煤田地质学
- 格式:ppt
- 大小:3.60 MB
- 文档页数:8
硕士研究生入学考试煤田地质学考试大纲考试内容:一、煤的物质成分和性质一是把煤作为一种岩石,从岩石学的角度研究煤的组成成分和类型;一是从化学的角度研究煤的成分和性质。
这两个方面目前都已发展成独立的分支,即煤岩学和煤化学。
据此对煤的各种组成包括有益的和有害的成分进行分析。
考试要求:1、掌握煤的显微组分分类与特征。
2、了解腐殖煤的岩石类型。
3、掌握煤的一般物理性质。
4、掌握煤的结构构造。
5、掌握煤的化学组成与结构特征。
6、了解煤的工艺性质。
7、掌握工业用煤的质量要求。
8、了解煤的工业分类。
二、成煤作用植物转变成煤过程,成煤作用各阶段的条件、因素和变化,煤的成分、性质复杂多样的原因,煤质评价,煤质分布变化规律与煤质预测。
成煤作用的第一阶段——泥炭化作用阶段:泥炭和腐泥的形成环境、堆积方式和转变条件等;这个阶段生物化学变化内容及煤中不同组分的成因。
成煤作用的第二阶段——成岩和变质作用阶段:成岩和变质因素以及煤的成分、性质在成岩和变质过程中的变化。
考试要求:1、了解植物演化与成煤作用的关系。
2、掌握遗体的堆积环境与堆积方式。
3、掌握泥炭化过程中的生物化学变化。
4、掌握泥炭化过程中的凝胶化作用与丝炭化作用。
5、掌握残殖化作用及残殖煤成因。
6、掌握腐泥化作用与腐泥煤成因。
7、掌握煤的成因分类。
8、掌握煤化作用概念与阶段划分。
9、了解煤化过程煤的变化与煤化作用物理-化学实质。
10、掌握煤化作用的地质因素。
11、掌握煤变质类型。
三、含煤岩系和煤层含煤岩系的岩性、岩相组成、岩性组合类型以及韵律结构;含煤岩系和煤层的形成条件;古构造和古地理条件对煤层和含煤岩系形成的控制作用及含煤性预测;含煤岩系和煤层的后期变化如煤层和煤系的构造形变、变质作用类型以及风化作用影响等。
考试要求:1、理解含煤岩系与煤田的概念。
2、掌握含煤岩系形成的控制因素。
3、掌握含煤岩系沉积环境的鉴定、分类和简要描述。
4、掌握煤层结构、煤层形成机理。
5、掌握含煤岩系韵律结构。
一、基本概念1.泥炭沼泽:沼泽是湿润的土壤内,长期或季节性的积水,并生长着喜湿性植物的低洼地段。
沼泽中形成并积累着泥炭成为泥炭沼泽。
2.成煤作用:煤是植物遗体经过复杂的生物、地球化学、物理化学作用转变而成的。
从植物死亡、堆积到转变成为煤是经过一系列的演化过程的,这个过程称为成煤作用。
3.泥炭化作用:植物物质经受生物化学分解及合成的复杂的过程且最终形成泥炭的作用.4.凝胶化作用:指植物的主要组成部分在泥炭化过程中经过生物化学变化和物理化学变化,形成以腐植酸和沥青质为主要成分的胶体物质(凝胶和溶胶)的过程5.丝炭化作用:植物物质应受的氧化分解、脱水、脱氢及增碳化过程称为丝炭化作用。
6.残植化作用:当泥炭化过程中水介质流通较畅,长期有新鲜氧供给的条件下,凝胶化作用和丝炭化作用的产物被充分分解破坏,并被流水带走,稳定组分大量集中的过程称为残植化作用。
7.腐泥化作用:低等植物(藻类)和浮游生物遗体在滞流还原环境和厌氧微生物参与下,经过复杂的生物化学变化形成的富含水分的有机软泥(腐泥) 的过程称为腐泥化作用。
8.煤的成岩作用:由泥炭经过物理化学作用形成年青褐煤的过程,称为煤的成岩作用。
9.煤的变质作用:年青褐煤,在较高的温度、压力及较长地质时间等因素的作用下,进一步发生物理化学变化,变成老褐煤(亮褐煤)、烟煤、无烟煤、变无烟煤的过程。
10.煤化作用:当泥炭形成后,由于沉积盆地的沉降,泥炭被埋藏于深处,在温度、压力增高等物理、化学作用下,形成褐煤、烟煤、无烟煤、变无烟煤,称为煤化作用阶段。
11.希尔特定律:德国学者希尔特(Hilt,1873)曾针对西欧若干煤田变质规律提出:在地层大致水平的条件下,每百米煤的挥发分降低约2.3%,即煤的变质程度随埋藏深度的加深而增高。
称为希尔特定律。
12.深成变质作用:深成变质作用是指煤层因沉降而埋藏于地下深处,由于地热及上覆岩系静压力作用下煤所发生的变质作用。
13.岩浆变质作用:由于岩浆热、挥发分气体和压力的影响,使煤发生的变质作用14.动力变质作用::动力变质作用是指煤系形成后由于地壳构造变动的直接原因而造成煤发生变质的作用。
煤炭地质学科分类
煤炭地质学是一门综合性的地质学科,它以地质理论为基础,专注于研究煤、煤层、含煤岩系、煤盆地以及与煤共生的其他矿产(如油页岩、煤成气等)的物质成分、成因、性质及其分布规律。
该学科不仅涉及地质学的多个分支,如大地构造学、构造地质学、沉积学、矿床学等,而且与地球物理探矿和石油地质学等也有密切关系。
在学科分类上,煤炭地质学属于地质学的分支学科。
具体来说,它可以进一步细分为煤田地质学、煤岩学、煤化学等多个子学科。
煤田地质学主要研究煤田的形成、分布和演化规律,包括煤层的厚度、结构、形态、赋存状态等;煤岩学则关注煤的岩石学特征,如煤的宏观和微观结构、矿物杂质等;煤化学则研究煤的化学组成、性质及其转化利用过程中的化学变化。
此外,随着科学技术的进步,煤炭地质学还逐渐与计算机科学、环境科学、经济学等多学科交叉融合,形成了诸如煤炭资源信息系统、煤炭地质环境评价、煤炭经济地质学等新兴研究方向。
这些新兴研究方向不仅拓宽了煤炭地质学的研究领域,也为煤炭资源的合理开发、利用和环境保护提供了理论支持和实践指导。
总之,煤炭地质学作为一门综合性的地质学科,其学科分类涵盖了煤田地质学、煤岩学、煤化学等多个子学科,并与其他学科形成了广泛的交叉融合。
这些子学科和交叉研究方向共同构成了煤炭地质学的学科体系,为煤炭资源的勘探、开发、利用和环境保护提供了重要的理论支撑和实践指导。
第四章中国煤田地质第一节含煤地层与煤层我国地史上的聚煤期有14个,其中早石炭世、晚石炭世-早二叠世、晚二叠世、晚三叠世、早-中侏罗世、早白垩世和第三纪为主要聚煤期。
在这7个主要聚煤期中,以晚石炭世-早二叠世、晚二叠世、早-中侏罗世和早白垩世4个聚煤期更为重要,相应煤系地层中赋存的煤炭资源占我国煤炭资源总量的98%以上,煤层气资源占我国煤层气资源总量的99.5%以上。
1、主要聚煤期含煤地层(1)主要含煤地层分布晚石炭世至早二叠世晚石炭世至早二叠世的聚煤作用在我国北方形成海陆交互相石炭-二叠系含煤地层,主要赋存在华北赋煤区,含煤面积80万km2,构成了我国最主要的煤层气聚气区,即华北聚气区。
该区大地构造单元为华北地台的主体部分,地理分布范围西起贺兰山-六盘山,东临勃海和黄海,北起阴山-燕山,南到秦岭-大别山,包括了北京、天津、山东、河北、山西、河南、内蒙南部、辽宁南部、甘肃东部、宁夏东部、陕西大部、江苏北部和安徽北部的广大地区。
在华北赋煤区内,还广泛发育了早-中侏罗世含煤盆地,并见零星上三叠统和第三系含煤地层分布。
晚二叠世晚二叠世聚煤作用在我国南方十分强烈,含煤地层广泛分布于秦岭-大别山以南、龙门山-大雪山-哀牢山以东的华南赋煤区内,构成了我国华南煤层气聚气区。
该区大地构造单元属扬子地台和华南褶皱系,地理分布范围包括西南、中南、华东和华南的12个省区。
华南赋煤区内除有以龙潭组为代表的上二叠统含煤地层外,还有上石炭统、上三叠统-下侏罗统、第三系等含煤地层分布。
下-中侏罗统下-中侏罗统含煤地层主要分布在西北赋煤区,在华北赋煤区的分布也较为广泛。
西北赋煤区由塔里木地台、天山-兴蒙褶皱系西部天山段和秦祁昆仑褶皱带、祁连褶皱带、西秦岭褶皱带等大地构造单元组成,地理分布范围包括秦岭-昆仑山一线以北、贺兰山-六盘一线以西的新疆、青海、甘肃、宁夏等省区的全部或大部。
早-中侏罗世的聚煤作用在西北赋煤区广泛而强烈,所形成的煤炭资源在该区占绝对优势地位,并构成了我国西北煤层气聚气区的主体。