教案.第六讲常用cmos逻辑门电路及74ls系列ttl逻辑门电路
- 格式:doc
- 大小:649.50 KB
- 文档页数:8
TTL 逻辑门电路一、 学习目标1.了解TTL 与非门的工作原理2.理解门电路的相关参数;3.掌握TTL 集成门电路使用考前须知;4.掌握OC 门、三态门的特征,了解其应用;二、问题导入1〕TTL 门电路有什么功能?2〕TTL 门电路常用芯片有哪些、怎么使用?3〕使用TTL 电路芯片时应注意哪些方面?三、知识点1.TTL 与非门1)电路组成电路组成:多发射极晶体管V 1和电阻1R 组成输入级;V 2和32R R 、组成中间级;V 3、V 4、VD 3和4R 组成输出级。
图1 TTL与非门2)工作原理:输入级通过V1的各个发射极实现与的功能。
图2多发射极电路中间级从V2的集电极和发射极输出两个相位相反的信号,驱动V3、V4。
输出级输出信号驱动负载。
当输入信号A、B、C中任何一个为低电平时,都将使V1饱和,V2、V4截止,V3导通,输出级工作在射极输出状态,u为o高电平;当输入信号A、B/、C均为高电平时,那么会使V1倒置,V2、V4饱和,V3、截止,u为低电平。
显然输入与输出之间是与o非关系。
ABY1常用的集成TTL与非门7400是一种四2输入的与非门器件,内部含有4个2输入端与非门,共有14个引脚。
引脚排列图如图3所示。
图3 74LS00引脚排列图2.其他常用的TTL门电路1〕OC门在工程实践中,有时需要将几个门的输出端并联使用,以实现与逻辑,称为线与。
普通的TTL门电路不能进行线与。
为此,专门生产了一种可以进行线与的门电路——集电极开路门。
OC 门电路与符号如图4所示。
图4 OC门电路与符号OC门主要有以下几方面的应用:(1〕实现线与图5线与电路电路如图5所示,逻辑关系为OC门进行线与时,外接上拉电阻RP的选择:所以:R P〔min〕<R P<R P〔max〕〔2〕实现电平转换。
如图6所示,可使输出高电平变为10V。
图6实现电平转换2).三态门〔1〕三态输出门的结构及工作原理如图7〔a〕所示,当EN=0时,G输出为1,D1截止,相当于一个正常的二输入端与非门,称为正常工作状态。
绪论数字逻辑电路是高等学校计算机科学技术专业中的一门主要的技术基础课程,它是为培养计算机科学技术专业人才的需要而设置的,它为计算机组成原理、微型机与其应用等后续课程打下牢固的硬件基础。
数字逻辑电路是一门理论性和实践性均较强的专业基础课,实验是数字逻辑电路课程中极其重要的实践环节。
通过数字逻辑电路实验可以使学生真正掌握本课程的基本知识和基本理论,加强对课本知识的理解,有利于培养各方面的能力;有利于实践技能的提高;有利于严谨的科学作风的形成。
一、常用电子仪器的使用1、示波器2、THD—4型数字电路实验箱3、万用表二、实验课的程序1.实验预习由于实验课的时间有限,因此,每次实验前要作好预习,写好预习报告。
预习的要求:a.理解实验原理,包括所用元器件的功能。
b.粗略了解实验具体过程。
c.根据实验要求,画好实验线路与数据表格。
2.实验操作每次测量后,应立即将数据记录下来,并由实验老师签字。
实验操作一般步骤:(1)在连接实验线路之前,必须保证“数字电路实验箱”所有电源关闭;(2)按所画的实验线路图连接实验线路,所用短路线必须事先用万用表检查,以减少故障点;(3)实验线路连接完成后,必须仔细检查实验线路,以保证实验线路连接无误;(4)实验线路连接正确后,接通电源,进行具体实验。
(5)如变动实验线路,必须从(1)重新进行。
故障检查方法与处理:(1)检查元器件的接入电源是否正确;(2)使实验线路处于静态,用万用表“直流电压挡”,从输入级向输出级逐级检查逻辑电平,确定故障点;(3)关闭“数字电路实验箱”电源,用万用表“欧姆挡”,检查实验线路连接是否正确,确定故障点;(4)关闭“数字电路实验箱”电源,按实验操作一般步骤(2)(3)(4)将故障排除。
3.实验报告写实验报告应有如下项目:(1)实验目的(2)实验内容(3)实验设备与元器件(4)实验元器件引脚图(5)实验步骤、实验线路与实验记录等(6)实验结果与故障处理分析、讨论和体会等(7)“思考题”要求同学在完成基本实验内容的前提下去做,并将实验内容、实验所用器件、线路、结果与分析等做副页附在实验报告最后,其副页由实验老师签字确认。
TTL和CMOS门电路摘要:门电路是构成各种复杂数字电路的基本逻辑单元,TTL和CMOS门电路作为目前应用最广的两种门电路,掌握TTL和CMOS 门电路的逻辑功能和电气特性,对于正确使用数字集成电路是十分必要的。
本文对于TTL和CMOS门电路的初学者有一定的参考作用。
关键词:TTL门电路;CMOS门电路1.引言随着数字集成电路的问世和大规模集成电路工艺水平的不断提高,为数字电路的应用开拓了无限广阔的天地。
从制造工艺上可以将目前使用的数字集成电路分为双极型、单极型和混合型三种。
在数字集成电路发展的历史过程中,首先得到推广应用的是双极型的TTL 电路。
由于其体积小、重量轻、可靠性好,至今仍是最流行的集成电路系列之一。
CMOS集成电路出现于20世纪60年代后期,随着其制造工艺的不断进步,CMOS电路逐渐成为当前集成电路的主流产品。
本文将简要总结TTL和CMOS这两种目前使用最多的数字集成电路。
2.TTL门电路TTL门电路是以双极型三极管作为开关器件的集成电路。
在TTL 门电路的定型产品中有反相器(非门)、与门、或门、与非门、或非门、与或非门和异或门几种常见的类型。
尽管它们逻辑功能各异,但输入端、输出端的电路结构形式基本相同。
2.1 反相器2.1.1 反相器的电路结构与逻辑关系反相器是TTL集成门电路中电路结构最简单的一种。
图1给出了74系列TTL反相器的典型电路。
图1 TTL反相器典型电路图1所示电路由三部分组成:T1、R1和D1组成的输入级,T2、R2和R3组成的倒向级,T4、T5和R4组成的输出级。
反向器输入和输出之间是反向关系,即Y=A'。
2.1.2 反相器的外部特性及参数为了正确地解决门电路与门电路、门电路与其他电路的连接问题,必须了解门电路的输入特性、输出特性、负载特性、传输特性和噪声容限等问题。
2.1.2.1 电压传输特性如果把图1所示反相器电路输出电压随输入电压的变化用曲线描绘出来,就得到了图2所示的电压传输特性。
TTL和CMOS系列数字集成电路简介
一、教学目标:
TTL电路的定义及分类、CMOS电路的定义及分类、CMOS集成电路的性能及
二、教学重点、难点:
重点掌握TTL电路分类和CMOS电路分类
三、教学过程设计:
1TTL电路的定义:
TTL电路以双极型晶体管为开关元件,所以又称双极型集成电路。
双极型数字集成电路是利用电子和空穴两种不同极性的载流子进行电传导的器件。
2TTL电路的分类:
1)74-系列
2)74H-系列
3)74S-系列
4)74LS-系列
5)74ALS-系列
6)74AS-系列
3CMOS电路的分类:
1)标准的4000B/4500B系列
2)74HC-系列
3)74AC-系列
讲完之后问个问题:TTL系列和CMOS系列数字集成电路的区别?TTL系列:是电流控制器件,速度快、功耗大,双极型数字集成电路,噪声容限窄。
CMOS系列:是电压控制器件,速度慢、功耗低,单极型数字集成电路,噪声容限宽
四、课后作业:
1填空
1.1TTL电路又称数字集成电路,CMOS电路又
称数字集成电路〔双极型、单极型〕
1.2数字集成电路是国际上通用的标准电路。
〔74
系列〕
五、本节小结:对本节内容进行小结。
数字电路cmos型和ttl型门电路介绍及使用一、CMOS门电路CMOS 门电路一般是由MOS管构成,由于MOS管的栅极和其它各极间有绝缘层相隔,在直流状态下,栅极无电流,所以静态时栅极不取电流,输入电平与外接电阻无关。
由于MOS管在电路中是一压控元件,基于这一特点,输入端信号易受外界干扰,所以在使用CMOS门电路时输入端特别注意不能悬空。
在使用时应采用以下方法:1、与门和与非门电路:由于与门电路的逻辑功能是输入信号只要有低电平,输出信号就为低电平,只有全部为高电平时,输出端才为高电平。
而与非门电路的逻辑功能是输入信号只要有低电平,输出信号就是高电平,只有当输入信号全部为高电平时,输出信号才是低电平。
所以某输入端输入电平为高电平时,对电路的逻辑功能并无影响,即其它使用的输入端与输出端之间仍具有与或者与非逻辑功能。
这样对于CMOS与门、与非门电路的多余输入端就应采用高电平,即可通过限流电阻(500Ω)接电源。
2、或门、或非门电路:或门电路的逻辑功能是输入信号只要有高电平输出信号就为高电平,只有输入信号全部为低电平时,输出信号才为低电平。
而或非门电路的逻辑功能是输入信号只要有高电平,输出信号就是低电平,只有当输入信号全部是低电平时输出信号才是高电平。
这样当或门或者或非门电路某输入端的输入信号为低电平时并不影响门电路的逻辑功能。
所以或门和或非门电路多余输入端的处理方法应是将多余输入端接低电平,即通过限流电阻(500Ω)接地。
二、TTL门电路TTL门电路一般由晶体三极管电路构成。
根据TTL电路的输入伏安特性可知,当输入电压小于阐值电压UTH,即输入低电平时输入电流比较大,一般在几百微安左右。
当输入电压大于阈值电压UTH时,输入高电平时输入电流比较小,一般在几十微安左右。
由于输入电流的存在,如果TT L门电路输入端串接有电阻,则会影响输入电压。
其输入阻抗特性为:当输入电阻较低时,输入电压很小,随外接电阻的增加,输入电平增大,当输入电阻大于IKΩ时,输入电平就变为阈值电压UTH即为高电平,这样即使输入端不接高电平,输入电压也为高电平,影响了低电平的输入。
上一讲内容回顾:CMOS 反相器结构和工作原理+V DDB 1G 1D 1S 1u Au YT NT PB 2D 2S 2G 2VSS+-uGSNu +-GSPAY 0V+V DD u Au GSN|u GSP |T NT Pu Y 0V<U th(N)>|U th(P)|截止导通V DD V DD >U th(N)<|U th(P)|导通截止0V设U th(N)=2V ,U th(P)=-2V ,V DD =5V 。
T R ONPu Y +V DD V DD SN T P T R ONNu Y +V DD 0V SN T PAY导通导通截止截止u A =0V 时u A =V DD 时电压传输特性和电流传输特性i D ++V DDB 1G 1D 1S 1u I-u OT NT PB 2D 2S 2G 2V SSA BCDE FU th(N)V DDU THU th(P)U NLU NHu O / Vu I / VD A BC E Fi D /mAu I / VU TH电压传输特性电流传输特性1. 常用逻辑功能的CMOS 门电路 (一)CMOS 逻辑与非和或非门电路 ①与非门A B T N1T P1T N2T P2Y 0 00 11 01 1截通截通通通通截截通截截截截通通1110与非门u A+V DD +10VVSST P1T N1T P2T N2A B Y u Bu Y0101AB Y =AB Y②或非门或非门B A Y +=u A+V DD +10V V SS T P1T N1T N2T P2ABYu B u YA B T N1T P1T N2T P2Y 0 00 11 01 1截通截通通通通截截通截截截截通通1000ABY (二)CMOS 漏极开路输出门电路(OD 门) 为什么需要OD 门能否将普通2个及以上的CMOS 门电路的输出直接连在一起,进而实现“线与”! 21Y Y Y =A B YC DY 1Y 2是否可以如此连接与应用10产生一个很大的电流 漏极开路输出CMOS 门电路(OD 门)AB Y AB Y =V R L V DD2DD1A BV SS用途:输出缓冲/驱动器;输出电平的变换;满足大功率负载电流的需要;实现线与逻辑。
TTL逻辑门电路以双极型半导体管为基本元件,集成在一块硅片上,并具有一定的逻辑功能的电路称为双极型逻辑集成电路,简称TTL逻辑门电路。
称Transistor-Transistor Logic,即BJT-BJT逻辑门电路,是数字电子技术中常用的一种逻辑门电路,应用较早,技术已比较成熟。
TTL主要有BJT (Bipolar Junction Transistor 即双极结型晶体管,晶体三极管)和电阻构成,具有速度快的特点。
最早的TTL门电路是74系列,后来出现了74H系列,74L系列,74LS,74AS,74ALS等系列。
但是由于TTL功耗大等缺点,正逐渐被CMOS电路取代。
12.1 CMOS逻辑门电路CMOS逻辑门电路是在TTL电路问世之后,所开发出的第二种广泛应用的数字集成器件,从发展趋势来看,由于制造工艺的改进,CMOS电路的性能有可能超越TTL而成为占主导地位的逻辑器件。
CMOS电路的工作速度可与TTL相比较,而它的功耗和抗干扰能力则远优于TTL。
此外,几乎所有的超大规模存储器件,以及PLD器件都采用CMOS艺制造,且费用较低。
早期生产的CMOS门电路为4000系列,随后发展为4000B系列。
当前与TTL兼容的CMO器件如74HCT系列等可与TTL器件交换使用。
下面首先讨论CMOS反相器,然后介绍其他CMO逻辑门电路。
MOS管结构图MOS管主要参数:1.开启电压V T·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;·标准的N沟道MOS管,V T约为3~6V;·通过工艺上的改进,可以使MOS管的V T值降到2~3V。
2. 直流输入电阻R GS·即在栅源极之间加的电压与栅极电流之比·这一特性有时以流过栅极的栅流表示·MOS管的R GS可以很容易地超过1010Ω。
3. 漏源击穿电压BV DS·在V GS=0(增强型)的条件下,在增加漏源电压过程中使I D开始剧增时的V DS称为漏源击穿电压BV DS·I D剧增的原因有下列两个方面:(1)漏极附近耗尽层的雪崩击穿(2)漏源极间的穿通击穿·有些MOS管中,其沟道长度较短,不断增加V DS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的I D4. 栅源击穿电压BV GS·在增加栅源电压过程中,使栅极电流I G由零开始剧增时的V GS,称为栅源击穿电压BV GS。
TTL和CMOS集成门电路的逻辑功能分析方法TTL集成门电路的逻辑功能分析方法:TTL电路常见的集成门电路有与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
逻辑功能分析的目的是确定输入和输出之间的关系,并确定电路的真值表。
以下是TTL集成门电路的逻辑功能分析步骤:1.确定电路的输入和输出端口:根据电路图或芯片手册,确定电路的输入和输出端口。
2.绘制真值表:根据电路的输入和输出端口,绘制真值表。
真值表列出了所有可能的输入组合以及对应的输出结果。
3.逐个输入组合进行分析:对每个输入组合,根据电路图和逻辑门的真值表,分析输出的结果。
可以使用布尔代数或卡诺图等方法进行分析。
4.验证和检查:通过验证输出结果是否与真值表中的结果一致来检查逻辑分析的正确性。
CMOS集成门电路的逻辑功能分析方法:CMOS电路由nMOS和pMOS晶体管组成,具有低功耗、高噪声免疫度和高集成度等优点。
类似于TTL电路,CMOS电路也可以实现与门、或门、非门和异或门等逻辑功能。
逻辑功能分析的步骤如下:1.确定电路的输入和输出端口:根据电路图或芯片手册,确定电路的输入和输出端口。
2.绘制真值表:根据电路的输入和输出端口,绘制真值表。
真值表列出了所有可能的输入组合以及对应的输出结果。
3.根据CMOS电路特性进行逻辑分析:CMOS电路具有与非门和与非门的组合,通过nMOS和pMOS晶体管的开关状态来实现逻辑运算。
根据这些特性,分析电路的逻辑功能。
4.验证和检查:通过验证输出结果是否与真值表中的结果一致来检查逻辑分析的正确性。
需要注意的是,在实际分析中,可以使用计算机辅助设计(CAD)工具来进行逻辑功能分析。
这些工具可以自动绘制真值表、生成逻辑图、模拟电路和验证结果。
总结:TTL和CMOS集成门电路的逻辑功能分析方法包括确定电路的输入和输出端口,绘制真值表,逻辑分析和验证结果。
逻辑功能分析是设计和实现数字逻辑电路的重要步骤,可以帮助工程师理解电路的逻辑关系,并确保设计的正确性。
上一讲内容回顾:CMOS 反相器结构和工作原理+V DDB 1G 1D 1S 1u Au YT NT PB 2D 2S 2G 2VSS+-uGSNu +-GSPAY 0V+V DD u Au GSN|u GSP |T NT Pu Y 0V<U th(N)>|U th(P)|截止导通V DD V DD >U th(N)<|U th(P)|导通截止0V设U th(N)=2V ,U th(P)=-2V ,V DD =5V 。
T R ONPu Y +V DD V DD SN T P T R ONNu Y +V DD 0V SN T PAY导通导通截止截止u A =0V 时u A =V DD 时电压传输特性和电流传输特性i D ++V DDB 1G 1D 1S 1u I-u OT NT PB 2D 2S 2G 2V SSA BCDE FU th(N)V DDU THU th(P)U NLU NHu O / Vu I / VD A BC E Fi D /mAu I / VU TH电压传输特性电流传输特性1. 常用逻辑功能的CMOS 门电路 (一)CMOS 逻辑与非和或非门电路 ①与非门A B T N1T P1T N2T P2Y 0 00 11 01 1截通截通通通通截截通截截截截通通1110与非门u A+V DD +10VVSS T P1T N1T P2T N2A B Y u Bu Y0101AB Y =AB Y②或非门或非门B A Y +=u A+V DD +10V V SS T P1T N1T N2T P2ABYu B u YA B T N1T P1T N2T P2Y 0 00 11 01 1截通截通通通通截截通截截截截通通1000ABY (二)CMOS 漏极开路输出门电路(OD 门) 为什么需要OD 门能否将普通2个及以上的CMOS 门电路的输出直接连在一起,进而实现“线与”! 21Y Y Y =A B YC DY 1Y 2是否可以如此连接与应用10产生一个很大的电流 漏极开路输出CMOS 门电路(OD 门)AB Y AB Y =R L V DD2V DD1A BV SS用途:输出缓冲/驱动器;输出电平的变换;满足大功率负载电流的需要;实现线与逻辑。
应用举例“线与”连接方法R LV DD G 1A B Y 2G 2CD Y 1Y A BY C D R L V DD Y 2Y 1G 1G 2“线与”逻辑符号21Y Y Y ⋅=AB Y =1CD Y =2CD AB CD AB Y +=⋅= R L 的选择 m '个V DD V IHV ILV ILR L(max)L IH OH OH DD L R mI nI V V R =+-≤I OHI IHn 个OH L IH OH DD V R mI nI V ≥+-)(V OHV DD V IL V IL V IL R L m 个m 、m'是负载门电路分别为高、低电平时,负载门输入端进或出电流的数目。
负载门为CMOS 门电路情况下,m 和m '相等。
V OLI OL I IL (max)/)(OL IL L OL DD I I m R V V ≤'+-(min)(max)||L IL OL OLDD L R I m I V V R ='--≥ (三)CMOS 传输门和双向模拟开关及CMOS 异或门TG C C u o /u iu i /u oCCu i /u o u o /u iV DD 时,传输门导通。
01==C C ,时,传输门截止。
10==C C ,传输门的一个用途可作模拟开关,用来传输连续变化的模拟电压信号。
TG Cu i /u o u o /u i SW u o /u i u i /u o C SWu o u i C R L C =1时开关接通;C =0时开关截止。
利用CMOS 传输门和CMOS 反相器可以组合成各种复杂的逻辑电路,如:异或门、同或门、触发器等。
用反相器和传输门构成异或门电路TG 1TG 2AB YA B Y B A Y ⊕=A =1、B =0时,TG 1截止,TG 2导通,Y = =1;B A =0、B =1时,TG 2截止,TG 1导通,Y =B =1;A =0、B =0时,TG 2截止,TG 1导通,Y =B =0;A =1、B =1时,TG 1截止,TG 2导通,Y = =0;B 01100 00 11 01 1YA B(四)三态输出CMOS 门电路三态输出的CMOS 反相器控制端低电平有效三态门: YAEN V DDA Y EN=时,反相器正常工作。
0EN 时,输出呈现高阻态。
1=EN 低电平有效⎩⎨⎧===)()(10EN Z EN A Y 控制端高电平有效三态门:A Y EN高电平有效⎩⎨⎧===)()(01EN Z EN A Y 三态门有三种状态:高电平、低电平、高阻态。
注意:高阻状态不是逻辑状态!三态输出反相器应用举例用三态输出反相器接成总线结构…1EN 1A 1G 2EN 2A 2G nEN nA nG ……总线用三态输出反相器实现数据双向传输EN Y O D 1G 2G 总线ID I O D D /(五)CMOS 电路的特点与使用注意问题 ①CMOS 电路的优点• 静态功耗小;允许电源电压范围宽?20V);扇出系数大,噪声容限大。
②CMOS 电路的正确使用 输入电路的静电保护• 所有与CMOS 电路直接接触的工具、仪表等必须可靠接地。
• 存储和运输CMOS 电路,最好采用金属屏蔽层做包装材料。
多余的输入端不能悬空• 可以按功能要求接电源或接地,或与其它输入端并联使用。
输入电路需过流保护• 低内阻信号源时,输入端与信号源之间串进保护电阻; • 输入端接有大电容时,应在输入端和电容之间串联接入保护电阻;• 输入端接长线时,应在门电路的输入端串联接入保护电阻。
2. 74LS 系列TTL 门电路(一)LSTTL 非门结构与工作原理TTL 集成门电路发展主要经历了四个系列,74系列、74H 系列、74S 系列、74LS 系列。
前三个系列已经被淘汰,74LS 系列虽面临淘汰,但是目前仍有使用,故课程仅简单介绍74LS 系列原理。
利用肖特基管的低导通电压~和多数载流子形成电流特性抗深饱和提高速度。
R R RR R R D 3V CCY28K120KAB 1.5KT 2T 3T 45120T 5R 44K C 3K T 6u o u i D 2612K D 1SBDb ee cbc电压关系表u I /V u O /V 0.3 3.4(4.3)3.40.3真值表0110A YD2、D3的作用D2在T5导通的瞬间起作用,可抽取T4的基区电荷,加速其截止过程。
D3在T5导通的过程中起作用,此时T2的集电极电位比T5的集电极电位低,可以通过D3给负载电容放电,而这个放电电流又去驱动T5,减小了电路的导通延迟。
T6电路的作用T2由截止变导通,先驱动T5饱和导通,然后T6才导通,对(四)LSTTL 与非门74LS00逻辑与V CCY R 2R 1BR BT 2T 3T 4R 5T 5R 4R C T 6D 5D 6A R 6D 4D 2D 1D 3V 7CC 1148GNDD 3和D 4为输入保护二极管(五)CMOS 门电路与TTL 门电路两者特点比较• CMOS 工作速度一般比TTL 低,HCMOS 与TTL 相当。
• CMOS 扇出系数比TTL 电路大。
• CMOS 电路的电源电压允许范围较大,约在~20V ,抗干扰能力比TTL 电路强。
• CMOS 电路的功耗比TTL 电路小得多。
TTL 功耗几mW 、 CMOS 的功耗只有几个μW 。
• CMOS 集成电路的集成度比TTL 电路高。
• CMOS 电路容易受静电感应而击穿,在使用和存放时应注意静电屏蔽,焊接时电烙铁应接地良好,尤其是CMOS 电路多余不用输入端不能悬空,应根据需要接地或接高电平。
速度TTL(LS)大小(µ30%功耗噪声容限扇出系数集成度快(mW)(0.4V 左右)小(20≤)低CMOS 较快(74HC)小W)大(≥V DD )大(≥50)高多余输入端的处理措施处理原则:不能影响输入与输出之间的逻辑关系。
①可并联起来使用;②可根据逻辑关系的要求接地或接高电平。
• TTL 电路多余的输入端悬空表示输入为高电平。
一般可根据门电路逻辑功能将多余的输入端通过上拉电阻(1~3K?)接电源正端(逻辑1的处理);直接把多余端接地(逻辑0的处理)。
尽量把多余的输入端并联使用;虽然可以通过大电阻接地(逻辑1的处理),但最好不要采用。
• CMOS 电路,多余的输入端不允许悬空,否则电路将不能正常工作。
对于CMOS 电路对多余输入端,尽量根据门电路逻辑功能并联使用,或者根据需要直接接地(逻辑0的处理);或直接接V DD (逻辑1的处理)。