第8章 机车运行控制系统车载设备
- 格式:doc
- 大小:19.44 MB
- 文档页数:45
列车运行控制系统CTCS系统描述☐定义CTCS是为了保证列车安全运行,并以分级形式满足不同线路运输需求的列车运行控制系统。
☐基本功能(1) 安全防护●在任何情况下防止列车无行车许可运行。
●防止列车超速运行。
防止列车超过进路允许速度。
防止列车超过线路结构规定的速度。
防止列车超过机车车辆构造速度。
防止列车超过临时限速及紧急限速。
防止列车超过铁路有关运行设备的限速。
●防止列车溜逸。
(2)人机界面☐以字符、数字及图形等方式显示列车运行速度、允许速度、目标速度和目标距离。
☐实时给出列车超速、制动、允许缓解等表示以及设备故障状态的报警。
☐具有标准的列车数据输入界面,可根据运营和安全控制要求对输入数据进行有效性检查。
(3) 检测功能☐开机自检功能和运行中动态检查功能。
☐能够记录设备的关键数据以及关键动作,并提供监测接口。
(4) 可靠性和安全性☐按照信号故障—安全原则进行系统设计。
☐核心硬件设备须采用冗余结构。
☐满足电磁兼容性相关标准。
我国发展A TP的难点:难点之一我国铁路地域广大、列车种类繁多、提速以后线路允许速度不统一,同为绿灯却有多种速度含义。
另外,我国铁路行车主要特点是客货混跑、高低速列车共线运行,这样必然要求客货列车均需装备A TP,从而使得我国发展A TP的难度明显大于国外。
难点之二我国铁路实行以地面信号为主、以机车信号为辅的行车方式,对列车运行实行开环控制,依靠司机严守信号保证行车安全。
因此,习惯于现有机车信号+监控装置的控车模式。
难点之三目前,机车普遍安装的通用机车信号未达到主体化的水平。
机车信号基于轨道电路和站内电码化,但轨道电路制式繁多,有的根本不能满足“主体化”的要求,将面临淘汰。
信号基础装备薄弱,影响了是我国A TP的发展。
难点之四GSM-R移动通信系统用于铁路信号、用于A TP系统和铁路综合移动信息平台,技术上有明显优势,产品得到多家厂商的支持,这在欧盟已得到证明。
我国GSM-R网络建设还在起步阶段,影响了基于GSM-R的CTCS的实施。
CTCSCTCS是(Chinese Train Control System)的英文缩写,中文意为中国列车运行控制系统。
CTCS系统有两个子系统,即车载子系统和地面子系统。
CTCS根据功能要求和设配置划分应用等级,分为0~4级。
1. CTCS概述TDCS是铁路调度指挥信息管理系统,主要完成调度指挥信息的记录、分析、车次号校核、自动报点、正晚点统计、运行图自动绘制、调度命令及计划的下达、行车日志自动生成等功能,换句话说就是原来行车调度员和车站值班员需要用笔记下的东西现在都可以由TDCS自动完成。
中国铁路调度指挥系统参考欧洲ETCS规范,中国逐步形成了自己的CTCS(Chinese Train Control System)标准体系。
如何吸收ETCS规范并结合中国国情更好地再创新,是值得深入研究的课题。
铁路是国民经济的大动脉,是中国社会和经济发展的先行产业,是社会的基础设施,铁路运输部门又是国民经济中的一个重要部门,它肩负着国民经济各种物资运输的重任,对中国社会主义建设事业的发展有着举足轻重的作用。
为了满足国民对铁路运输的要求,进入二十一世纪以后,铁路部门致力于高速铁路和客运专线的建设,并取得了骄人的成绩。
为了适应中国高速铁路、客运专线的迅速发展和保证铁路运输安全的需要,铁道部有关部门研制成功了“CTCS系统”(即:铁路列车控制系统,是Chinese Train Control System的缩写“CTCS”)2. 产生背景由于早期欧洲铁路的列车运行控制系统种类繁多,且各国信号制式复杂、互不兼容,为有效解决各种列车控制系统之间的兼容性问题,保证高速列车在欧洲铁路网内跨线、跨国互通运行,1982年12月欧洲运输部长会议做出决定,就欧洲大陆铁路互联互通中的技术问题寻找解决方案。
2001年欧盟通过立法形式确定ETCS(European Train Control System)为强制性技术规范。
ETCS的主要目标是互通互用、安全高效、降低成本、扩展市场,在规范的设计上融入了欧洲各主要列控系统的功能,制定了比较丰富的互联互通接口。
CRH2型动车组列车运行控制系统车载设备概述列车运行控制系统ATC(AutomaticTrainControl)是铁路运输的基础设施,是保证列车运行安全、提高运输效率、实现铁路统一指挥调度的关键技术设备,也是铁路信息化技术的重要技术领域。
列车运行控制系统ATC(AutomaticTrainControl)包括3个子系统:列车超速防护系统ATP(AutomaticTrainProtection);列车自动操作系统ATO(AutomaticTrainOperation);列车自动监控系统ATS(AutomaticTrainSupervision)。
在我国铁路领域中,列车自动操作系统ATO的应用目前尚未提到日程,所以不常提及,目前主要采用列车超速防护系统ATP,以下简称“列控系统”。
(1)CRH2型动车组列控系统的组成列控系统由地面和车载设备构成,见图16.1。
列控ATP的控制中心在地面。
它以地面控制中心的信息作为列车运行指令的信息源,通过轨道电路和应答器设备获取前方运行区段的运行线路参数信息,以应答器等设备自动校核列车走行位置,实现对列车运行速度的安全监控和列车运行实际参数的采集、记录,车载ATP本身具有主体机车信号、通用式机车信号功能。
地面设备由车站列控中心,地面电子单元(LEU)、点式应答器、ZPW-2000A(UM)系列轨道电路、车站闭环电码化、车站计算机联锁等组成。
ATP地面控制中心与CTC或TDCS联网,实现运输指挥中心对列车的直接控制,达到了车地一体化的列车控制能力。
CRH2型动车组车载列控系统同时装备ATP车载设备和列车运行监控装置LKJ2000,如图16.2。
车载设备由车载安全计算机、轨道信息接收单元(STM)、应答器信息接收单元(BTM)、制动接口单元、记录单元、人机界面(DMI)、速度传感器、BTM天线、STM天线等组成。
车载设备根据地面设备提供的信号动态信息、线路静态参数、临时限速信息及有关动车组数据,生成控制速度和目标距离模式曲线.控制列车运行。
列车运行控制系统2010-03-25 14:52:17| 分类:铁路基础知识| 标签:|字号大中小订阅根据列车在铁路线路上运行的客观条件和实际情况,对列车运行速度及制动方式等状态进行监督、控制和调整的技术装备。
系统包括地面与车载两部分,地面设备产生出列车控制所需要的全部基础数据,例如列车的运行速度、间隔时分等;车载设备通过媒体将地面传来的信号进行信息处理,形成列车速度控制数据及列车制动模式,用来监督或控制列车安全运行。
系统改变了传统的信号控制方式,可以连续、实时地监督列车的运行速度,自动控制列车的制动系统,实现列车的超速防护。
列车控制方式可以由人工驾驶,也可由设备实行自动控制,使列车根据其本身性能条件自动调整追踪间隔,提高线路的通过能力。
新一代铁路信号设备是由列车调度控制系统及列车运行控制系统两大部分组成的。
从技术发展的趋势看是向着数字化、网络化、自动化与智能化的方向发展。
它的作用是保证行车安全、提高运输效率、节省能源、改善员工劳动条件。
发展中的列车控制系统将成为一个集列车运行控制、行车调度指挥、信息管理和设备监测为一体的综合业务管理的自动化系统。
列车运行控制系统的内容是随着技术发展而提高的,从初级阶段的机车信号与自动停车装置,发展到列车速度监督系统与列车自动操纵系统。
进入20世纪90年代,世界上已有许多国家开发了各自的列车运行控制系统,其中,在技术上具有代表性且已投入使用的主要有:德国的LZB系统,法国的VM300和TVM430系统,日本新干线的ATC 系统等。
这些系统的共同特点是:可以实现自动连续监督列车运行速度,可靠地防止人为错误操作所造成的恶性事故的发生,保证列车的高速安全运行。
它们之间的主要区别体现在控制方式、制动模式及信息传输等形式方面。
中国近几年来,对国外列车控制系统进行了较深入的研究,对列车控制模式、轨道电路信息传输、轨道电缆信息传输等方面都已取得不少的成果。
在开发过程中,还可借鉴欧洲列车控制系统“功能叠加”、“滚动衔接”的经验,从保证基本安全着手,分步完成并真正达到安全、高效、舒适的目标。
第16章列车运行控制系统车载设备16.1系统概述CRH5动车组上设有列车运行控制系统车载设备。
这些车载设备包括列车自动防护系统(ATP)车载设备、列车运行监控记录装置(LKJ2000)、机车综合无线通信设备(CIR)及查询应答器(CXY)等。
200km/h速度等级线路上设置CTCS-2级列车运行控制系统(简称列控系统),其由地面设备和车载设备构成。
地面设备包括列控中心、轨道电路、应答器等;动车组上安装有车载设备。
ATP车载设备为采用CTCS2-200C型。
根据地面设备提供的信号动态信息、线路静态参数、临时限速信息及有关动车组数据,生成控制速度和目标距离模式曲线,控制列车运行。
同时,记录单元对列控系统有关数据及操作状态信息进行实时动态记录。
人机界面对速度信息、制动信息、距离信息等进行实时显示,并对故障信息进行报警提示。
LKJ2000实时监测运行速度,对速度进行监控,防止超速;记录列车实时运行情况和乘务员操作情况;显示机车实际速度、时间、公里标等信息。
为了满足目前国内既有铁路线路状态,200km/h动车组同时装备ATP车载设备与列车运行监控记录装置(简称LKJ)。
在CTCS2级区段,通过ATP车载设备控车;在CTCS0级、1级区段或在2级区段ATP车载设备特定故障下,LKJ结合ATP车载设备提供的机车信号或主体机车信号功能,控制列车运行,最高速度不超过160Km/h。
正常情况下,两种控车模式通过特殊应答器自动转换(无需停车转换);故障情况下,停车手动转换。
两种控车模式的转换通过ATP车载设备实现。
上述两种控车模式下,LKJ通过ATP车载设备接收或记录有关列控状态数据(含进路参数、列车位置等)及其对应的操作状态信息。
CIR由主机、操作显示终端(简称MMI)、送(受)话器、扬声器、打印终端、连接电缆、天线、馈线等构成。
根据实际运用需求,机车综合无线通信设备的功能包括450MHz调度通信系统、800MHz列尾和列车安全预警系统、GSM-R数字移动通信系统、高速数据传输等。
城市轨道交通运营管理《机车信号列车运行监控装置轨道车运行控制设备》机车信号是城市轨道交通中的一种重要设备。
它的主要功能是提供车辆行进方向和速度的指示,以确保车辆之间的安全距离和道路交通的协调。
机车信号通常由信号机、信号灯和信号电气设备组成。
信号机通过显示不同的信号灯颜色和位置来指示列车的运行状态,例如前进、停车或区间停放。
信号电气设备则负责控制信号机的工作,根据车辆的运行情况自动调整信号显示。
列车运行监控装置是用于监控和控制列车运行情况的设备。
它主要包括列车运行数据采集系统和列车调度指挥系统。
列车运行数据采集系统通过安装在列车上的传感器和设备,采集列车的运行数据,如速度、位置、加速度等。
这些数据可以帮助运营管理人员实时掌握列车的运行情况,进行监控和调度。
列车调度指挥系统则是通过计算机网络和通信技术,与列车上的设备进行实时数据交换,通过分析和处理数据,实现对列车运行的精确调度和控制。
轨道车运行控制设备主要用于实时监控和控制轨道车的运行状态和轨道设备的工作状态。
它包括轨道车运行状态监控系统和轨道车故障诊断与预警系统。
轨道车运行状态监控系统通过监测车辆的运行数据,如速度、加速度、轨道电流等,实时掌握车辆的运行状态,以保证车辆的安全和稳定运行。
轨道车故障诊断与预警系统通过收集轨道车的故障信息,分析和诊断故障原因,并提前预警,以降低故障对车辆运行的影响。
这些装置的运行管理需要借助现代信息科技手段,如计算机技术、通信技术和数据分析技术等。
它们通过实时监控和分析车辆和轨道设备的运行数据,提供科学的决策支持和运营指引,为城市轨道交通的安全运营提供强有力的保障。
总之,机车信号、列车运行监控装置和轨道车运行控制设备是城市轨道交通运营管理中的重要组成部分。
它们通过实施有效的监控和控制手段,保障车辆和乘客的安全,提高运输效率,为城市轨道交通的可持续发展做出贡献。
列车运行控制系统列车运行控制系统是列车在区间运行过程中实现自动化的设备。
一般铁路将这些设备统称为区间设备,包括各种闭塞设备、机车信号和自动停车设备。
在高速铁路上,当行车速度提高后,仍用地面区间设备来调整列车运行,将产生很大困难。
首先是地面信号机的显示不能给司机一个准确的速度限制,其中包括显示的距离和显示的数量,其次是固定的闭塞分区将影响区间的行车效率。
因此,高速运行的列车应采用新的区间设备。
1.列车运行控制系统的形式高速列车运行控制系统的构成由于系统具体应用关键技术实现方法的不同而存在很大区别。
例如,法国TVM430型列车速度监督设备采用无绝缘数字式的编码轨道电路传输列控信息;日本DS ATC系统则采用有绝缘数字式的编码轨道电路传输列控信息;ETCS2级采用铁路数字移动通信系统(global system for mobile communications for railway,GSM R)传输列控信息,采用RBC无线闭塞中心。
2.列车运行控制系统的特点(1)将先进的控制技术、通信技术、计算机技术与铁路信号技术融为一体的行车指挥、安全控制机电一体化的自动化系统。
(2)车载信号属于主体信号,直接为司机指供列车应遵循的安全速度。
(3)自动监控列车运行速度,可靠地防止由于司机丧失警惕或错误操作可能酿成的超速运行、列车颠覆、冒进信号或列车追尾等事故,它是一种行车安全控制设备。
3.列车运行控制系统的构成(1)地面设备。
地面设备包括轨旁设备、列车控制中心(train control center,TCC)和地面通信网络设备。
(2)车载设备。
车载设备包括列车运行监控模块、测速/定位模块、显示器模块、牵引制动接口、运行记录器模块等。
(3)地车信息传输通道。
地车信息传输通道包括地面信息传输设备、车载信息传输设备、地面信息传输网络和车载信息传输网络。
GYK轨道车运行控制设备讲解复习过程1.车载设备车载设备是安装在GYK轨道车上的控制设备,用于实时监测车辆的运行状态并进行控制。
主要包括以下几个方面的功能:-车辆监测:车载设备通过传感器实时监测车辆的速度、位置、加速度等参数,并将监测到的数据传输给地面设备进行分析和处理。
-自动驾驶:车载设备具备自动驾驶功能,可以根据地面设备下发的指令进行车辆自主运行,实现自动控制。
-通信功能:车载设备可以与地面设备进行实时通信,接收地面设备下发的指令,并将车辆的运行状态和故障信息反馈给地面设备。
-紧急制动:车载设备能够根据指令实现紧急制动,确保在紧急情况下车辆能够及时停下,保证乘客的安全。
2.地面设备地面设备是安装在车站和控制中心等地面设施上的控制设备,对车载设备进行远程控制和指导。
地面设备主要包括以下几个方面的功能:-车辆监控:地面设备能够实时监控车辆的运行状态和位置,并对车辆进行跟踪和记录,可以根据需要调度车辆的运行。
-远程控制:地面设备可以向车载设备下发指令,实现车辆的远程控制,包括启动、停止、变速等操作。
-通信功能:地面设备与车载设备通过网络进行通信,确保实时传输数据和指令,保证车辆的运行控制。
-故障诊断:地面设备可以接收车载设备上报的故障信息,并进行故障诊断和分析,及时采取相应的措施修复故障。
1.了解GYK轨道车的基本结构和工作原理,包括车载设备和地面设备的主要功能和作用。
2.熟悉GYK轨道车运行控制设备的监测和控制原理,包括车辆的实时监测和远程控制方法。
3.掌握GYK轨道车运行控制设备的通信原理和方法,包括车载设备和地面设备之间的通信方式。
4.理解GYK轨道车运行控制设备的故障诊断和维护方法,包括故障的检测、分析和修复过程。
5.进行相关案例分析和实际操作,通过模拟实验和实际演练来加深对GYK轨道车运行控制设备的理解和掌握。
通过以上复习过程,可以全面了解GYK轨道车运行控制设备的工作原理和操作方法,为实际应用提供必要的基础知识和技能。