步电动机)拖动直流发电机 G 实现变流,由 G 给需要调速的直流电动机 M 供电,调节G 的励磁电流 if 即可改变其输出电压 U,从而调节电动机的转速 n 。
这样的调速系统简称G-M系统,国际上通称Ward-Leonard系统。
1.1.2 静止式可控整流器V-M系统工作原理晶闸管-电动机调速系统(简称V-M系统,又称静止的Ward-Leonard系统),图中VT 是晶闸管可控整流器,通过调节触发装置 GT 的控制电压 Uc 来移动触发脉冲的相位,即可改变整流电压Ud ,从而实现平滑调速。
电力拖动自动控制系统简介电力拖动自动控制系统是一种通过电动机及其控制设备来实现机械设备运动的自动化控制系统。
它广泛应用于各个工业领域,如船舶、电厂、交通运输等。
电力拖动自动控制系统能够对电动机进行电压、电流和频率的调节,实现对被控制设备的精确控制。
通过采用先进的控制算法和传感器反馈,可以实现高效的运动控制、准确的位置控制和稳定的速度控制。
本文将从以下几个方面详细介绍电力拖动自动控制系统的组成、工作原理以及应用。
组成电力拖动自动控制系统由以下几个主要组成部分构成:1.电动机:电动机作为电力拖动自动控制系统的核心部件,负责将电能转化为机械能,驱动被控制设备运动。
2.控制器:控制器是电力拖动自动控制系统的大脑,负责对电动机进行控制和调节。
它接收传感器反馈的信号,并根据预设的控制算法进行运算,实现对电动机的精确控制。
3.传感器:传感器用于获取被控制设备的状态信息,如位置、速度、温度等。
传感器的反馈信号用于控制器进行实时调节,确保被控制设备的运动精确控制。
4.执行器:执行器负责将控制器输出的控制信号转化为实际的电压、电流或频率输出,通过控制电动机来实现对被控制设备的运动。
工作原理电力拖动自动控制系统的工作原理可以简述如下:首先,传感器捕捉被控制设备的状态信息,并将其转化为模拟信号或数字信号。
这些信号经过放大、滤波等处理后,传送给控制器。
控制器接收传感器信号后,根据预设的控制算法进行运算,并输出控制信号。
这些控制信号经过执行器的转化,最终作用于电动机。
电动机根据控制信号的输入,改变其电压、电流或频率,实现对被控制设备的运动。
电动机的运动状态被传感器继续监测,反馈给控制器进行调节。
通过不断的传感器监测和控制器调节,电力拖动自动控制系统能够实现对被控制设备的高精度控制和稳定运行。
应用电力拖动自动控制系统广泛应用于各个工业领域,其中一些常见的应用包括:1.船舶:电力拖动自动控制系统在船舶中起着关键作用,可以实现对推进器、舵机和起重设备等的精确控制,提高船舶的安全性和操纵性。
第三章★微机数字控制系统:以微处理器为核心的数字控制系统(简称微机数字控制系统)★微型计算机数字控制的主要特点:微机数字控制系统的稳定性好,可靠性高,可以提高控制性能,此外,还拥有信息存储、数据通信和故障诊断等模拟控制系统无法实现的功能。
★由于计算机只能处理数字信号,因此,与模拟控制系统相比,微机数字控制系统的主要特点是离散化和数字化★数字控制直流调速系统的组成方式大致可分为三种: 1. 数模混合控制系统 2.数字电路控制系统 3. 计算机控制系统★数模混合控制系统特点:转速采用模拟调节器,也可采用数字调节器电流调节器采用数字调节器;脉冲触发装置则采用模拟电路★数字电路控制系统特点:除主电路和功放电路外,转速、电流调节器,以及脉冲触发装置等全部由数字电路组成★在数字装置中,由计算机软硬件实现其功能,即为计算机控制系统。
系统的特点:双闭环系统结构,采用微机控制;全数字电路,实现脉冲触发、转速给定和检测;采用数字PI 算法,由软件实现转速、电流调节。
★微机数字控制双闭环直流调速系统硬件结构系统由以下部分组成:主电路;检测电路;控制电路;给定电路;显示电路★主回路——微机数字控制双闭环直流调速系统主电路中的UPE 有两种方式:直流PWM 功率变换器;晶闸管可控整流器★检测回路——检测回路包括电压、电流、温度和转速检测,其中:电压、电流和温度检测由A/D 转换通道变为数字量送入微机;转速检测用数字测速★转速检测有模拟和数字两种检测方法。
对于要求精度高、调速范围大的系统,往往需要采用旋转编码器测速,即数字测速。
★故障综合——利用微机拥有强大的逻辑判断功能,对电压、电流、温度等信号进行分析比较,若发生故障立即进行故障诊断,以便及时处理,避免故障进一步扩大。
这也是采用微机控制的优势所在。
★数字控制器——数字控制器是系统的核心,可选用单片微机或数字信号处理器(DSP)★系统给定——系统给定有两种方式:(1)模拟给定:模拟给定是以模拟量表示的给定值,例如给定电位器的输出电压。
电力拖动自动控制系统(名词解释)一、名词解释:1.G-M系统(旋转变流机组):由交流电动机拖动直流发电机G实现变流,由G给需要调速的直流电动机M供电,调节G的励磁If即改变其输出电压U,从而调节电动机的转速n,这样的调速系统简称G-M系统,国际上统称Ward-Leonard系统。
2.V-M 系统(晶闸管-电动机调速系统):通过调解器触发装置GT的控制电压Uc来移动触发脉冲的相位,即可改变平均整流电压Ud,从而实现评平滑调速,这样的系统叫V-M系统。
3. (SPWM):按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波雨期望波的争先等效,这种调制方法称作正弦波脉宽调制(SPWM)。
4.(旋转编码器的测速方法)M法测速——在一定时间Tc内测取旋转编码器输出的脉冲个数M1,用以计算这段时间内的平均转速,称作M法测速。
T法测速——在编码器两个相邻输出脉冲间隔时间内,,用一个计数器对已知频率为f0的高频时钟脉冲进行计数,并由此来计算转速,称作T法测速。
M/T法测速——既检测Tc时间内旋转编码器输出的脉冲个数M1,又检测用一时间间隔的高频时钟脉冲个数M2,用来计算转速,称作M/T法测速。
5.无刷电动机:磁极仍为永磁材料,但输出方波电流,气隙磁场呈梯形波分布,这样就更接近于直流电动机,但没有电刷,故称无刷电动机(梯形波永磁同步电动机)。
6.DTC(直接转矩控制系统):它是利用转矩反馈直接控制电机的电磁转矩,是既矢量控制系统之后发展起来的另一种高动态性能的交流电动机变压变频调速系统。
7.恒Eg/f1=C控制:对于三相异步电动机,要保持气隙磁通不变,当频率从额定值向下调节时,必须同时降低气隙磁通在在定子每相中感应电动势的有效值Eg,使Eg/f1=恒定值,像这样的控制方法叫恒Eg/f1=C控制。
(譬如,对于异步电动机,如果在电压-频率协调控制中,恰当地提高电压Us的数值,使它在克服钉子阻抗压降以后,能维持Eg/f1为恒值,这种控制方法叫Eg/f1=C控制。
1.运动控制系统是由电动机、功率放大与变换装置、控制器及相应的传感器等构成,交流调速系统取代直流调速系统已成为不争的事实。
2.V-M系统:晶闸管整流器—电动机调速系统;SPVWM:电压空间矢量PWM控制3.直流PWM调速系统:脉宽调整变换器—直流电动机调速系统;脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电动机转速4.泵升电压:当系统工作在逆变状态时,会对滤波电路中滤波电容进行充电,使电容两端电压升高5.静特性:表示闭环系统电动机转速与负载电流(转矩)间的稳态关系6.有静差调速系统:在比例控制调速系统中,存在扰动引起的稳态误差;7.无静差调速系统:对于积分控制和比例积分控制系统,由阶跃扰动引起的稳态误差为0;8.电流截止负反馈:当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。
9.准时间最优控制:在设备物理上的允许条件下,实现最短时间的控制;10.双闭环调速系统:在电流、转速反馈控制系统中,从闭环结构上看,由电流环在里面构成的内环和由转速环在外面构成的外环,两个闭环构成的控制系统称作双闭环调速系统;11.可逆调速系统:可以实现电机正反转,具有四象限运行功能的调速系统称为可逆调速系统;12.环流的定义:采用两组晶闸管反并联的可逆V-M系统,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流(1)静态环流——两组可逆线路在一定控制角下稳定工作时出现的环流,其中又有两类:直流平均环流——由晶闸管装置输出的直流平均电压所产生的环流称作直流平均环流。
瞬时脉动环流——两组晶闸管输出的直流平均电压差为零,但因电压波形不同,瞬时电压差仍会产生脉动的环流,称作瞬时脉动环流。
(2)动态环流——仅在可逆V-M系统处于过渡过程中出现的环流。
Φ-=e K IR U n 一、复习:直流调速系统问题1-1:电机的分类? ① 发电机(其他能→电能)直流发电机 交流发电机② 电动机(电能→其他能) 直流电动机: 有换向器直流电动机(串励、并励、复励、他励)无换向器直流电动机(又属于一种特殊的同步电动机)交流电动机:同步电动机异步电动机:鼠笼式绕线式: 伺服电机旋转变压器控制电机 自整角机力矩电机测速电机步进电机(反应式、永磁式、混合式)问题1-2:衡量调速系统的性能指标是哪些?① 调速范围D=n max /n min =n nom /n min② 静差率S=△n nom /n 0*100%对转差率要求高,同时要求调速范围大(D大S 小)时,只能用闭环调速系统。
③ 和负载匹配情况:一般要求:恒功率负载用恒功率调速,恒转矩负载用恒转矩调速。
问题1-3:请比较直流调速系统、交流调速系统的优缺点,并说明今后电力传动系统的发展的趋势.* 直流电机调速系统优点:调速范围广,易于实现平滑调速,起动、制动性能好,过载转矩大,可靠性高,动态性能良好。
缺点:有机械整流器和电刷,噪声大,维护困难;换向产生火花,使用环境受限;结构复杂,容量、转速、电压受限。
* 交流电机调速系统(正好与直流电机调速系统相反)优点:异步电动机结构简单、坚固耐用、维护方便、造价低廉,使用环境广,运行可靠,便于制造大容量、高转速、高电压电机。
大量被用来拖动转速基本不变的生产机械。
缺点:调速性能比直流电机差。
* 发展趋势:用直流调速方式控制交流调速系统,达到与直流调速系统相媲美的调速性能;或采用同步电机调速系统.问题1-4:直流电机有哪几种?直流电机调速方法有哪些?请从调速性能、应用场合和优缺点等方面进行比较. 哪些是有级调速?哪些是无级调速?直流电动机中常见的是有换向器直流电动机,可分为串励、并励、复励、他励四种,无换向器直流电动机属于一种特殊的同步电动机。
根据直流电机的转速公式,调速方法有变压调速、变电阻调速和变转差率调速。
★采用计算机控制电力传动系统的优越性在于:(1)可显著提高系统性能。
采用数字给定、数字控制和数字检测,系统精度大大提高可根据控制对象的变化,方便地改变控制器参数,以提高系统抗干扰能力(2)可采用各种控制策略。
可变参数PID和PI控制;自适应控制;模糊控制;滑模控制;复合控制。
(3)可实现系统监控功能。
状态检测;数据处理、存储与显示;越限报警;打印报表等。
★数字测速方法:1. 旋转编码器:光电转换;增量式旋转编码器;
脉冲数字(P/D)转换方法:(1)M法—脉冲直接计数方法;(2)T 法—脉冲时间计数方法;(3)M/T法—脉冲时间混合计数方法
M法测速:工作原理:由计数器记录PLG发出的脉冲信号;定时器每隔时间T c向CPU发出中断请求INTt;CPU响应中断后,读出计数值M1,并将计数器清零重新计数;根据计数值M 计算出对应的转速值n。
★计算公式:式中Z为PLG每转输出的脉冲个数;
★M法测速的分辨率:
★M法测速误差率:在上式中,Z 和T c均为常值,因此转速n 正比于脉冲个数。
高速时Z大,量化误差较小,随着转速的降低误差增大,转速过低时将小于1,测速装置便不能正常工作。
所以,M法测速只适用于高速段。
★T法测速:工作原理:计数器记录来自CPU的高频脉冲f0;PLG每输出一个脉冲,中断电路向CPU发出一次中断请求;CPU 响应INTn中断,从计数器中读出计数值M2,并立即清零,重新计数。
★计算公式:
★T法测速的分辨率:
★T法测速误差率:低速时,编码器相★邻脉冲间隔时间长,测得的高频时钟脉冲个数M2多,所以误差率小,测速精度高,故T法测速适用于低速段。
★两种测速方法的比较:M法测速在高速段分辨率强;T法测速在低速段分辨率强。
因此,可以将两种测速方法相结合,取长补短。
既检测T c时间内旋转编码器输出的脉冲个数M1,又检测同一时间间隔的高频时钟脉冲个数M2,用来计算转速,称作M/T法测速。
★M/T法测速:电路结构
★工作原理:T0定时器控制采样时间;M1计数器记录PLG脉冲;M2计数器记录时钟脉冲。
★计算公式:
★分辨率:
★检测精度:低速时M/T法趋向于T法,在高速段M/T法相当于T法的M1次平均,而在这M1 次中最多产生一个高频时钟脉冲的误差。
因此,M/T法测速可在较宽的转速范围内,具有较高的测速精度。
由于M/T法的计数值M1和M2都随着转速的变化而变化,高速时,相当于M法测速,最低速时,M1=1,自动进入T法测速。
因此M/T法测速能适用的转速范围明显大于前两种。
是目前广泛应用的一种测速方法。
★起动过程分析:
双闭环直流调速系统突加给定电压U*n由静止状态起动时,转速和电流的动态过程示于下图。
1. 起动过程:由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三种情况,整个动态过程就分成图中标明的I、II、III三个阶段。
第I阶段电流上升的阶段(0 ~ t1)突加给定电压U*n 后,I d 上升,当I d小于负载电流I dL 时,电机还不能转动。
当I d ≥I dL后,电机开始起动,由于机电惯性作用,转速不会很快增长,因而转速调节器ASR的输入偏差电压的数值仍较大,其输出电压保持限幅值U*im,强迫电流I d 迅速上升。
直到,I d = I dm ,U i= U*im电流调节器很快就压制I d了的增长,标志着这一阶段的结束。
在这一阶段中,ASR很快进入并保持饱和状态,而ACR一般不饱和。
第II 阶段恒流升速阶段(t1 ~ t2)
在这个阶段中,ASR始终是饱和的,转速环相当于开环,系统成为在恒值电流U*im 给定下的电流调节系统,基本上保持电流I d恒定,因而系统的加速度恒定,转速呈线性增长。
与此同时,电机的反电动势E 也按线性增长,对电流调节系统来说,E 是一个线性渐增的扰动量,为了克服它的扰动,U d0和U c也必须基本上按线性增长,才能保持I d恒定。
当ACR采用PI调节器时,要使其输出量按线性增长,其输入偏差电压必须维持一定的恒值,也就是说,I d应略低于I dm。
恒流升速阶段是起动过程中的主要阶段。
为了保证电流环的主要调节作用,在起动过程中ACR是不应饱和的,电力电子装置UPE 的最大输出电压也须留有余地,这些都是设计时必须注意的。
第Ⅲ阶段转速调节阶段(t2 以后)
当转速上升到给定值时,转速调节器ASR的输入偏差减少到零,但其输出却由于积分作用还维持在限幅值U*im ,所以电机仍在加速,使转速超调。
转速超调后,ASR输入偏差电压变负,使它开始退出饱和状态,U*i和I d很快下降。
但是,只要I d仍大于负载电流I dL ,转速就继续上升。
直到I d= I dL时,转矩T e= T L ,则d n/d t = 0,转速n才到达峰值(t = t3时)。
此后,电动机开始在负载的阻力下减速,与此相应,在一小段时间内(t3 ~ t4 ),I d < I dL ,直到稳定,如果调节器参数整定得不够好,也会有一些振荡过程
在这最后的转速调节阶段内,ASR和ACR都不饱和,ASR起主导的转速调节作用,而ACR则力图使I d尽快地跟随其给定值U*i,或者说,电流内环是一个电流随动子系统。
综上所述,双闭环直流调速系统的起动过程有以下三个特点:(1)饱和非线性控制;(2)转速超调;(3)准时间最优控制。
自动控制系统的动态性能指标包括:跟随性能指标 ;抗扰性能指标。