高考物理电磁大题(含答案)
- 格式:doc
- 大小:1.66 MB
- 文档页数:29
高三物理第一轮专题复习——电磁场在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。
一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B’,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B’多大?此次粒子在磁场中运动所用时间t是多少?电子自静止开始经M、N板间(两板间的电压A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)高考)如图所示,abcd为一正方形区域,正离子束从a点沿ad方向以=80m/s 的初速度射入,若在该区域中加上一个沿ab方向的匀强电场,电场强度为E,则离子束刚好从c点射出;若撒去电场,在该区域中加上一个垂直于abcd平面的匀强磁砀,磁感应强度为B,则离子束刚好从bc的中点e射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E与B的比值BE/为多少?制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。
两个D 型盒处在匀强磁场中并接有高频交变电压。
图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。
在磁场力的作用下运动半周,再经狭缝电压加速。
如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。
已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。
每次加速的时间很短,可以忽略不计。
正离子从离子源出发时的初速度为零。
高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。
4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。
4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。
五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。
2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。
3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。
4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。
5. 请简述电阻、电容和电感的区别与联系。
答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。
2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。
高考物理《法拉第电磁感应定律》真题练习含答案专题1.如图所示,用粗细相同的铜丝做成边长分别为 L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,若感应电动势分别为E a 、E b ,则E a ∶E b 为( )A .1∶4B .1∶2C .2∶1D .4∶1 答案:B解析:线框切割磁感线时的感应电动势为E =BLv ,解得E a ∶E b =1∶2,B 正确.2.[2024·湖北省名校联盟联考]今年11月底,襄阳三中举行了秋季运动会,其中“旋风跑”团体运动项目很受学生欢迎.如图是比赛过程的简化模型,一名学生站在O 点,手握在金属杆的一端A 点,其他四名学生推着金属杆AB ,顺时针(俯视)绕O 点以角速度ω匀速转动.已知OA =l ,AB =L 运动场地附近空间的地磁场可看作匀强磁场,其水平分量为B x ,竖直分量为B y ,则此时( )A .A 点电势高于B 点电势B .AB 两点电压大小为B y ω(L 2+2lL )2C .AB 两点电压大小为B y ω(L +l )22D .AB 两点电压大小为B x ωL(L +l) 答案:B解析:地磁场在北半球的磁感应强度斜向下,其竖直分量B y 竖直向下,则金属杆切割B y 产生动生电动势,由右手定则可知电源内部的电流从A 点到B 点,即B 点为电源的正极,故A 点电势低于B 点电势,A 错误;动生电动势的大小为E =Bl v -,解得U BA =B y L ω(L +l )+ωl 2 =B y Lω(L +2l )2,B 正确,C 、D 错误.3.(多选)动圈式扬声器的结构如图(a )和图(b )所示,图(b )为磁铁和线圈部分的右视图,线圈与一电容器的两端相连.当人对着纸盆说话,纸盆带着线圈左右运动能将声信号转化为电信号.已知线圈有n 匝,线圈半径为r ,线圈所在位置的磁感应强度大小为B ,则下列说法正确的是( )A.纸盆向左运动时,电容器的上极板电势比下极板电势高B.纸盆向左运动时,电容器的上极板电势比下极板电势低C.纸盆向右运动速度为v时,线圈产生的感应电动势为2nrBvD.纸盆向右运动速度为v时,线圈产生的感应电动势为2nπrBv答案:BD解析:根据右手定则,可知上极板带负电,下极板带正电,因此下极板电势更高,A项错误,B项正确;每匝有效切割长度为2πr,则E=2πnBvr,C项错误,D项正确.4.如图所示,一根弧长为L的半圆形硬导体棒AB在水平拉力F作用下,以速度v0在竖直平面内的U形框架上匀速滑动,匀强磁场的磁感应强度为B,回路中除电阻R外,其余电阻均不计,U形框左端与平行板电容器相连,质量为m的带电油滴静止于电容器两极板中央,半圆形硬导体棒AB始终与U形框接触良好.则以下判断正确的是()A.油滴所带电荷量为mgdBLv0B.电流自上而下流过电阻RC.A、B间的电势差U AB=BLv0D.其他条件不变,使电容器两极板距离减小,电容器所带电荷量将增加,油滴将向下运动答案:B解析:由右手定则可知,导体棒中电流方向从B到A,电流自上而下流过电阻R,故B正确;弧长为L的半圆形硬导体棒切割磁感线的有效长度D=2Lπ,则A、B间的电势差为U AB=2BLv0π,C错误;油滴受力平衡可得qE=mg,E=U ABd,则油滴所带电荷量为q=πmgd2BLv0,A错误;其他条件不变,使电容器两极板距离减小,由C=εS4πkd知电容器的电容变大,又由Q=UC可知,电容器所带电荷量将增加,电场力变大,油滴将向上运动,故D错误.5.(多选)如图所示,矩形金属框架三个竖直边ab 、cd 、ef 的长都是l ,电阻都是R ,其余电阻不计.框架以速度v 匀速平动地穿过磁感应强度为B 的匀强磁场,设ab 、cd 、ef 三条边先后进入磁场时,ab 边两端电压分别为U 1、U 2、U 3,则下列判断结果正确的是( )A .U 1=13 Blv B .U 2=2U 1C .U 3=0D .U 1=U 2=U 3 答案:AB解析:当ab 边进入磁场时I =E R +R 2=2Blv 3R ,则U 1=E -IR =13Blv ;当cd 边也进入磁场时I =E R +R 2 =2Blv 3R ,则U 2=E -I R 2 =23 Blv ,三条边都进入磁场时U 3=Blv ,A 、B 正确.6.[2024·湖北省武汉市月考](多选)如图所示,电阻不计的平行长直金属导轨水平放置,间距L =1 m .导轨左右端分别接有阻值R 1=R 2=4 Ω的电阻.电阻r =2 Ω的导体棒MN 垂直放置在导轨上,且接触良好,导轨所在区域内有方向竖直向的匀强磁场,大小为B =2 T .在外力作用下棒沿导轨向左以速度v =2 m /s 做匀速直线运动,外力的功率为P ,MN 两端的电势差为U MN ,则以下说法正确的是( )A .U MN =4 VB .U MN =2 VC .P =16 WD .P =4 W 答案:BD解析:棒产生的感应电动势大小为E =BLv =4 V ,外电阻是R 1和R 2并联总电阻为R =2 Ω,MN 两端的电势差为U MN =R R +r E =2 V ,A 错误,B 正确;回路电流为I =ER +r =1 A ,电路总功率为P 总=EI =4 W ,由能量守恒可知外力的功率和电路总功率相同,有P =4 W ,C 错误,D 正确.7.[2024·吉林省长春市模拟]在如图甲所示的电路中,电阻R 1=R 2=R ,圆形金属线圈半径为r 1,线圈导线的电阻也为R ,半径为r 2(r 2<r 1)的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系如图乙所示,图线与横、纵轴的交点坐标分别为t 0和B 0,其余导线的电阻不计.闭合开关S ,至t =0的计时时刻,电路中的电流已经稳定,下列说法正确的是( )A .线圈中产生的感应电动势大小为B 0πr 21t 0B .t 0时间内流过R 1的电量为B 0πr 22RC .电容器下极板带负电D .稳定后电容器两端电压的大小为B 0πr 223t 0答案:D解析:由法拉第电磁感应定律知感应电动势为E =ΔΦΔt =ΔB Δt S =πr 22 B 0t 0,A 错误;由闭合电路欧姆定律得感应电流为I =E R +R 1+R 2 =πr 22 B 03Rt 0 ,t 0时间内流过R 1的电量为q =It 0=πr 22 B 03R,B 错误;由楞次定律知圆形金属线圈中的感应电流方向为顺时针方向,金属线圈相当于电源,电源内部的电流从负极流向正极,则电容器的下极板带正电,上极板带负电,C 错误;稳定后电容器两端电压的大小为U =IR 1=B 0πr 223t 0,D 正确.8.(多选)如图所示,长为a ,宽为b ,匝数为n 的矩形金属线圈恰有一半处于匀强磁场中,线圈总电阻为R ,线圈固定不动.当t =0时匀强磁场的磁感应强度的方向如图甲所示,磁感应强度B 随时间t 变化的关系图像如图乙所示,则( )A .线圈中的感应电流的方向先逆时针再顺时针B .回路中感应电动势恒为nB 0ab2t 0C .0~2t 0时刻,通过导线某横截面的电荷量为nB 0abRD .t =0时刻,线圈受到的安培力大小为nB 20 a 2b2t 0R答案:BC解析:由题意可知线圈中磁通量先垂直纸面向外减小,再垂直纸面向里增大,根据楞次定律可知线圈中的感应电流方向始终为逆时针方向,A 错误;根据法拉第电磁感应定律可得线圈中感应电动势的大小为E =n ΔΦΔt =nS ΔB Δt =nabB 02t 0 ,根据闭合电路欧姆定律可得,线圈中电流大小为I =E R =nabB 02Rt 0 ,t =0时刻,线圈受到的安培力大小为F =nB 0I·a =n 2a 2bB 202Rt 0 ,B 正确,D 错误;0~2t 0时刻,通过导线某横截面的电荷量为q =I·2t 0=nabB 0R,C 正确.9.如图所示,足够长通电直导线平放在光滑水平面上并固定,电流I 恒定不变.将一个金属环以初速度v 0沿与导线成一定角度θ(θ<90°)的方向滑出,此后关于金属环在水平面内运动的分析,下列判断中正确的是( )A .金属环做直线运动,速度先减小后增大B .金属环做曲线运动,速度一直减小至0后静止C .金属环最终做匀速直线运动,运动方向与直导线平行D .金属环最终做匀变速直线运动,运动方向与直导线垂直 答案:C解析:金属环周围有环形的磁场,金属环向右运动,磁通量减小,根据“来拒去留”可知,所受的安培力将阻碍金属圆环远离通电直导线,即安培力垂直直导线向左,与运动方向并非相反,故金属环做曲线运动,安培力使金属环在垂直导线方向做减速运动,当垂直导线方向的速度减为零,只剩沿导线方向的速度,然后磁通量不变,无感应电流,水平方向不受外力作用,故最终做匀速直线运动,方向与直导线平行,故金属环先做曲线运动后做直线运动,C 项正确.10.[2024·云南省昆明市模拟]如图甲所示,一匝数N =200的闭合圆形线圈放置在匀强磁场中,磁场垂直于线圈平面.线圈的面积为S =0.5 m 2,电阻r =4 Ω.设垂直纸面向里为磁场的正方向,磁感应强度B 随时间的变化图像如图乙所示.求:(1)2 s 时感应电流的方向和线圈内感应电动势的大小; (2)在3~9 s 内通过线圈的电荷量q 、线圈产生的焦耳热Q. 答案:(1)逆时针,E 1=20 V (2)q =15 C ,Q =150 J解析:(1)由楞次定律知,0~3 s 感应电流磁场垂直纸面向外,感应电流方向为逆时针方向;感应电动势为E 1=N ΔΦ1Δt 1 =N ΔB 1·S Δt 1结合图像并代入数据解得E 1=20 V(2)同理可得3 s ~9 s 内有感应电动势E 2=N ΔΦ2Δt 2 =N ΔB 2·SΔt 2感应电流I 2=E 2r电荷量q =I 2Δt 2 代入数据解得q =15 C 线圈产生的焦耳热Q =I 22 r Δt 2 代入数据得Q =150 J。
一、法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。
线圈的半径为r 1。
在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t 0和B 0。
导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)2020 3n B rRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。
(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==3.如图(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1, 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示,图线与横、纵轴的截距分别为t0和B0,导线的电阻不计.求(1) 0~t0时间内圆形金属线圈产生的感应电动势的大小E;(2) 0~t1时间内通过电阻R1的电荷量q.【答案】(1)202n B rEtπ=(2)20123n B t rqRtπ=【解析】【详解】(1)由法拉第电磁感应定律E ntφ∆=∆有202n B rBE n St tπ∆==∆①(2)由题意可知总电阻R总=R+2R=3 R②由闭合电路的欧姆定律有电阻R1中的电流EIR=总③0~t1时间内通过电阻R1的电荷量1q It=④由①②③④式得20123n B t rqRtπ=4.如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
高考物理电磁学大题练习20题1.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m。
质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场。
现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心。
小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦。
取g=10m/s2,sin37°=0.6,cos37°=0.8。
(1)求撤去该恒力瞬间滑块的速度大小v以及匀强电场的电场强度大小E;(2)求小球到达P点时的速度大小v P和B、C两点间的距离x。
【答案】(1) 6m/s;7.5×104N/C (2) 2.5m/s ;0.85m【解析】【详解】(1)对滑块从A点运动到B点的过程,根据动能定理有:解得:v=6m/s小球到达P点时,受力如图所示:则有:qE=m2g tanθ,解得:E=7.5×104N/C(2)小球所受重力与电场力的合力大小为:小球到达P点时,由牛顿第二定律有:解得:v P=2.5m/s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v1、v2,则有:m1v=m1v1+m2v2解得:v1=-2m/s(“-”表示v1的方向水平向左),v2=4m/s对小球碰后运动到P点的过程,根据动能定理有:解得:x=0.85m2.如图甲所示,绝缘的水平桌面上铺有两根不计电阻的足够长光滑金属轨道AB、CD,轨道间距为d,其左端接一阻值为R的电阻。
一长为L且与导轨垂直的金属棒置于两导轨上,单位长度的电阻为r。
高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。
金属棒的质量为m,棒的左端与导轨相接,右端自由。
设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。
2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。
答案】(1) v=B1d/2m。
I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。
ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。
金属棒始终与导轨相互垂直并接触良好。
问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。
解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。
根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。
因此,我们需要求出这段时间内的电流强度。
根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。
1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。
一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。
⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。
求入射粒子的速度。
解:qB mv =v由平抛规律,质点进入电场时v 0=v cos φ,在电场中经历时间t=d /v 0,在电场中竖直位移221tan 2t mqE d h ⋅⋅==φ,由以上各式可得3、如图所示,在第一象限有一均强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一均强磁场,磁场方向与纸面垂直。
一质量为m 、电荷量为-q(q>0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离开磁场。
粒子在磁场中的运动轨迹与y 轴交于M 点。
已知OP=l ,l OQ 32=。
不计重力。
求(1)M 点与坐标原点O 间的距离;(2)粒子从P 点运动到M 点所用的时间。
【解析】(1)带电粒子在电场中做类平抛运动,在y 轴负方向上做初速度为零的匀加速运动,设加速度的大小为a ;在x 轴正方向上做匀速直线运动,设速度为0v ,粒子从P 点运动到Q 点所用的时间为1t ,进入磁场时速度方向与x 轴正方向的夹角为θ,则qEa m=① 012y t a=② 001x v t =③ 其中0023,x l y l ==。
又有1tan at v θ= ④ 联立②③④式,得30θ=︒因为M O Q 、、点在圆周上,=90MOQ ∠︒,所以MQ 为直径。
从图中的几何关系可知。
23R l = ⑥ 6MO l = ⑦(2)设粒子在磁场中运动的速度为v ,从Q 到M 点运动的时间为2t , 则有0 cos v v θ=⑧ 2Rt vπ= ⑨ 带电粒子自P 点出发到M 点所用的时间为t 为12+ t t t = ⑩联立①②③⑤⑥⑧⑨⑩式,并代入数据得32+ 1mlt qE π⎛⎫= ⎪ ⎪⎝⎭⑾4、如图所示,在0≤x≤a 、o≤y≤2a 2a范围内有垂直手xy 平面向外φOyEB A φC φd h xxy OP QMv 0的匀强磁场,磁感应强度大小为B 。
2023高考物理电磁波练习题及答案一、选择题1. 下列现象中,与电磁波直接相关的是:A) 音乐的传播B) 磁铁吸引铁钉C) 电灯的发光D) 石头下坠答案:C) 电灯的发光2. 电磁波的传播速度在真空中是:A) 等于光速B) 小于光速C) 大于光速D) 无法确定答案:A) 等于光速3. 以下哪一种电磁波的频率最高?A) 微波B) 可见光C) 红外线D) X射线答案:D) X射线4. 电磁波在真空中传播时,其传播路径是:A) 直线B) 螺旋线C) 曲线D) 反射线答案:A) 直线5. 以下哪一种电磁波有最长的波长?A) 红外线B) 可见光C) 微波D) 紫外线答案:C) 微波二、解答题1. 简述电磁波的特点及应用领域。
电磁波是一种由电场和磁场相互作用产生的波动现象。
其特点包括传播速度快、频率范围广、电磁波长连续可变、能量传递效率高等。
由于电磁波的这些特点,它在各个领域都有广泛的应用。
例如,可见光是一种特定频率范围内的电磁波,用于照明和成像;微波可以用于通信、雷达系统和食品加热等;无线电波可用于无线通信、广播和卫星通信等。
电磁波的应用涉及到科学、工程、医学等多个领域。
2. 电磁波如何实现信息的传播?请以无线电通信为例进行说明。
电磁波通过调制和解调的方式实现信息的传播。
以无线电通信为例,发送信息的无线电台会调制电磁波的频率、幅度或相位,将信息信号转化为调制信号,然后将调制信号与载波信号相乘,产生调幅、调频或调相的信号。
接收信息的无线电接收机会将接收到的信号进行解调,还原出原始的信息信号。
无线电通信通过电磁波的传播,可以实现远距离的信息传输。
无线电波可以穿越大气层传播,不受地形和障碍物的限制,使信息可以迅速传达到目标地点。
3. 什么是电磁波的偏振?偏振光有哪些特点?电磁波的偏振是指电磁波中电场矢量振动方向的取向特性。
在自然状态下,电磁波中的电场矢量在各个方向上都有振动,这种波被称为非偏振光或自然光。
而经过适当的处理后,电磁波中的电场矢量在某个方向上振动的特定光被称为偏振光。
高考物理《电磁感应中的动力学问题》真题练习含答案专题1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆(电阻不计)从轨道上由静止滑下.经过足够长的时间,金属杆的速度趋近于一个最大速度v m ,则( )A .如果B 增大,v m 将变大B .如果α变大,v m 将变大C .如果R 变大,v m 将变大D .如果m 变大,v m 将变大答案:BCD解析:当加速度为零时,速度最大,则有mg sin α=BIL ,又I =BL v m R ,解得v m =mgR sin αB 2L 2,如果B 增大,v m 将变小;如果α变大,v m 将变大;如果R 变大,v m 将变大;如果m 变大,v m 将变大,B 、C 、D 正确.2.(多选)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小答案:AD解析:OP 转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 匀速转动产生的感应电动势,产生的感应电流由M 到N 通过MN 棒,由左手定则可知,MN 棒会向左运动,MN 棒运动会切割磁感线,产生的电动势与原来电流方向相反,让回路电流减小,MN 棒所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.3.(多选)如图,横截面积为S 的n 匝线圈,线圈总电阻为R ,其轴线与大小均匀变化的匀强磁场B 1平行.间距为L 的两平行光滑倾斜轨道PQ 、MN 足够长,轨道平面与水平面的夹角为α,底部连有一阻值2R 的电阻,磁感应强度B 2的匀强磁场与轨道平面垂直.K 闭合后,质量为m 、电阻也为2R 的金属棒ab 恰能保持静止,金属棒始终与轨道接触良好,其余部分电阻不计,下列说法正确的是( )A .B 1均匀减小B .B 1的变化率为ΔB 1Δt =4mgR sin αnB 2SLC .断开K 之后,金属棒ab 将做匀加速直线运动D .断开K 之后,金属棒的最大速度为v =4Rmg sin αB 22 L 2 答案:ABD解析:由平衡条件知金属棒所受安培力的方向应平行轨道向上,电流大小恒定,磁场B 1均匀变化;根据左手定则判断金属棒中电流方向由b 指向a ,线圈中感应电流磁场方向与原磁场方向相同,则可判断B 1减小,A 正确;设B 1的变化率为ΔB 1Δt,螺线管中感应电动势E =n ΔB 1Δt S ,回路中总电阻R 总=R +R =2R ,电路中总电流I =E R 总 =E 2R,安培力F =B 2IL 2 ,由平衡条件得F =mg sin α,解得ΔB 1Δt =4mgR sin αnB 2SL,B 正确;断开K 之后,金属棒ab 将做变加速直线运动,C 错误;断开K 之后,金属棒速度最大时,受力平衡,有B 2I ′L =mg sin α,且电流I ′=E 4R =B 2L v 4R ,联立解得v =4Rmg sin αB 22 L 2 ,D 正确. 4.如图所示,这是感受电磁阻尼的铜框实验的简化分析图,已知图中矩形铜框(下边水平)的质量m=2 g,长度L=0.5 m,宽度d=0.02 m,电阻R=0.01 Ω,该铜框由静止释放时铜框下边与方向水平向里的匀强磁场上边界的高度差h=0.2 m,磁场上、下水平边界间的距离D=0.27 m,铜框进入磁场的过程恰好做匀速直线运动.取重力加速度大小g=10 m/s2,不计空气阻力.下列说法正确的是()A.铜框进入磁场的过程中电流方向为顺时针B.匀强磁场的磁感应强度的大小为0.5 TC.铜框下边刚离开磁场时的速度大小为3 m/sD.铜框下边刚离开磁场时的感应电流为0.3 A答案:C解析:铜框下边进入磁场过程,由右手定则判断感应电流为逆时针方向,A错误;铜框下边刚进入磁场时的速度大小v1=2gh ,此时感应电动势E=BL v1,电流I=ER,铜框受的安培力大小F=BIL,由平衡条件得F=mg,解得磁感应强度B=0.2 T,B错误;铜框全部进入磁场后开始做加速度为g的匀加速直线运动,设铜框下边刚离开磁场时速度大小为v2,根据运动学公式得v22-v21=2g(D-d),解得v2=3 m/s,C正确;铜框下边刚离开磁场时,感应电流大小I′=BL v2R=3 A, A、D错误.5.(多选)如图所示,两条足够长的平行光滑长直导轨MN、PQ固定于同一水平面内,它们之间的距离为l;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨接触良好.两杆的电阻皆为R.cd的中点系一轻绳,绳的另一端绕过定滑轮悬挂一质量为M的重物,滑轮与杆cd之间的轻绳处于水平伸直状态并与导轨平行.不计滑轮与转轴、细绳之间的摩擦,不计导轨的电阻.导轨和金属细杆都处于匀强磁场中,磁感应强度大小为B,方向竖直向上.现将两杆及重物同时由静止释放,下列说法正确的是()A.释放重物瞬间,其加速度大小为Mg m+MB.最终回路中的电流为MmgBl(m+M)C.最终ab杆所受安培力的大小为mMg2m+MD .最终ab 和cd 两杆的速度差恒为2MmgR B 2l 2(2m +M )答案:ACD解析:释放重物瞬间,ab 杆和cd 杆均不受安培力,设重物的加速度大小为a 1,则对重物,有Mg -T 1=Ma 1;对cd 杆,有T 1=ma 1,解得a 1=Mg m +M,A 项正确;最终ab 杆、cd 杆和重物三者的加速度大小相等,设其为a ,对重物,有Mg -T 2=Ma ;对cd 杆,有T 2-BIl =ma ;对ab 杆,有BIl =ma ,解得I =Mmg (2m +M )Bl ,F 安=BIl =Mmg 2m +M,B 项错误,C 项正确;设最终两杆速度差为Δv ,回路中感应电动势为E =Bl Δv ,I =E 2R,解得Δv =2MmgR B 2l 2(2m +M ),D 项正确. 6.(多选)如图所示,倾角θ=30°的斜面上放置一间距为L 的光滑U 形导轨(电阻不计),导轨上端连接电容为C 的电容器,电容器初始时不带电,整个装置放在磁感应强度大小为B 、方向垂直斜面向下的匀强磁场中.一质量为2m 、电阻为R 的导体棒垂直放在导轨上,与导轨接触良好,另一质量为m 的重物用一根不可伸长的绝缘轻绳通过光滑的定滑轮与导体棒拴接,定滑轮与导体棒间的轻绳与斜面平行.将重物由静止释放,在导体棒到达导轨底端前的运动过程中(电动势未到达电容器的击穿电压),已知重力加速度为g ,下列说法正确的是( )A .电容器M 板带正电,且两极板所带电荷量随时间均匀增加B .经时间t 导体棒的速度为v =2mgt 3m +CB 2L 2C.回路中电流与时间的关系为I =2BLmg (3m +CB 2L 2)Rt D .重物和导体棒在运动过程中减少的重力势能转化为动能和回路的焦耳热答案:AB解析:设运动过程中经时间Δt ,导体棒的速度增加Δv ,对电容器,两极板的充电电流I =ΔQ Δt =C ΔU Δt =CBL Δv Δt,对导体棒受力分析,由牛顿第二定律有2mg sin 30°+F T -BIL =2ma ;对重物分析,有mg -F T =ma ,又Δv Δt =a ,解得a =2mg 3m +CB 2L 2,加速度恒定,所以导体棒在到达导轨底端前做匀加速直线运动,电容器两极板所带电荷量随时间均匀增加,由右手定则可知,M 板带正电,A 项正确;经时间t ,导体棒的速度v =2mgt 3m +CB 2L 2,B 项正确;由A 项分析可知回路中电流恒定,C 项错误;重物和导体棒在运动过程中减少的重力势能一部分转化为动能和回路的焦耳热,一部分转化为电容器储存的电能,D 项错误.7.[2024·河北省邢台市五岳联盟联考]游乐园中的过山车因能够给游客带来刺激的体验而大受欢迎.为了保证过山车的进站安全,过山车安装了磁力刹车装置,将磁性很强的铷磁铁安装在轨道上,正方形导体框安装在过山车底部.磁力刹车装置的工作原理可简化为如图所示的模型:质量m =5 kg 、边长L =2 m 、电阻R =1.8 Ω的单匝导体框abcd 沿着倾角为θ的光滑斜面由静止开始下滑x 0=4.5 m 后,下边框bc 进入匀强磁场区域时导体框开始减速,当上边框ad 进入磁场时,导体框刚好开始做匀速直线运动.已知磁场的上、下边界与导体框的上、下边框平行,磁场的宽度也为L =2 m ,磁场方向垂直斜面向下、磁感应强度大小B =3 T ,sin θ=0.4,取重力加速度大小g =10 m/s 2,求:(1)上边框ad 进入磁场时,导体框的速度大小v ;(2)下边框bc 进入磁场时,导体框的加速度大小a 0.答案:(1)1 m/s (2)20 m/s 2解析:(1)当导体框的上边框ad 进入磁场时,上边框ad 切割磁感线产生的感应电动势为E =BL v导体框中的感应电流为I =E R导体框的上边框在磁场中受到的安培力大小F A =BIL导体框刚好做匀速直线运动,根据受力平衡有mg sin θ=F A联立解得v =1 m/s(2)导体框沿斜面由静止开始到下边框bc 进入匀强磁场的过程中,根据机械能守恒定律有mgx 0sin θ=12m v 20 当导体框的下边框进入磁场时,导体框的下边框在磁场中受到的安培力大小F A0=B2L2v0 R对导体框受力分析,根据牛顿第二定律有F A0-mg sin θ=ma0联立解得a0=20 m/s2.。
高考电磁大题(含答案)1.(09年全国卷Ⅰ)26(21分)如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。
P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。
A 是一块平行于x 轴的挡板,与x 轴的距离为,A 的中点在y 轴上,长度略小于。
带点粒子与挡板碰撞前后,x 方向的分速度不变,y 方向的分速度反向、大小不变。
质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。
不计重力。
求粒子入射速度的所有可能值。
解析:设粒子的入射速度为v,第一次射出磁场的点为'O N ,与板碰撞后再次进入磁场的位置为1N .粒子在磁场中运动的轨道半径为R,有qBmvR =…⑴ 粒子速率不变,每次进入磁场与射出磁场位置间距离1x 保持不变有=1x θsin 2R N N O O ='…⑵粒子射出磁场与下一次进入磁场位置间的距离2x 始终不变,与1N N O '相等.由图可以看出a x =2……⑶设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即()a nx x n 2121=-+……⑷由⑶⑷两式得a n n x 121++=……⑸ 若粒子与挡板发生碰撞,有421ax x >-……⑹ 联立⑶⑷⑹得n<3………⑺ 联立⑴⑵⑸得a n n m qB v 12sin 2++⋅=θ………⑻把22sin ha h +=θ代入⑻中得0,22=+=n mh h a qBa v o …………⑼1,43221=+=n mh h a qBa v …………⑾2,32222=+=n mhh a qBa v …………⑿2.(09年全国卷Ⅱ)25.(18分)如图,在宽度分别为1l 和2l 的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。
2017-2022年全国各地高考物理真题汇编:电磁感应学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共12题)1.(2022·全国·高考真题)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示。
把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为12I I 、和3I 。
则( )A .132I I I <<B .132I I I >>C .123I I I =>D .123I I I ==2.(2017·天津·高考真题)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R 。
金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。
现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小3.(2021·北京·高考真题)如图所示,在竖直向下的匀强磁场中,水平U 型导体框左端连接一阻值为R 的电阻,质量为m 、电阻为r 的导体棒ab 置于导体框上。
不计导体框的电阻、导体棒与框间的摩擦。
ab 以水平向右的初速度v 0开始运动,最终停在导体框上。
在此过程中 ( )A .导体棒做匀减速直线运动B .导体棒中感应电流的方向为a b →C .电阻R 消耗的总电能为202()mv R R r +D .导体棒克服安培力做的总功小于2012mv 4.(2020·江苏·高考真题)如图所示,两匀强磁场的磁感应强度1B 和2B 大小相等、方向相反。
高考物理电磁感应现象习题试卷含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。
垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。
现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =-【解析】 【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E BL gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22mB L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L=-2.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s v =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R=()此时线框所受的磁场力与阻力平衡,得:F f = 2m 028m/s 4fRv v B L =-= (2)磁场停止运动后,线圈中的电动势:2E BLv = 线圈中的电流:EI R=实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L vt ft mv R∑∆+=而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-( 金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-==所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--=得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat =金属框中感应电流002BLat I R=又因为安培力2200042B L at F BI L R==对实验车,由牛顿第二定律得:0F f =即2204B L at f R= 得:02s t =3.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成=30θ︒角固定,N 、Q 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5T ,质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻位为r 。
1
B.
2
如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻
中的感应电流逐渐减小
3
时,线圈中的电流改变方向
一个周期内,线圈产生的热量为
4
、总电阻为的正
边与磁场边界平行,如图(a)所示,已知导线框一直向右做匀速
时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感
左转轴上侧绝缘漆挂掉,右转轴下侧的绝缘漆刮掉左转轴上下两侧绝缘漆都挂掉,右转轴下侧的绝缘漆刮掉
5
D.
和.圆形匀强磁场的边缘恰好与线圈重合,则穿6
7
磁场的方向;
答案B.
1
A 2
中的感应电流逐渐减小3
时,线圈中的电流改变方向
一个周期内,线圈产生的热量为
,所以线圈平面平行于磁感线,故A正确;
和,故B错误;
C.在交变电流产生的过程当中,磁通量最大时,感应电动势以及感应电流最小,故C 4
5
左转轴上侧绝缘漆挂掉,右转轴下侧的绝缘漆刮掉
左转轴上下两侧绝缘漆都挂掉,右转轴下侧的绝缘漆刮掉
6
D.
7
磁场的方向;
考点
开关接后,开始向右加速运动,速度达到最大值时,设上的感应电动势为,有
⑥
依题意有⑦
设在此过程中的平均电流为,上受到的平均安培力为,有
⑧
由动量定理,有
⑨
又⑩
联立⑤⑥⑦⑧⑨⑩式得
⑪
电磁感应
涡流、电磁阻尼和电磁驱动。
高考复习物理 电磁感应大题高中物理高三板块复习。
1.(18分)如图所示,两根相同的劲度系数为k 的金属轻弹簧用两根等长的绝缘线悬挂在水平天花板上,弹簧上端通过导线与阻值为R 的电阻相连,弹簧下端连接一质量为m ,长度为L ,电阻为r 的金属棒,金属棒始终处于宽度为d 垂直纸面向里的磁感应强度为B 的匀强磁场中。
开始时弹簧处于原长,金属棒从静止释放,水平下降h 高时达到最大速度。
已知弹簧始终在弹性限度内,且弹性势能与弹簧形变量x 的关系为221kx E p ,不计空气阻力及其它电阻。
求:(1)此时金属棒的速度多大?(2)这一过程中,R 所产生焦耳热Q R 多少?2.(17分)如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。
在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。
设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。
⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?⑵求0到时间t0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小和方向。
3、(16分)t=0时,磁场在xOy平面内的分布如图所示。
其磁感应强度的大小均为B0,方向垂直于xOy平面,相邻磁场区域的磁场方向相反。
每个同向磁场区域的宽度均为l0。
整个磁场以速度v沿x轴正方向匀速运动。
⑴若在磁场所在区间,xOy平面内放置一由n匝线圈串联而成的矩形导线框abcd,线框的bc边平行于x轴.bc=l B、ab=L,总电阻为R,线框始终保持静止。
高考物理电磁学-复合场专题练习(含答案)(一)一、单选题1.如图所示,足够长的两平行金属板正对着竖直放置,它们通过导线与电源E、定值电阻R、开关S相连.闭合开关后,与两极板上边缘等高处有两个带负电小球A和B,它们均从两极板正中央由静止开始释放,两小球最终均打在极板上,(不考虑小球间的相互作用及对电场的影响)下列说法中正确的是()A.两小球在两板间运动的轨迹都是一条抛物线B.两板间电压越大,小球在板间运动的时间越短C.它们的运动时间一定相同D.若两者的比荷相同,它们的运动轨迹可能相同2.一个带电小球,用细线悬挂在水平方向的匀强电场中,当小球静止后把细线烧断,在小球将(假设电场足够大)()A.做自由落体运动B.做曲线运动C.做匀加速直线运动D.做变加速直线运动3.质量为m,带电量为+q的小球,在匀强电场中由静止释放,小球沿着与竖直向下夹30°的方向作匀加速直线运动,当场强大小为E=mg/2 时、E所有可能的方向可以构成()A.一条线 B.一个平面 C.一个球面 D.一个圆锥面4.场强为E的匀强电场和磁感强度为B的匀强磁场正交.如图质量为m的带电粒子在垂直于磁场方向的竖直平面内,做半径为R的匀速圆周运动,设重力加速度为g,则下列结论不正确的是()A.粒子带负电,且q=B.粒子顺时针方向转动C.粒子速度大小v=D.粒子的机械能守恒5.如图所示,一个质量为m、带正电荷量为q的小带电体处于可移动的匀强磁场中,磁场的方向垂直纸面向里,磁感应强度为B,为了使它对水平绝缘面刚好无压力,应该()A.使磁感应强度B的数值增大B.使磁场以速率v= 向上移动C.使磁场以速率v= 向右移动D.使磁场以速率v= 向左移动6.在赤道处,将一小球向东水平抛出,落地点为A;给小球带上电荷后,仍以原来的速度抛出,考虑地磁场的影响,下列说法正确的是()A.无论小球带何种电荷,小球仍会落在A点B.无论小球带何种电荷,小球下落时间都会延长C.若小球带负电荷,小球会落在更远的B点D.若小球带正电荷,小球会落在更远的B点7.如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直于纸面向里,一个带电微粒由a点进入电磁场并刚好能沿ab直线向上运动,下列说法正确的是()A.微粒可能带负电,可能带正电B.微粒的机械能一定增加C.微粒的电势能一定增加D.微粒动能一定减小8.如图所示,一电子束垂直于电场线与磁感线方向入射后偏向A极板,为了使电子束沿射入方向做直线运动,可采用的方法是()A.将变阻器滑动头P向右滑动B.将变阻器滑动头P向左滑动C.将极板间距离适当减小D.将极板间距离适当增大9.如图所示为“滤速器”装置示意图.a、b为水平放置的平行金属板,其电容为C,板间距离为d,平行板内存在垂直纸面向里的匀强磁场,磁感应强度为B,a、b板带上电量,可在平行板内产生匀强电场,且电场方向和磁场方向互相垂直.一带电粒子以速度v0经小孔进入正交电磁场可沿直线OO′运动,由O′射出,粒子所受重力不计,则a板所带电量情况是()A.带正电,其电量为B.带正电,其电量为CBdv0C.带负电,其电量为D.带负电,其电量为10.如图所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里.三个油滴a、b、c带有等量的同种电荷,已知a静止,b向右匀速运动,c向左匀速运动.比较它们的质量应有()A.a油滴质量最大B.b油滴质量最大C.c油滴质量最大D.a、b、c的质量一样二、综合题11.竖直放置的两块足够长的带电平行金属板间有匀强电场,其电场强度为E,在该匀强电场中,用丝线悬挂质量为m的带正电小球,当丝线跟竖直方向成θ角小球与板距离为b时,小球恰好平衡,如图所示.(重力加速度为g)求:(1)小球带电量q是多少?(2)若剪断丝线,小球碰到金属板需多长时间?12.以竖直向上为轴正方向的平面直角系,如图所示,在第一、四象限内存在沿轴负方向的匀强电场,在第二、三象限内存在着沿轴正方向的匀强电场和垂直于平面向外的匀强磁场,现有一质量为、电荷量为的带正电小球从坐标原点O以初速度沿与轴正方向成角的方向射出,已知两电场的电场强度,磁场的磁感应强度为B,重力加速度为。
高考物理电磁感应现象压轴难题试卷附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R -222210122BL B L kR v B L +-24nB Lb R ' 【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =- 由欧姆定律得:12EI R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v kR +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '= 电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R '= 电磁铁通过字型线圈右边界时,电路情况如图3所示:n E tφ∆=∆, B Lb φ∆=',32E I R =33Q I t =∆解得:32nB LbQ R '=, 总的电荷量:123Q Q Q Q =++ 解得:24nB LbQ R '=3.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。
高考物理电磁学知识点之电磁感应基础测试题及答案(2)一、选择题1.如图甲所示,光滑的平行金属导轨(足够长)固定在水平面内,导轨间距为l=20cm,左端接有阻值为R=1Ω的电阻,放在轨道上静止的一导体杆MN与两轨道垂直,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度大小为B=0.5T.导体杆受到沿轨道方向的拉力F做匀加速运动,测得力F与时间t的关系如图2所示。
导体杆及两轨道的电阻均可忽略不计,导体杆在运动过程中始终与轨道垂直且两端与轨道保持良好接触,则导体杆的加速度大小和质量分别为( )A.10 m/s2,0.5 kgB.10 m/s2,0.1 kgC.20 m/s2,0.5 kgD.D. 20 m/s2,0.1 kg2.如图所示,有一正方形闭合线圈,在足够大的匀强磁场中运动。
下列四个图中能产生感应电流的是A.B.C.D.3.如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.4m,电阻不计。
导轨所在平面与磁感应强度B为0.5T的匀强磁场垂直。
质量m为6.0×10-3kg电阻为1Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触。
导轨两端分别接有滑动变阻器R2和阻值为3.0Ω的电阻R1。
当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27W。
则()A.ab稳定状态时的速率v=0.4m/sB.ab稳定状态时的速率v=0.6m/sC.滑动变阻器接入电路部分的阻值R2=4.0ΩD.滑动变阻器接入电路部分的阻值R2=6.0Ω4.如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零。
A和B是两个完全相同的小灯泡。
下列说法正确的是()A.接通开关S瞬间,A灯先亮,B灯不亮B.接通开关S后,B灯慢慢变亮C.开关闭合稳定后,突然断开开关瞬间,A灯立即熄灭、B灯闪亮一下D.开关闭合稳定后,突然断开开关瞬间,A灯、B灯都闪亮一下5.两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。
高考电磁大题(含答案)1.(09年全国卷Ⅰ)26(21分)如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。
P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。
A是一块平行于x 轴的挡板,与x 轴的距离为,A 的中点在y 轴上,长度略小于。
带点粒子与挡板碰撞前后,x 方向的分速度不变,y 方向的分速度反向、大小不变。
质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。
不计重力。
求粒子入射速度的所有可能值。
解析:设粒子的入射速度为v,第一次射出磁场的点为'O N ,与板碰撞后再次进入磁场的位置为1N .粒子在磁场中运动的轨道半径为R,有qBmvR =…⑴ 粒子速率不变,每次进入磁场与射出磁场位置间距离1x 保持不变有=1x θsin 2R N N O O ='…⑵粒子射出磁场与下一次进入磁场位置间的距离2x 始终不变,与1N N O '相等.由图可以看出a x =2……⑶设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即()a nx x n 2121=-+……⑷由⑶⑷两式得a n n x 121++=……⑸ 若粒子与挡板发生碰撞,有421ax x >-……⑹ 联立⑶⑷⑹得n<3………⑺ 联立⑴⑵⑸得a n n m qB v 12sin 2++⋅=θ………⑻把22sin ha h +=θ代入⑻中得0,22=+=n mh h a qBa v o …………⑼1,43221=+=n mh h a qBa v …………⑾2,32222=+=n mhh a qBa v …………⑿2.(09年全国卷Ⅱ)25.(18分)如图,在宽度分别为1l 和2l 的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。
一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。
已知PQ 垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ 的距离为d 。
不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。
答案:221122212arcsin()2l d dl dl l d++解析:本题考查带电粒子在有界磁场中的运动。
粒子在磁场中做匀速圆周运动,如图所示.由于粒子在分界线处的速度与分界线垂直,圆心O 应在分界线上,OP 长度即为粒子运动的圆弧的半径R.由几何关系得2212)(d R l R -+=………①设粒子的质量和所带正电荷分别为m 和q,由洛仑兹力公式和牛顿第二定律得……………②设P '为虚线与分界线的交点,α='∠P PO ,则粒子在磁场中的运动时间为vR t α=1……③ 式中有Rl 1sin =α………④粒子进入电场后做类平抛运动,其初速度为v,方向垂直于电场.设粒子的加速度大小为a,由牛顿第二定律得ma qE =…………⑤由运动学公式有221at d =……⑥ 22vt l =………⑦Rv mqvB 2=由①②⑤⑥⑦式得v l d l B E 22221+=…………⑧ 由①③④⑦式得)2arcsin(22211222121dl dldl d l t t ++=3.(09年天津卷)11.(18分)如图所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy 平面向里,电场线平行于y 轴。
一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,MN 之间的距离为L,小球过M 点时的速度方向与x 轴的方向夹角为θ.不计空气阻力,重力加速度为g,求(1) 电场强度E 的大小和方向; (2) 小球从A 点抛出时初速度v 0的大小; (3) A 点到x 轴的高度h.答案:(1)q mg ,方向竖直向上 (2)θcot 2mqBL(3)g m L B q 22228 解析:本题考查平抛运动和带电小球在复合场中的运动。
(1)小球在电场、磁场中恰能做匀速圆周运动,说明电场力和重力平衡(恒力不能充当圆周运动的向心力),有mg qE = ① qmgE =② 重力的方向竖直向下,电场力方向只能向上,由于小球带正电,所以电场强度方向竖直向上。
(2)小球做匀速圆周运动,O ′为圆心,MN 为弦长,θ='∠P O M ,如图所示。
设半径为r ,由几何关系知θsin =r2L③ 小球做匀速圆周运动的向心力由洛仑兹力白日提供,设小球做圆周运动的速率为v ,有rmv qvB 2= ④由速度的合成与分解知θcos 0=vv ⑤ 由③④⑤式得θcot 20mqBLv =⑥ (3)设小球到M 点时的竖直分速度为v y ,它与水平分速度的关系为 θtan 0v v y = ⑦ 由匀变速直线运动规律gh v 22= ⑧ 由⑥⑦⑧式得gm L B q h 22228= ⑨4.(09年山东卷)25.(18分)如图甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l ,第一四象限有磁场,方向垂直于Oxy 平面向里。
位于极板左侧的粒子源沿x 轴间右连接发射质量为m 、电量为+q 、速度相同、重力不计的带电粒子在0~3t 时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。
已知t=0时刻进入两板间的带电粒子恰好在t 0时,刻经极板边缘射入磁场。
上述m 、q 、l 、l 0、B 为已知量。
(不考虑粒子间相互影响及返回板间的情况)(1)求电压U 的大小。
v 图甲图乙(2)求12时进入两板间的带电粒子在磁场中做圆周运动的半径。
(3)何时把两板间的带电粒子在磁场中的运动时间最短?求此最短时间。
解析:(1)0t =时刻进入两极板的带电粒子在电场中做匀变速曲线运动,0t 时刻刚好从极板边缘射出,在y 轴负方向偏移的距离为12l ,则有0U E l=① Eq ma =②21122l at =③ 联立以上三式,解得两极板间偏转电压为2020ml U qt =④。
(2)012t 时刻进入两极板的带电粒子,前012t 时间在电场中偏转,后012t 时间两极板没有电场,带电粒子做匀速直线运动。
带电粒子沿x 轴方向的分速度大小为00lv t =⑤ 带电粒子离开电场时沿y 轴负方向的分速度大小为012y v a t =⑥ 带电粒子离开电场时的速度大小为22x y v v v =+⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R ,则有2v Bvq m R=⑧联立③⑤⑥⑦⑧式解得052mlR qBt =⑨。
(3)02t 时刻进入两极板的带电粒子在磁场中运动时间最短。
带电粒子离开磁场时沿y 轴正方向的分速度为'0y v at =⑩,设带电粒子离开电场时速度方向与y 轴正方向的夹角为α,则0'tan y v v α=,联立③⑤⑩式解得4πα=,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为22πα=,所求最短时间为min 14t T =,带电粒子在磁场中运动的周期为2m T Bq π=,联立以上两式解得min 2mt Bqπ=。
考点:带电粒子在匀强电场、匀强磁场中的运动。
5.(09年福建卷)22.(20分)图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X 轴上距坐标原点L=0.50m 的P 处为离子的入射口,在Y 上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s 的速率从P 处射入磁场,若粒子在y 轴上距坐标原点L=0.50m 的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。
(1)求上述粒子的比荷qm; (2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y 轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M 处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。
答案(1)mq =4.9×710C/kg (或5.0×710C/kg );(2)s t 6109.7-⨯= ; (3)225.0m S = 解析:第(1)问本题考查带电粒子在磁场中的运动。
第(2)问涉及到复合场(速度选择器模型)第(3)问是带电粒子在有界磁场(矩形区域)中的运动。
(1)设粒子在磁场中的运动半径为r 。
如图甲,依题意M 、P 连线即为该粒子在磁场中作匀速圆周运动的直径,由几何关系得 22Lr = ①由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得rv m qvB 2= ②联立①②并代入数据得mq =4.9×710C/kg (或5.0×710C/kg ) ③ (2)设所加电场的场强大小为E 。
如图乙,当粒子子经过Q 点时,速度沿y 轴正方向,依题意,在此时加入沿x 轴正方向的匀强电场,电场力与此时洛伦兹力平衡,则有 qvB qE = ④ 代入数据得C N E /70= ⑤所加电场的长枪方向沿x 轴正方向。
由几何关系可知,圆弧PQ 所对应的圆心角为45°,设带点粒子做匀速圆周运动的周期为T ,所求时间为t ,则有T t 036045=⑥ vrT π2=⑦联立①⑥⑦并代入数据得 s t 6109.7-⨯= ⑧(3)如图丙,所求的最小矩形是P P MM 11,该区域面积22r S = ⑨ 联立①⑨并代入数据得 225.0mS =矩形如图丙中P P MM 11(虚线)6.(09年浙江卷)25.(22分)如图所示,x 轴正方向水平向右,y 轴正方向竖直向上。
在xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场。
在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q (q>0)和初速度v 的带电微粒。
发射时,这束带电微粒分布在0<y<2R 的区间内。
已知重力加速度大小为g 。
(1)从A 点射出的带电微粒平行于x 轴从C 点进入有磁场区域,并从坐标原点O 沿y 轴负方向离开,求点场强度和磁感应强度的大小和方向。