高中物理概念电磁学
- 格式:doc
- 大小:981.50 KB
- 文档页数:9
了解人教版高中物理中的电磁学知识电磁学是高中物理中的重要知识点,对于学生们的理解和应用能力有着重要影响。
人教版高中物理教材对电磁学的教学设置合理,内容丰富,能够帮助学生深入了解电磁学的基本概念和原理。
本文将从人教版高中物理教材中的电磁学单元出发,以电磁感应和电磁波为重点,介绍其中的重要知识点和相关实验。
一、电磁感应电磁感应是电磁学中的一个重要知识点,也是理解电磁学原理的基础。
在人教版高中物理教材中,电磁感应的教学结构合理,通过磁场与导体相互作用引发感应电流的原理,引导学生从实验中体验电磁感应现象。
1. 法拉第电磁感应定律法拉第电磁感应定律是电磁感应的重要规律,人教版高中物理教材通过一系列实验和数学表达方式,引导学生理解该定律的深层含义。
在教学中,可以通过实验设备的展示和具体的实验操作,帮助学生直观地感受到电磁感应的过程,培养学生的科学观察和实验分析能力。
2. 感应电动势和感应电流在电磁感应过程中,不仅会产生感应电动势,还会产生感应电流。
人教版高中物理教材通过引入恩斯特定律和楞次定律等概念,帮助学生理解感应电动势和感应电流的产生机制。
学生可以通过实验验证恩斯特定律,理解当磁通量变化时,感应电动势的产生与其导线回路的特性有关。
二、电磁波电磁波是电磁学中的重要概念,人教版高中物理教材通过电磁波的起源、性质和传播特性等方面的内容,帮助学生全面了解电磁波的基本知识。
1. 电磁波的起源和发现人教版高中物理教材通过介绍麦克斯韦等科学家的研究历程,让学生了解电磁波的起源和发现过程。
同时,通过具体的实验操作和数学描述,学生可以进一步了解电磁波与电磁场的关系,以及电磁波的传播方式。
2. 电磁波的性质和应用电磁波具有不同的频率和波长,在物理学中被分为不同的波段,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
人教版高中物理教材通过介绍电磁波的性质和应用,帮助学生了解不同波段的电磁波在科学研究、通信、医学和日常生活等方面的广泛应用。
高中物理电磁学知识点导言:物理学是自然科学的一个重要分支,涵盖了广泛的知识领域,其中电磁学是其中的一个重要部分。
在高中物理学习中,学生们领会和掌握电磁学的基本概念对于理解电磁学原理和应用非常重要。
本文将介绍高中物理电磁学知识点的大致范围,包括电磁场、电磁感应和电磁波等方面的基础知识。
一、电磁场1. 电荷和电场:电荷的电场以及电场的概念和特征。
2. 静电场和电势:静电场的产生和性质,电势的概念,电势差和电场强度之间的关系。
3. 磁场和磁感应:磁场的特征与表示方法,磁感应的概念和特征。
二、电磁感应和法拉第电磁感应定律1. 电磁感应现象:磁场中导体中的感应电动势。
2. 法拉第电磁感应定律:导体中感应电动势的大小和方向。
3. 感生电动势和自感现象:感生电动势的产生和特征,自感的概念和影响。
三、电磁感应的应用1. 电磁感应的实际应用:发电机、电动机等的基本原理与结构。
2. 互感现象和变压器:互感的概念、互感系数和变压器的基本原理。
3. 皮肤效应和涡流:电磁感应中的皮肤效应和涡流现象及其应用。
四、电磁波1. 电磁波的概念和特征:电磁波的传播特点和电磁谱的大致范围。
2. 光的电磁波理论:光的本质和电磁波的传播速度。
3. 光的反射和折射:光的反射定律、折射定律和光的全反射。
4. 光的色散和光的衍射:光的色散现象和衍射现象。
五、电磁学的实验技术1. 麦克斯韦环路定理的实验验证:使用简单电路和导体线圈验证麦克斯韦环路定理。
2. 安培环路定理的实验验证:使用安培计等仪器验证安培环路定理。
3. 恒定磁场的实验制备:使用恒定电流和线圈制备恒定磁场。
结论:高中物理电磁学的知识点主要包括电磁场、电磁感应和电磁波等方面的基础概念、定律和应用。
通过学习这些知识点,学生们能够深入理解电磁学的原理和应用,为进一步的学习和研究打下坚实的基础。
希望本文对高中物理学习中的电磁学知识点的整理和归纳有所帮助。
理解高中物理中的电磁学概念电磁学是高中物理中的一个重要概念与知识点。
它涉及到电荷、电场、电流、磁场等内容,对于理解电磁现象、解决电磁问题具有重要的意义。
本文将从电磁学的基本概念入手,逐步深入探讨相关理论和应用。
第一部分:电荷与电场电磁学的基础是电荷与电场概念。
电荷是物质的一种属性,可以分为正电荷和负电荷。
同性电荷相斥,异性电荷相吸。
而电场是由电荷所形成的一种力场,描述了电荷间的相互作用。
电场强度是电场的物理量,指示了单位正电荷在电场中受到的作用力。
在高中物理中,我们学习了库仑定律,它定量描述了电荷之间的作用力与它们的距离和大小相关。
电场线是表示电场方向的工具,它的密度与电场强度的大小有关,从正电荷指向负电荷。
第二部分:电势与电势差电势是电场对单位正电荷所做的功,也可以说是单位正电荷在电场中的电势能。
电位的单位是伏特(V)。
电势差是指电场中两点之间的电势差异。
电势差与电荷间的距离有关,可以通过计算电场力在移动电荷过程中所做的功得到。
高中物理中,我们学习了静电能和电势能的概念,了解了电动势和电容器的原理。
电势差可以通过电势差计、电压表等仪器测量。
第三部分:电流与电阻电流是指电荷在单位时间内通过导体截面的数量,单位是安培(A)。
电流可以分为直流和交流两种。
直流电流方向不变,而交流电流方向周期性变化。
在电路中,电流满足欧姆定律,即电流与电压成正比,与电阻成反比。
电阻的单位是欧姆(Ω),它描述了导体抵抗电流的能力。
我们学习了串联电路、并联电路以及电阻的连接方式与计算方法,并探索了导体的电阻与导体材料、长度、截面积等因素的关系。
第四部分:磁场与电磁感应磁场是物质或电流所产生的力场。
磁感线是描述磁场的工具,它表示磁力的方向和大小。
磁感应强度是磁场物理量,单位是特斯拉(T)。
电磁感应是指导体中或导体与磁场相互作用而产生电流的现象。
法拉第电磁感应定律是描述电磁感应的基本规律,即导体中感应电动势与导体磁通量的变化率成正比。
高中物理复习电磁学部分电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分之一。
本文将对电磁学的相关知识进行复习和总结,帮助学生们更好地理解和掌握这一内容。
一、电磁学基础知识1. 电荷和电场在电磁学中,电荷是基本粒子,可以带正电荷或负电荷。
同性电荷相斥,异性电荷相吸。
电场是电荷周围产生的一个物理场,描述了电荷之间相互作用的规律。
2. 静电场和静电力静电场是指电荷静止时产生的电场。
静电力是指电荷之间由于电场作用而产生的力。
根据库仑定律,两个电荷之间的电力与电荷的大小和距离的平方成正比。
3. 电场线电场线是描述电场分布形态的一种图示方法。
电场线的特点是从正电荷出发,指向负电荷,密集区域代表电场强,稀疏区域代表电场弱。
电场线不会相交,且垂直于导体表面。
二、电磁感应和法拉第电磁感应定律1. 磁感线和磁感应强度磁感线是描述磁场分布形态的一种图示方法。
磁感应强度是磁场对单位面积垂直于磁力线方向的力的大小。
2. 法拉第电磁感应定律法拉第电磁感应定律是指导体中的磁感应强度变化会诱导出感应电动势的规律。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度变化速率成正比。
3. 感应电流和楞次定律根据楞次定律,感应电流的方向总是阻碍引起它产生的因素,如磁感应强度的变化。
感应电流具有闭合电路的特点。
三、电磁波和麦克斯韦方程组1. 电磁波的特点电磁波是由电场和磁场交替变化产生的一种波动现象。
电磁波可以传播在真空中和介质中,具有波长、频率和速度等特性。
2. 麦克斯韦方程组麦克斯韦方程组是描述电场和磁场相互作用的基本定律。
包括麦克斯韦第一和第二个定律、高斯定律和法拉第定律。
3. 电磁波的分类根据频率的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等。
四、电磁学的应用1. 电磁感应的应用电磁感应在发电机、变压器等电器设备中有广泛应用。
电磁感应还可以用于磁悬浮列车、无线充电等领域。
2. 电磁波的应用电磁波在通信、雷达、医学影像等方面有重要应用。
十、电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E =U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记〔见图[第二册P98];(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106μF=1012PF;(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
高中物理电磁学知识电磁学是物理学的重要分支,研究电荷和电荷之间的相互作用以及静电场、电流、磁场和电磁感应等现象。
本文将详细介绍高中物理电磁学的基本知识,包括静电场、电流、磁场和电磁感应等内容。
1. 静电场静电场是由静止的电荷引起的,它是指周围空间中由于电荷分布不均匀而产生的电场。
静电场有两个重要特征:一是电荷分布对电场产生影响,二是电场对电荷施加力。
静电场的电场强度E表示单位正电荷所受的力,其方向沿电场线指向负电荷。
2. 电流电流是电荷在单位时间内通过导体横截面的数量,通常用字母I表示,单位是安培(A)。
电流的大小与导体内的自由电子数目和电子的速度有关。
电流有两种性质:电流的守恒和欧姆定律。
守恒定律指出,在任何一个闭合回路中,电流的总和为零;欧姆定律则描述了电流与电压和电阻之间的关系,即I=U/R,其中U表示电压,R表示电阻。
3. 磁场磁场是由磁体或电流产生的,它是指在空间中存在的磁力的场。
磁场有两种表示方式:矢量法和标量法。
矢量法用矢量B表示磁感应强度,其方向垂直于磁场线;标量法用标量B表示磁场强度,其大小与磁场的强弱有关。
磁场对磁铁或电流有引力或斥力的作用,同时也对运动的带电粒子施加洛伦兹力。
4. 电磁感应电磁感应是指通过磁场引起电流或通过电流引起磁场的现象。
根据法拉第电磁感应定律,当磁场的变化引起导线内的磁通量变化时,导线两端会产生感应电动势。
电磁感应是电力生成与传输的基础,也是发电机和变压器等电器设备的工作原理。
综上所述,高中物理电磁学知识包括静电场、电流、磁场和电磁感应等内容。
这些知识都是理解电磁现象和应用电磁技术的基础,对于进一步研究电磁学和应用电磁技术都具有重要意义。
希望本文的介绍能够帮助读者更好地理解和应用电磁学知识。
高中物理电磁学所有概念-知识点-公式十、电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记〔见图[第二册P98];(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106μF=1012PF;(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
高考物理电磁学部分详解高考物理:电磁学部分详解物理是高考中的一门重要科目,而电磁学又是物理中的关键领域之一。
本文将详细解析高考物理电磁学的相关知识,希望能够帮助考生更好地掌握和理解这一部分内容。
第一章电场与电势电场是一个重要的概念,它代表了电荷周围的空间中存在的一种场。
而电荷之间的相互作用力,则是由电场引起的。
电场的强弱用电场强度表示,电场强度的方向则是电荷所受力的方向。
电势则是描述电场能量分布的物理量,它是单位正电荷所具有的电势能。
第二章磁场与磁感应强度磁场是描述磁现象的一种物理场,它是由磁荷所产生的。
磁感应强度则表示磁场的强弱,它的方向由正向北磁极指向正向南磁极。
磁力是磁场作用在带电粒子上所产生的力,它的大小与磁感应强度、带电粒子的电荷和速度有关。
第三章电磁感应电磁感应是指通过磁场的变化引起的电场的产生,或者通过电场的变化引起的磁场的产生。
当磁通量发生变化时,会产生感应电动势。
根据法拉第电磁感应定律,电磁感应效应的大小与磁通量变化的速率成正比。
第四章电磁波电磁波是一种由电场和磁场相互耦合产生的波动现象。
根据电磁波的频率,可以将其划分为不同的波段,如射频波、微波、红外线、可见光等。
电磁波在真空中的传播速度是一个常数,即光速。
第五章光的反射与折射光的反射是光线从一种介质射向另一种介质界面时,发生方向改变的现象。
根据反射定律,入射角和反射角相等。
而光的折射是光线从一种介质射向另一种介质时,由于介质的密度不同而发生方向改变的现象。
根据折射定律,入射角和折射角之间存在一个比例关系。
第六章光的色散与光的干涉光的色散是光波在通过介质时,由于不同频率的光波传播速度不同,导致不同波长的光波被分离的现象。
光的干涉是光波相互叠加产生干涉条纹的现象。
根据干涉现象的特点,可以将干涉分为等厚干涉和薄膜干涉。
第七章电磁场与电磁波电磁场是指电荷和电流所产生的电场和磁场的综合效应。
电磁场理论是描述电磁现象的基本理论,它由麦克斯韦方程组组成。
高中物理必修——电磁学基础篇电磁学是物理学的一个重要分支,涵盖了电场、磁场及其相互作用的研究。
而在高中物理中,电磁学作为必修内容,也是学生们在物理学习中接触到的第一个抽象和理论性较强的知识点。
本文将围绕高中电磁学基础篇的学习内容进行讲述,深入了解电磁学的基本概念和原理。
1. 电荷与电场在物理学中,电荷是描述物体带电性质的物理量。
带有相同电荷的物体会相互排斥,而带有相反电荷的物体则会相互吸引。
电荷与距离的平方成反比,所以电荷之间的作用力随距离的增加而减小。
电场是描述空间中带电粒子所受的力的物理量。
电场可以描述与电荷的分布和大小有关的物理现象。
对于单个点电荷,其电场强度越远离电荷越小,符合电场强度与距离的平方成反比关系。
而对于其他分布情况的电荷体系,就需要通过高斯定理或积分法来求解电场强度。
2. 电势与电势差电势是描述电场在空间中的分布的物理量。
电势的大小与电荷的大小、位置及周围其他带电粒子的状态都有关系。
在静电场条件下,电势的概念可以用以下公式来表示:V = U / q其中,V 表示电势,U 表示电位能,q 表示电荷量。
电势是标量,单位为伏特(V)。
电势差在电场中也是一个重要的概念。
电势差是指电场力将单位电荷从电势较高的地方移到电势较低的地方所做的功。
在静电场中,电势差可以表示为:ΔV = -∫(E·dl)其中,E 表示电场的大小和方向,dl 表示位移的微元,积分的方向是电荷从电势高处到电势低处的方向。
3. 电路电路是指连接电源、导线和电器的系统。
电路中的电流和电压是电路中的两个重要概念。
电流是指在导体中电子流动引起的物理量。
电流的单位是安培(A),定义为单位时间内通过导体横截面的电荷量。
在直流电路中,电流阻碍电子流动的阻力主要来自电阻。
而在交流电路中,电流会随着时间的变化而变化。
电压是指单位电荷在电路中运动时所受的电势差。
电压的单位是伏特(V),定义为单位电荷在电场中所受的力。
电压可以通过电阻和电流的关系李进行描述,即:U = R × I其中,U 表示电压,R 表示电阻,I 表示电流。
高中物理电磁学知识点归纳大全一、电场。
1. 电荷与库仑定律。
- 电荷:自然界存在两种电荷,正电荷和负电荷。
电荷的多少叫电荷量,单位是库仑(C)。
- 库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。
表达式为F = k(q_1q_2)/(r^2),其中k = 9.0×10^9N· m^2/C^2。
2. 电场强度。
- 定义:放入电场中某点的电荷所受的电场力F与它的电荷量q的比值,叫该点的电场强度,E=(F)/(q)。
单位是N/C或V/m。
- 点电荷的电场强度:E = k(Q)/(r^2)(Q为场源电荷电荷量)。
- 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和。
3. 电场线。
- 电场线是为了形象地描述电场而引入的假想曲线。
电场线从正电荷或无穷远出发,终止于负电荷或无穷远;电场线越密的地方电场强度越大。
4. 电势与电势差。
- 电势:电荷在电场中某一点的电势能与它的电荷量的比值,φ=(E_p)/(q)。
单位是伏特(V)。
- 电势差:电场中两点间电势的差值,U_AB=φ_A - φ_B,也等于把单位正电荷从A点移到B点电场力所做的功,U_AB=frac{W_AB}{q}。
5. 等势面。
- 电场中电势相等的点构成的面叫等势面。
等势面与电场线垂直;电场线总是从电势高的等势面指向电势低的等势面。
6. 电容器与电容。
- 电容器:两个彼此绝缘又相距很近的导体可组成一个电容器。
- 电容:电容器所带电荷量Q与电容器两极板间电势差U的比值,C=(Q)/(U),单位是法拉(F),1F = 1C/V。
平行板电容器的电容C=(varepsilon S)/(4πkd)(varepsilon为介电常数,S为极板正对面积,d为极板间距)。
二、电路。
1. 电流。
- 定义:电荷的定向移动形成电流,I=(Q)/(t),单位是安培(A)。
一、库伦定律①电荷:①电荷量(简称电量):用来度量带电体(静电)所含电量的多少。
其符号是Q,单位是库伦(简称库),用符号C表示。
通常正电荷量用正数表示,负电荷量用负数表示。
②元电荷:也可叫做基本电荷。
任意电荷量都等于该元电荷的整数倍,用e 表示。
e= 1.6021892×10-19C,可取e=1.6×10-19C。
它是一个电子或质子所带电荷量。
③点电荷:忽略其体积的带电质点,其所带电荷可以用Q或q来表示。
④净电荷:在导体中,未被电性抵消的电荷量叫做净电荷量,简称净电荷。
⑤电荷平分原理:两个点电荷或体积相等的两个电荷相遇后,各自所带的电荷量为两个点电荷电量之和的一半。
(正电荷用正值代入,负电荷用负值代入。
)②库伦定律:①概念:在真空中的两个点电荷间的作用力的大小与它们的电量乘积成正比,与它们之间距离平方成反比,作用力的方向存在于它们的连线上。
其中的这种作用力叫做静电力或库伦力。
其方向遵循:同种电荷相斥,异种电荷相吸②公式其中k就是静电力恒量,在真空条件下其值为k=9.0×109二、电场、电场强度和电场线①电场:①电场:电荷间的互相作用是通过电场发生的,只要有电荷,其周围就有电场。
静电力就是电场对其他电荷的作用力。
②对电场的认识:电场对处于其中的电荷有力的作用,可对电荷做功,从而具有能量和动量,而没有静止质量,具体形状等。
②电场强度和电场线:①电场强度:①概念:我们定义:电场力与检验电荷量的比值叫做其电场的电场强度。
它是用来描述场源电荷发出电场的性质的物理量,与检验电荷无关。
其符号是E,单位是N/C。
电场强度是个矢量,其方向就是场源电荷的电场对电场内正电荷的静电力方向。
②k就是静电力恒量,Q是源电荷的电量。
②电场线:①概念:电场线是这样一种曲线,它能表示电场强度,它每一点的切线方向与该处电场强度方向一致。
电场强度方向就是电场线的方向。
②电场线的性质:电场线的疏密可以表示电场强度的大小,电场线越密,电场强度越大。
场源电荷为正电荷的电场线箭头指向背离源电荷方向,场源电荷为负电荷的电场线箭头指向靠近源电荷方向。
三、电势能、电势和电势差①电势能:①②公式:rq Q k E q ⋅=,其中k 就是静电力恒量,Q 是源电荷的电量,q 是点J )。
③常用能量定理:带点粒子的动能增量等于该粒子的电势能、重力势能以及其他阻力所做功之和,即:f P q K W E E E ++=∆。
④判断粒子做功及电势能大小口诀:同荷相合,功小能大;异荷相合,功大能小,相斥反之。
②电势和电势差:①电势:①概念:点电荷在电场中某一点的电势能E q 与点电荷电量q 的比值,叫做该点的电势U 。
②公式:rQ k q E U q==,其中k 就是静电力恒量,Q 是源电荷的电量。
其符号是U ,其单位是伏特,写作V 。
对于等量异种电荷,过其连线中点的垂线上,电势处处相等,且等于0。
原因是,力与位移始终垂直,不做功,有无限远处电势等于零,所以电势处处相等,且等于0。
②电势差:①概念:电场中两点之间的电势差值叫做电势差,也叫电压。
其符号是U 。
②公式:0U U U t -=∆。
③功的新单位:电子伏(写作eV ),是在研究微观粒子时常用的能量单位。
1eV=1.6×10-19J③等势面:①概念:电场中电势相等的点的集合构成的面叫做等势面。
②特点:同一等势面上运动的电荷,电场力不做功。
电场力做功,电荷的电势能一定改变。
等势面与电场线一定垂直。
③匀强电场:如果某一电场的某一区域里,其各处电场强度相等,那么该区域就叫做该电场的匀强电场。
④匀强电场中的电势与场强的关系:由电场力所做的功等于电势能增量得到:θcos ⋅⋅⋅=⋅∆d E q q U ,所以θcos ⋅⋅=∆d E U (其中E 是电场强度,d 是电荷的位移,θ是位移与场强的夹角)。
四、静电感应①静电平衡状态:①静电感应:①概念:导体内自由电子由于受外电场的作用而重新分布的现象。
②感应电荷:由于静电感应使得原来不显电的导体两端形成的电荷。
感应电荷形成的新电场的场强方向始终与外电场场强方向相反。
②静电平衡状态:①概念:放入电场的导体受到静电感应作用,最终使得导体内部合场强为零,那么我们把这种状态称为静电平衡状态。
②特征:导体内部场强处处为零。
导体中没有净电荷。
整个导体是个等势体,导体表面是个等势面。
②静电屏蔽:①概念:使得某一空间不受电场作用。
五、电容①概念:①电容器:两个彼此绝缘而互相靠近的导体以及导体间的电介质构成的整体就是一个电容器,两导体就是该电容器的极板。
它在电路图中符号是两根平行等长的竖线,通常两边标注正负极性。
符号是C ,单位是法拉,简称法,写作F 。
1F=106μF=1012p F ②公式:UQ C =。
③电容在电路中的一些性质:由于通电后,极板带电,形成电势差,但两板彼此绝缘,所以整个电容器是不导直流电的。
当电容两端的电压加大到一定程度后,两板彼此不绝缘而导电(电容损坏),这时的电压叫击穿电压。
在交流电路中,极板间形成变化的电场,电流就通过场的形式在电容器间通过的。
所以电容器是“直阻交通”的。
①公式:dS k C ⋅=πε4,其中k 是静电力恒量,ε是取决于两板之间电介质的介电常数,S d 是两板间距。
②电容器的连接:①耐压式连接法(串联):由于串联电路的电流处处相等,因为电流大小与电荷量Q 成正比,所以串联电路的电容器电荷量处处相等,因为C Q U =,又串联电路中总电压等于各分电压的代数和,所以⎪⎪⎭⎫ ⎝⎛+=2111C C Q U 总,所以串联电容器的总电容的倒数等于各个电容器电容的倒数之和。
②增容式连接法(并联):由于并联电路的电压处处相等,总电流等于各分电流的代数和,因为电流大小与电荷量Q 成正比,所以串联电路的总电荷量等于各分电荷量的代数和,所以()2121C C U Q Q Q +=+=,得21C C C +=,所以串联电路的总电容等于各分电容的代数和。
一、欧姆定律①电流:①概念:导体中的自由电荷在电场力的作用下做定向移动,它移动的量叫做电流强度,简称电流,符号是I ,单位是安培,简称安。
电流有方向,其 ②电流的微观公式:q S v n I ⋅⋅⋅=(其中n 是单位体积内自由电子的个数,v 是其平均速度,S 是横截面积,q 是单位电荷量)。
②电阻与内阻:①电阻:①R ,其单位是欧姆,简称欧,写作Ω。
②ρ是电阻率,L 是电阻的长度,S Ω·m 。
电阻率与导体本身性质以及导体温度有关,温度越高,电阻越大。
②内阻:由于供电电池(或在充电的可充电电池)处于电路中也会产生对电路的阻碍作用,则其阻碍作用称为电路的内电阻,简称内阻。
③欧姆定律:定律的应用:①串联:串联电路中U =U 1+U 2,I =I 1=I 2,R =R 1+R 2;P =I 2·R 。
②并联:并联电路中U =U 1=U 2,I =I 1+I 2,2121R R R R R +=;P ·R =U 2。
其中P 是电功率。
③等效电路:③电功、电功率和电的热功、热功率:①电功:电路中由于加在导体两端产生电场而有的电场力在推动自由电子定向移动所做的功。
其公式是t I U q U W ⋅⋅=⋅=,单位是焦耳。
②电功率:单位时间内电场力所做的功。
其公式是I U P ⋅=,单位是瓦特。
③电的热功:电流通过导体所产生的热,与电流平方、导体电阻及通电时间成正比。
其公式是t R I Q ⋅⋅=2,单位是焦耳。
④电的热功率:单位时间内电流通过导体所产生的热,与电流平方、导体电阻成正比。
其公式是R I P Q ⋅=2,单位是瓦特。
当电路中没有发生转化时(纯电阻),电热相等,当有需要电能转化成机械能等其他形式时(例如有电动机处于电路中),电热不等。
④电压表、电流表与电阻测定电压、电流表都是由表头G (表头内部结构见磁场一章)改装而来的,表头指针偏转弧度θ与其通过的电流强度I g 成正比。
①电流表:将一个电阻R 与表头G 并联,由该电阻帮表头分流,使得使R 是并联的电阻,r g 是表头G 的内阻,I g 是通过表头G 的电流强度。
所以I ∝I g ∝θ。
②电压表:将一个电阻R 与表头G 串联,由该电阻帮表头分压,由于电压表在电路里并联,然而,电阻R 与表头G 串联的系统内的电阻总和不变,所以电压表两端电压与通过的电流大小成正比,即:()g g I r R U +=其中R 是串联的电阻,r g 是表头G 的内阻,I g 是通过该系统的电流强度。
所以U ∝I g ∝θ。
对于电路中的电表来讲,用伏安法测电阻是有误差的。
由于电压表的内阻趋向于无穷大,所以会使得被测电压变小;由于电流表的内阻不为零,所以会使得被测电流变小。
电流表接于电压表内侧与接于外侧有很大不同,内接R 值偏大,外接R 值偏小。
③惠斯通电桥测电阻:二、闭合电路欧姆定律:在闭合电路中,由于电源有内阻,所以整个电路可以分为内外两部分。
外电路就是除电源外的电路部分,内电路就是电源内部的电路部分。
①电动势:①概念:内外电路电势之和。
若不计电能损耗,闭合电路中的电动势基本不变。
其符号是E ,其单位是伏特,写作V 。
②公式:E =U 内+U 外。
②闭合电路欧姆定律:①概念:闭合电路中的电流强度与电源电动势成正比,与内外电路的电阻② ③线性关系:Ir E U -=外,其中r 是电源内阻,E 是电动势。
④闭合电路的功率问题:总功率电源发热功率③闭合电路的各图像:④动态闭合电路分析:由上述公式可知,总电阻与路端电压正相关,与总电流负相关。
对于只有滑动变阻器和电阻参与的电路,其电压或电流变化量总是最大。
欧姆表:磁场与电磁感应一、磁场①磁场:①概念:磁体间的互相作用是通过磁场发生的,只要有磁体,其周围就有磁场。
磁场的方向就是小磁针N 极指向。
通电导线周围也会产生磁场。
②磁感线:①概念:磁感线是这样一种曲线,它上面的每一点的切线方向都与该点磁场方向相同。
②安培定则:利用安培定则(右手螺旋定则)可以判断通电直导线的磁场方向。
方法是右手握住通电直导线,让伸直的拇指的方向与电流的方向一致,那么,弯曲的四指所指的方向就是磁感线的环绕方向。
③对于安培定则的理解:①通电螺线管磁场方向:右手握住通电螺线管,四指的方向为环形电流方向,大拇指指向为N 极指向。
②磁体周围磁场方向:从N 极流出S 极流入。
③磁感强度与磁通量:①磁感强度:①概念:当通电短直导线垂直于磁场方向时,磁场对通电短导线的作用力大小,与导线长度和导线中的电流强度的乘积的比值叫做该处B ,单位是特斯拉,简称特,写作T 。
②lI F B ⋅=,其中I 是导线中的电流强度,l 是导线长度。
③域。
②毕奥—萨伐尔定律:它是通电直导线周围磁感强度的定律。