材料力学B试题6弯曲变形
- 格式:doc
- 大小:374.00 KB
- 文档页数:14
判断方法:(两种方法)
左上右下为正
使研究对象顺时针转动为正
具体计算时:(黑色表示外力,蓝色表示内力)
S
F
S
F
S
F
S
F
F
判断方法:(两种方法)
左顺右逆为正 上凹下凸为正
具体计算时:(黑色表示外力,红色表示内力)
正: 负:
M
直接求解剪力和弯矩的法则:
1、 任意截面上的剪力=[∑一侧横向力代数值] 横向力:包含载荷、约束力、分布力、集中力 代数值:左上右下为正,反之为负
2、 任意截面上的弯矩=[∑一侧外力对截面形心之矩的代数值] 外力:包含载荷、约束力、分布力、集中力、集中力偶 代数值:左顺右逆为正,反之为负 截面形心:所求截面的截面形心
绘制剪力弯矩图的方法(从左往右绘制):
q F F S s +=12所围成的面积 S F M M +=12所围成的面积。
第一章 绪 论一、选择题1、构件的强度是指_________,刚度是指_________,稳定性是指_________。
A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力2、根据均匀性假设,可认为构件的________在各点处相同。
A. 应力B. 应变C. 材料的弹性常数D. 位移3、下列结论中正确的是________ 。
A. 内力是应力的代数和B. 应力是内力的平均值C. 应力是内力的集度D. 内力必大于应力4、下列说法中,正确的是________ 。
A. 内力随外力的改变而改变。
B. 内力与外力无关。
C. 内力在任意截面上都均匀分布。
D. 内力在各截面上是不变的。
5、图示两单元体虚线表示其受力后的变形情况,两单元体的切应变γ分别为________ 。
A. α,αB. 0,αC. 0,-2αD. α,2α二、计算题1、如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
2、已知杆内截面上的内力主矢为F R与主矩M如图所示,且均位于x-y平面内。
试问杆件截面上存在哪种内力分量,并确定其大小。
图中之C点为截面形心。
3、板件ABCD的变形如图中虚线A’B’C’D’所示。
试求棱边AB与AD的平均正应变以及A点处直角BAD的切应变。
第二章 拉伸与压缩一、选择题和填空题1、轴向拉伸杆件如图所示,关于应力分布正确答案是_________。
A 1-1、2-2面上应力皆均匀分布;B 1-1面上应力非均匀分布,2-2面上应力均匀分布;C 1-1面上应力均匀分布,2-2面上应力非均匀分布;D 1-1、2-2面上应力皆非均匀分布。
2、图示阶梯杆AD 受三个集中力作用,设AB 、BC 、CD 段的横截面积分别为3A 、2A 、A ,则三段的横截面上 。
A 轴力和应力都相等B 轴力不等,应力相等C 轴力相等,应力不等D 轴力和应力都不等3、在低碳钢拉伸曲线中,其变形破坏全过程可分为4个变形阶段,它们依次是 、 、 、 。
弯曲变形1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为:(A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。
答:(C)2. 外伸梁受载荷如致形状有下列(A)(B)、(C),(D)四种:答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M x w q xF F x M )(d d ,d d ,d d 22SS ===;(B)EI x M xw q x F F xM)(d d ,d d ,d d 22SS =-=-=; (C)EI x M x w q x F F x M )(d d ,d d ,d d 22SS -==-=;(D)EI x M x w q xF F x M )(d d ,d d ,d d 22SS -=-==。
答:(B)4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EIl M EI Fl w B 232e 3+=(↓)则截面C 处挠度为:(A)2e 3322323⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛l EI M l EI F (↓);(B)233223/323⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛l EI Fl l EI F (↓); (C)2e 3322)3/(323⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛l EI Fl M l EI F (↓);(D)2e 3322)3/(323⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛l EI Fl M l EI F (↓)。
答:(C)5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。
答:6.7.(a)、(b)刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b);(C) (a)=(b); (D) 不一定。
答:(C)8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。
弯曲变形1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为:(A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。
答:(C)2. 外伸梁受载荷如图状有下列(A)、(B)、(C)(D)四种: 答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为:(A)EI x M xw q xF F xM)(d d ,d d ,dd 22SS ===; (B)EI x M xw q x F F x M)(d d ,d d ,d d 22SS =-=-=; (C)EI x M xw q x F F x M)(d d ,d d ,d d 22SS -==-=; (D)EI x M xw q xF F xM)(d d ,d d ,d d 22SS -=-==。
答:(B)4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EIl M EI Fl w B 232e 3+=(↓) 则截面C 处挠度为:(A)2e 3322323⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛l EI M l EI F (↓); (B)233223/323⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛l EI Fl l EI F (↓);(C)2e 3322)3/(323⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛l EI Fl M l EI F (↓);(D)2e 3322)3/(323⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛l EI Fl M l EI F (↓)。
答:(C)5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。
答:6.7.、(b)两种(A) (a)>(b); (B) (a)<(b); (C) (a)=(b); (D) 不一定。
答:(C)8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。
材料力学第一章复习题1,下列结论中正确的是()A,内力是应力的代数和B,应力是内力的平均值C应力是内力的集度D内力必大于应力2. 一对自平衡的外载产生杆件的哪种基本变形只对杆件的某一局部存在影响。
( )A 拉伸与压缩B 剪切C扭转D弯曲3,已设计好的构件,若制造时仅对其材料进行更换通常不会影响其( )A稳定性 B 强度C几何尺寸D刚度4. 根据均匀性假设,可认为构件的下列各量中的( )在各点处都相同A屈服极限B材料的弹性常数C应力D应变第二章轴向拉伸压缩与剪切挤压的实用计算1.塑性材料的极限应力是A屈服极限B强度极限c比例极限D弹性极限2.脆性材料的极限应力是。
A屈服极限B比例极限C强度极限D弹性极限3.受轴向拉压的杆件内最大切应力为80 Mpa,则杆内最大正应力等于A160Mpa B 80Mpa C40Mpa D20Mpa4.在低碳钢Q235的拉伸试验中,材料暂时失去了抵抗变形能力是发生在哪个阶段A弹性B屈服C强化D缩颈断裂5材料进入强化阶段卸载,在室温中放置几天再重新加载可以获得更高的()。
A比例极限B强度极限C弹性变形D塑性变形6直径为d的圆截面钢杆受轴向拉力作用,已知其纵向线应变为e,弹性模量为E,杆轴力大小为()。
填空题(5.0分)7.在连接件上,剪切面和挤压面分别()于外力方向8.连接件剪切强度的实用计算中去,许用切应力是由( )9.插销穿过水平放置的平板上的圆孔,在其下端受拉力F作用。
该插销的剪切面面积和挤压面面积分别等于( a)。
填空题(5.0分)10.低碳钢拉伸试验中滑移线是( )造成的。
11.外力消失后,变形也消失,这种变形为( )12.当延伸率小于( )时为脆性材料,当延伸率大于( )时为塑性材料13.一个结构中有三根拉压杆,设由这三根杆的强度条件确定的结构许用载荷分别为F1、F2、F3,且F1<F2<F3,则该结构的实际许可载荷[F]为判断题(5.0分)14低碳钢的抗拉能力小于抗剪能力()A对 B 错15. 试求图中1-1,2-2,3-3截面上的轴力,并作轴力图。
弯曲变形1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为: (A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。
答:(C)2. 外伸梁受载荷如图示,其挠曲线的大致形状有下列(A)、(B)、(C),(D)四种: 答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M xw q xF F x M )(d d ,d d ,d d 22SS ===; (B)EI x M xw q x F F xM)(d d ,d d ,d d 22SS =-=-=; (C)EI x M x w q x F F x M )(d d ,d d ,d d 22SS -==-=;(D)EI x M x w q xF F x M )(d d ,d d ,d d 22SS -=-==。
答:(B)4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EIl M EI Flw B 232e3+=(↓)则截面C 处挠度为:(A)2e 3322323⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛l EI M l EI F (↓); (B)233223/323⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛l EI Fl l EI F (↓);(C)2e 3322)3/(323⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛l EI Fl M l EI F (↓);(D)2e 3322)3/(323⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛l EI Fl M l EI F (↓)。
答:(C)5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。
答:6. 试画出图示梁的挠曲线大致形状。
答:7. 正方形截面梁分别按(a)、(b)两种形式放置,则两者间的弯曲刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b); (C) (a)=(b); (D) 不一定。
答:(C)8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。
答:x =0, w 1=0, 1w '=0;x =2a ,w 2=0,w 3=0;x =a ,w 1=w 2;x =2a ,32w w '='。
9. 试画出图示静定组合梁在集中力F 作用下挠曲线的大致形状。
答:10. 画出图示各梁的挠曲线大致形状。
答:11.12. 座间的距离应为l -2a =0.577l 。
⎥⎦⎤⎢⎣⎡==⎰⎰llx w x l 00d d Δ:提示ρε证:令外伸端长度为a ,跨长度为2b ,a l b -=2,因对称性,由题意有:得 a 3+ 3a 2b -2b 3= 0 a 3+ a 2b + 2a 2b -2b 3= 0 a 2+ 2ba -2b 2= 0 a = 0.211l即 l -2a = 0.577l 证毕。
13. 等截面悬臂梁弯曲刚度EI 为已知,梁下有一曲面,方程为w = -Ax 3。
欲使梁变形后与该曲面密合(曲面不受力),试求梁的自由端处应施加的载荷。
解:EIAx w EI x M 6)(-=''= F S (x ) = -6EIA x=l , M = -6EIAlF =6EIA (↑),M e =6EIAl ()14. 变截面悬臂梁受均布载荷q 作用,已知q 、梁长l 及弹性模量E 。
试求截面A 的挠度w A 和截面C 的转角θC 。
解:x lh b h x b x I 1212)()(303== 由边界条件0,='==w w l x 得3043032,3h b ql D h b ql C -== 3042h Eb ql w A -=(↓) , 30338h Eb ql C =θ()15. 在刚性圆柱上放置一长2R 、宽b 、厚h 的钢板,已知钢板的弹性模量为E 。
试确定在铅垂载荷q 作用下,钢板不与圆柱接触部分的长度l 及其中之最大应力。
解:钢板与圆柱接触处有 EIql R 2/12=故 qREbh RqEI l 623==16. 弯曲刚度为EI 的悬臂梁受载荷如图示,试用积分法求梁的最大挠度及其挠曲线方程。
解:30)(6)(x l lq x M w EI --=='' 12024)(120403050l q x l q x l l q EIw -+--= EIl q w 3040max -=(↓)17. 图示梁的左端可以自由上下移动,但不能左右移动及转动。
试用积分法求力F 作用处点A 下降的位移。
解:Fx Fl w EI -=''EIFl w A 33-=(↓)18. 简支梁上自A 至B 的分布载荷q (x )=-Kx 2,K 为常数。
试求挠曲线方程。
解:2)(Kx q x M -==''二次积分 B Ax x Kx M ++=412)(x =0, M =0, B =0x =l , M =0, 123Kl A -=x =0, w =0, D =0x =l , w =0, 36045Kl C -=)45(3605336x l x l x EIKw +--=(↓) 19. 弯曲刚度为EI 的悬臂梁原有微小初曲率,其方程为y =Kx 3。
现在梁B 端作用一集中力,如图示。
当F 力逐渐增加时,梁缓慢向下变形,靠近固定端的一段梁将与刚性水平面接触。
若作用力为F ,试求: (1)梁与水平面的接触长度; (2)梁B 端与水平面的垂直距离。
解:(1) 受力前C 处曲率Ka a 6)(11=ρ,弯矩M (a )1 = 0受力后C 处曲率0)(12=a ρ,弯矩M (a )2 = -F (l - a ) (2)同理,受力前x 1截面处0)(),(6d d )(111122111=+=⎪⎪⎭⎫ ⎝⎛=+=x M x a K x y x x a x ρ受力后x 1截面处 )()(,d d )(1121211221x b F x M x y x --==ρ积分二次 D Cx EIFx EI Fbx Kx Kax y +++-+=132131211623 C =0, D =020. 图示弯曲刚度为EI 的两端固定梁,其挠度方程为式中A 、B 、C 、D 为积分常数。
试根据边界条件确定常数A 、B 、C 、D ,并绘制梁的剪力F S 、弯矩M 图。
解:x = 0,w = 0,D = 0 0,='=w l x 代入w '方程 242ql B -=21. 已知承受均布载荷q 0的简支梁中点挠度为EIl q w 384540=,则图示受三角形分布载荷作用梁中点C 的挠度为w C = 。
答:EIl q 768540(↓)22. 试用叠加法计算图示梁A 点的挠度w A 。
解:22)2/(3)2/(3)2/(233aEI a F EI a F EI a F w A ++= EIFa 48133=(↓)23. 试求图示梁BC 段中点的挠度。
解:EIa q EI a qa EI a qa w 384)2(53)3(3)(21433+⎪⎪⎭⎫ ⎝⎛+=EIqa 8394=(↓)24. 已知梁的弯曲刚度EI 。
试用叠加法求图示梁截面C 的挠度w C 。
解:EIa a l q EI a l q EI l a l q EI ql w C 96)2(256)2(96)2(76853434⋅-+-+--= EIa l qa 96)23(222-=(↓)25. 已知梁的弯曲刚度EI 为常数。
试用叠加法求图示梁B 截面的挠度和转角。
解: EIl q EI l q EI l q w B 12011308404040=-=(↓)EIl q EI l q EI l q B 8246303030=-=θ()26. 试用叠加法求图示简支梁跨度中点C 的挠度。
解:EIFl l EI Fl EI Fl l EI l Fl 38474643768546)2/)(8/(333=⋅+=⎥⎦⎤+(↓)27. 试用叠加法求图示简支梁集中载荷作用点C 的挠度。
解:EIFl EI l F EI l F w w B B C 483)4/(413414333====(↓)28. 已知简支梁在均布载荷作用下跨中的挠度为EIql w C 38454=,用叠加法求图示梁中点C 的挠度。
解: ()EIl q EIl q w C 76853842/54040=⋅=(↓)29. 弯曲刚度为EI 的悬臂梁受载荷如图示,试用叠加法求A 端的转角θA 。
解:x EIl x q A d 2d 240=θ EI l q x x EIl q lA 10d 2304020==⎰θ()30. 弯曲刚度为EI 的等截面梁受载荷如图示,试用叠加法计算截面C 的挠度w C 。
解:EIl q q EI l q q w C 768)(53842/)(5421421+=⋅+⋅=(↓)31. 如图所示两个转子,重量分别为P 1和P 2,安装在刚度分别为EI 1及EI 2的两个轴上,支承轴是A 、B 、C 、D 四个轴承。
B 、C 两轴承靠得极近以便于用轴套将此两轴连接在一起。
如果四个轴承的高度相同,两根轴在B 、C 处连接时将出现“蹩劲”现象。
为消除此现象可将A 处轴承抬高,试求抬高的高度。
解: 121116EI l P B ⋅=θ, 222216EI l P C ⋅=θ点A抬高的高度为 2122213111616EI l l P EI l P ⋅⋅+32. 图示梁AB 的左端固定,而右端铰支。
梁的横截面高度为h ,弯曲刚度为EI ,线膨胀系数为l α,若梁在安装后,顶面温度为t 1,底面温度为t 2(t 2>t 1),试求此梁的约束力。
解:因温度变化而弯曲的挠曲线微分方程为ht t x w x l )(d d d d 1222-==αθ 由A 处边界条件得 2122)(x ht t w l -=α而 EIl F w B BFB33=33. 图示温度继电器中两种金属片粘结的组合梁,左端固定,右端自由。
两种材料的弹性模量分别为E 1与E 2。
线膨胀系数分别为1l α与2l α,并且1l α>2l α。
试求温度升高t ℃时在B 端引起的挠度。
解:1l α>2l α,梁上凸下凹弯曲 平衡条件 F N1 = F N2 = F N M 1 + M 2 = F N h 变形协调 θ1 =θ2,2211E M E M =ε1 =ε2,即ε1N +ε1M +ε1t =ε2N +ε2M +ε2t得t I E hM A E F t I E h M A E F l l 222222N21111111N 22αα+-=+-其中 A 1 = A 2 = bh ,I 1 = I 2 =123bh则 F N1 = F N2 =21222121212114)()(E E E E E E E tbhE l l +++-αα M 1 =21222122122114)(E E E E E E tbh l l ++-αα M 2 =21222122122114)(E E E E E E tbh l l ++-αα故 )14()(222122212212122221121E E E E h l E tE b I E l M I E l M w l l B ++-===αα 34. 单位长度重量为q ,弯曲刚度为EI 的均匀钢条放置在刚性平面上,钢条的一端伸出水平面一小段CD ,若伸出段的长度为a ,试求钢条抬高水平面BC 段的长度b 。