数学归纳法以及其在初等数论中的应用论文答辩
- 格式:ppt
- 大小:1.12 MB
- 文档页数:19
+14 28 4 · ·高二第二次阶段测试化学试卷12、21班级 姓名 学号可能用到的相对原子质量:H —1 O —16 Na-23 Cl —35.5Mn-55 Ag-108一、选择题(每题只有1个选项符合题意。
本大题共23题,每题3分,共69分)1.现代社会提倡低碳生活。
下列燃料能实现二氧化碳零排放的是 A .氢气 B .天然气 C .石油 D .煤炭2.下列化学用语正确的是A .硅的原子结构示意图:B .乙烯分子比例模型:C .次氯酸分子的电子式:D .乙酸分子的结构简式:C 2H 4O 23.下列气体中,有颜色且具有刺激性气味的是A .SO 2B .NOC .NH 3D .Cl 2 4.胶体区别于其它分散系的本质特征是A .胶体稳定B .胶体有丁达尔效应C .胶体能净水D .胶粒直径在1—100nm 之间5.下列物质中只含有离子键的是A .NaOHB .CO 2C .MgCl 2D .HClH H H HC =CH ∶Cl ∶O ∶6.运输乙醇或汽油的车辆,贴有的危险化学品标志是A B C D 7.下列物质中,属于纯净物的是A.氯水B.聚乙烯C.蔗糖.D、加碘食盐8.下列物质不.需.经过化学变化就能从海水中获得的是A.烧碱B.食盐C.单质镁D.单质溴9.下列物质互为同分异构体的一组是A.35Cl和37Cl B.O2和O3C.CH3CH2OH和CH3OCH3D.甲烷和丁烷10.下列物质间的转化,通过一步反应不能完成的是A、FeCl3→FeCl2B、NO2→HNO3C、Al2O3→NaAlO2D、SiO2→H2SiO311.某溶液中存在大量的OHˉ、Clˉ、CO32ˉ,该溶液中还可能大量存在的离子是A.NH4+B.Ca2+C.HCO3ˉD.SO42ˉ12.N2+3H22NH3是工业制氮肥的重要反应。
下列关于该反应的说法正确的是A .增加N 2的浓度能加快反应速率B .降低体系温度能加快反应速率C .使用催化剂不影响反应速率D .若反应在密闭容器中进行,通过改变条件可以使N 2和H 2能完全转化为NH 313.下列反应中生成物总能量高于反应物总能量的是 A .氧化钙溶于水 B .乙醇燃烧C .铝粉与氧化铁粉末反应D .断开1mol 氮气分子中的氮氮叁键14.下列图示装置的实验中,操作正确的是A .图1分离碘酒中的碘和酒精B .图2稀释浓硫酸C .图3从食盐水中获得食盐晶体D .图4除去HCl 中的Cl 2并副产漂白粉15.下列反应中,与其它三个反应不属于同一类型的反应是A .B .C .D .图1 图2 图3 图4碘酒HCl(Cl 2)石灰水溶液浓硫酸 H 2O16.食品的主要成分大都是有机化合物。
数学归纳法及其应用数学归纳法是一种证明与正整数有关的命题的非常重要的数学方法,它不仅对我们中学数学的学习有着很大的帮助,而且在进一步学习及研究高等数学时,也是一种非常重要的方法.数学归纳法在证明与正整数有关的命题时有其独特之处.对数学归纳法逻辑基础即原理的准确理解,是掌握这种证明方法的关键.要熟练的掌握及应用数学归纳法,首先必须准确的理解其意义以及熟练地掌握解题步骤,而在三个步骤中,运用归纳假设尤为关键,运用归纳假设推出结论最为重要.数学归纳法可以用来证明与正整数有关的代数恒等式、不等式、整除性问题和几何问题等.n时表示一个命题,正整数是无穷的.一个与正整数N有关的命题,当1n时又表示一个命题,如此等等,无穷无尽.因此,一个与正整数N有关当2的命题本质上包含了无穷多个命题.假如我们对于这无穷多个命题,按部就班地一个一个去证,那么不管我们的证题速度有多快,也是今生今世都证不完的.在一个与正整数N有关的命题面前,作为万物之灵的人,发明了一种方法,叫做“数学归纳法”.人们运用此法,只需寥寥几步,像变戏法似的,便把无穷多个命题一个不剩的全证完了[1].数学归纳法是数学论证的一个基本工具,是一种非常重要的数学证明方法,它典型地用于确定一个表达式在所有正整数范围内是成立的,或者用于确定一个其他的形式在一个无穷序列是成立的.最简单和最常见的数学归纳法证明是证明当n属于所有正整数时一个表达式成立,这种方法是由下面两步组成,第一步是递推的基础: 证明当1n时表达式成立.第二步是递推的依据: 证明如果当n k时成立,那么当1n k时同样成立.(递推的依据中的“如果”被定义为归纳假设.不要把整个第二步称为归纳假设.) 这个方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的.如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中.1数学归纳法的概述1.1 常用数学证明方法数学是一门非常注重学习方法的学科,而数学的证明更是将这些方法体现的淋漓尽致,数学中研究问题的方法一般有以下分类:1.1.1 演绎推理——从一般到特殊的推理叫做演绎推理,它又称演绎法.1.1.2 归纳推理——由特殊事例得出一般结论的归纳推理方法,通常叫做归纳推理,它又称归纳法.根据推理过程中考察的对象是涉及事物的一部分还是全部,归纳法又可分为不完全归纳法和完全归纳法.不完全归纳法是根据事物的部分(而不是全部)特例得出一般结论的推理方法.不完全归纳法所得到的命题并不一定成立,所以这种方法并不能作为一种论证方法.但是,不完全归纳法是研究数学的一把钥匙,是发现数学规律的一种重要手段.在问题探索中,为了寻求一般规律,往往先考察一些特例,通过对这些特例的不完全归纳形成猜想,然后再试图去证明或否定这种猜想.因而学会用不完全归纳法对问题进行探索,对提高数学能力十分重要.完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法[2].1.2 数学归纳法的定义数学归纳法概念:数学归纳法是数学上证明与正整数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题.1.3 数学归纳法的逻辑基础意大利有一个数学家,名叫皮亚诺(G.Peano,1858-1932),他总结了自然数的有关性质,并在关于自然数的理论中提出了关于自然数的五条公理,后人称之为“皮亚诺公理”.皮亚诺公理的内容如下:任何一个满足下列条件的非空集合N的元素叫做自然数.在这个集合中,某些元素之间存在着一种基本关系——“随从”关系(或者叫做“直接后继”关系)并且满足以下五条公理:Ⅰ.0N(即“0是自然数”).Ⅱ.对于N的每一个元素a,在N中都有一个确定的随从'a(我们用符号'a 表示a的随从,以下类同).Ⅲ. 0不是N中任何一个元素的随从.a b可以推出a b(这就是说,N中的每个元素只能是某一个元Ⅳ.由''素的随从,或者根本不是随从).Ⅴ.设M是自然数的集合,若它具有下列性质:(1)自然数0属于M;(2)如果自然数a属于M,那么它的随从'a也属于M;则集合M包含一切自然数[1].自然数就是满足上述皮亚诺公理的集合N中的元素.关于自然数的所有性质都是这些公理的直接推论.由皮亚诺公理可知,0是自然数关于“后继”的起n n,…,则始元素,如果记'01,'12,'23,…,'1{0,1,2,,,}N n皮亚诺公理与最小数原理是等价的,我们可以用皮亚诺公理来证明最小数原理.定理1 (最小数原理) 自然数集N 的任意非空子集A 都有最小数. 证 设M 是不大于A 中任何数的所有自然数的集合,即{|,}Mn nN nm mA 且对任意由于A 非空,至少有一自然数a A ,而1()a a 不在M 中,所以M N .从而必存在自然数0m M ,且01m M .因为若不然,就有(1)0M (0不大于任一自然数); (2)若m M ,则1m M .根据归纳原理,集合M 包含一切自然数.此与M 是不大于A 中任何数的所有自然数的集合矛盾.这个自然数0m 就是集合A 的最小数,因为对任何aA ,都有0m a ;而且0m A .事实上,若0m A ,则有01m a ,对任意a A ,于是01m M ,这又与0m 的选取相矛盾.下面我们用最小数原理来证明数学归纳法原理.定理2 (数学归纳法原理)一个与自然数有相关的命题()T n ,如果(1)00()(0)T n n 为真;(2)假设0()()T n nn 为真,则可以推出(1)T n 也为真.那么,对所有大于等于0n 的正整数n ,命题()T n 为真.证 用反证法.若命题()T n 不是对所有的自然数n 为真,则0{|,()}Mm mN mn T m 且不真非空.根据定理1,M 中有最小数0m .由(1),00m n ,从而001m n 且0(1)T m 为真.由(2),取01nm 即知0()T m 为真.此与0()T m 不真相矛盾.从而证明了定理2[4].因而从理论上讲,皮亚诺公理中的第五条公理正是数学归纳法的依据,因此,第五条公理也称做数学归纳法原理。
浅谈数学归纳法在中学数学中的应用摘要:数学归纳法是建立在最小数原理基础上的一种用于证明和自然数有关的命题的常用方法,分为第一数学归纳法和第二数学归纳法。
本文介绍了数学归纳法基于最小数原理的理论背景,同时以例题的形式阐述了两种数学归纳法的使用方式,分析了其各自的特点,同时通过特殊例题浅要比较了两种归纳法本质的区别。
在文章的最后,浅要给出了数学归纳法在中学阶段教法和学法的建议。
一.绪论1.研究背景在高中数学中,像数列,不等式,以及一些求和公式,很多题目都会要求你证明和自然数有关的命题,而数学归纳法主要就是争对有关自然数的命题的一种高效简便的方法,如果能够熟练的掌握数学归纳法的概念及使用方法,并能够巧妙地应用在实际的问题当中,那很多时候一些很复杂的问题都可以得到一个很巧妙的解法。
在近几年的高考数学大题中,出现了很多以数列不等式为背景的证明题,数列本是一种定义在自然数集中的特殊函数,所以很多这种类型的题目都可以用数学归纳法巧妙解决。
同时,数学归纳法可以锻炼学生的归纳总结能力,类比推理能力,对高中生增加适当的数学归纳法的教学可以增加其数学修养。
数学归纳法是一套解决一大类问题的完美工具。
2.研究意义在大学四年数学专业课的学习中,像高等代数,初等数论,图论这样的课程中,在证明一些结论的时候都会用到数学归纳法,由此可见,数学归纳法的应用面非常的广泛。
同时,数学归纳法的解题步骤和里面的原理是很容易让高中阶段的学生理解的。
所以在教学过程中,对于一些合适的题讲述出用数学归纳法的解法是很有必要的。
数学是一门锻炼学生思维能力的学科,所以一味的让学生死记硬背的教学方法是不可取的,数学归纳法,主要是对相关数学知识进行合理地证明,以具体的命题为解题基础,能够使其在自然数的范围中成立,把有关于数学基础知识正确地应用在解题的过程中,从而对数学习题的求证。
二.数学归纳法的理论背景及使用方法1.数学归纳法的证明设 M 是自然数集的任一非空子集, 则必存在一个自然数m∈M, 使对一切n∈M, 都有m≤n。
数学归纳法在问题求解中的应用作者:管国策指导老师:张胜摘要数学归纳法是一种常用的证明方法,在不少数学问题的证明中,它都有着其他方法所不能替代的作用.甚至在物理、生物等方面都有着广泛的前景,本文首先阐述数学归纳法的理论依据以及表现形式,然后通过一些具有代表性的典型例题重点讨论数学归纳法在初等数学、高等数学、离散数学以及中学数学竞赛中的应用,最后详细叙述对数学归纳法的认识和使用中应该注意的问题.关键词数学归纳法数列行列式离散数学树数学竞赛1、数学归纳法的理论依据归纳法和演绎法都是重要的数学方法.归纳法中的完全归纳法和演绎法都是逻辑方法;不完全归纳法是非逻辑方法,只适用于数学发现规律,不适用于数学严谨证明.数学归纳法既不是归纳法,也不是演绎法,是一种递归推理,其理论依据是下列归纳公理:(1)存在一个自然数0∈N.(2)每一个自然数a有一个后继元素'a,如果'a是a的后继元素,则a叫做'a的生成元素.(3)自然数0无生成元素.(4)如果'a='b,则a=b.(5)(归纳公理)自然数N的每个子集M,如果M含有0,并且含有M内每个元素的后继元素,则M=N.自然数就是满足上述公理的集合N中的元素,关于自然数的所有性质都是这些公理的直接理论.由以上公理可知,0是自然数关于“后继”的起始元素.如果记'0=1,'1=2,'2=3,…,'n=n+1,…,则N={0,1,2,…,n,…}.由以上公理所定义的自然数与前面由集合所定义的自然数在本质上是一致的.20世纪90年代以前的中学数学教材将自然数的起始元素视作1,则自然数集即为正整数集.现在已统一采用上面的证法,即将0作为第1个自然数.为了阐述数学归纳法,我们首先介绍一下正整数集的最小数原理.最小数原理:正整数集中≤,的任意一个非空子集必含有一个最小数.也就是说,存在数a∈S,对于∀x∈S都有a x最小数原理也就是数学归纳法的理论依据.2、数学归纳法的表现形式2.1.第一数学归纳法在教科书里我们常见到的就是第一数学归纳法,介绍如下:原理:设有一个与正整数n有关的命题()P n .如果:(1)当n =1时命题成立(2)假设n =k 时命题成立(3)若能证明n =k +1时命题也成立.证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠∅.于是由最小数原理,S 中有最小数a .因为命题对于n =1时成立,所以1a ≠, a >1.从而a -1是个正整数.又由于条件(3),当n =a 时命题也成立.因此a S ∉,导致矛盾.因此该命题对于一切正整数都成立.定理证毕.在应用数学归纳法时,有些命题不一定从c 开始的,这时在叙述上只要将n =1换成n =c 即可.第一数学归纳法主要可概括为以下三步:(1)归纳基础:证明c 时命题成立(2)归纳假设:假设n =k 时命题成立(3)归纳递推:由归纳假设推出n =k +1时命题也成立.2.2.第二数学归纳法第二数学归纳法与第一归纳法是等价的.在有些情况下,由归纳法“假设n =k 时命题成立”还不够,而需要更强的假定.也就是说,对于命题()P n ,在证明(1)P k +成立,不仅依赖()P k 成立,而且依赖于前面各步成立,这时一般要选用第二数学归纳法.原理:设有一个与正整数n 有关的命题()P n .如果:(1)当n =1时命题成立(2)在假设命题对于一切正整数n k ≤成立时(3)若能证明n =k +1时命题也成立.则这个命题对于一切正整数n 都成立.其证明方法与上述证明方法类似,在这个地方不再赘述.第二数学归纳法可概括为一下几个三步:(1)归纳基础:证明n =1时命题成立(2)归纳假设:假设n k ≤时命题成立(3)归纳递推:由归纳假设推出n =k +1时命题也成立.第二数学归纳法与第一数学归纳法基本形式的区别在于归纳假设.2.3.反向归纳法反向数学归纳法是数学家柯西最先使用的,下面我们就来介绍一下.原理:设有一个与正整数n 有关的命题()P n .如果:(1)命题()P n 对于无限多个正整数n 成立(2)假设n =k 时命题成立(3)若能证明n =k -1时命题也成立,则这个命题对一切正整数n 都成立.证明:反证法.假设该命题不是对于一切正整数都成立.令A 表示使该命题不成立的正整数作成的集合,那么A ≠∅.任取a A ∈,由条件(1)知必有正整数b >a ,使()P b 成立.令这样的正整数b 组成的集合为B .因为集合B ≠∅,故必有最小数,设这个最小数为m ,显然m >1,由条件(3)知:(1)P m -成立,由a 的取法知:3、数学归纳法的应用数学归纳法作为一种证明方法有着广泛的应用,它不仅可以用来证明与自然数n 有关的初等代数问题,在高等数学、几何学、离散数学、概率论甚至物理、生物、计算机等方面的应用也相当突出.在用数学归纳法解决以上问题时,不仅思路清晰、大大降低了问题的复杂性,又能找出相应的递推关系,非常有效.下面重点谈谈它在初等代数、高等数学、离散数学以及数学竞赛中的应用. 3.1.数学归纳法在初等代数中的应用数学归纳法在恒等式问题、整除问题、三角函数问题、数列问题以及不等式问题中均有着广泛的应用.例1.求证:3n +5n (n N +∈)能被6整除证明:(1)当n =1时,31+51⨯=6能被6整除,命题成立(2)假设n =k 时,命题成立,即3k +5k 能被6整除当n =k +1时,有3(1)k ++5(1)k +=(3k +32k +3k +1)+(5k +5) =(35k k +)+3(1)k k ++6 因为两个连续的正整数的乘积(1)k k +是偶数,所以3(1)k k +能被6整除 则(35k k +)+3(1)k k ++6能被6整除,即当n =k +1时命题也成立 综上所述,对一切正整数n 命题都成立.例2.已知在各项均为正整数的数列{}n a 中,它的前n 项和n S 满足n S =11()2n na a +,试猜想数列{}n a 的通项公式,并有数学归纳法证明你的猜想. 解:1S =1111()2a a + 21a ∴=1n a >0 1a ∴=12S =1a +2a =2211()2a a +即22a +22a -1=0又n a >0 ∴2a-13S =1a +2a +3a=1+(1+3a =331()a a +即23a+3a -1=0 又n a >0 ∴3a…猜想:n an N +∈)下面用数学归纳法证明这个猜想(1)当n =1时,1a=1,命题成立(2)假设n k =(1k ≥)时,k a1n k =+时,有:1k a +=1k S +-k S =1111()2k k a a +++-11()2k ka a +,即1k a +=1111()2k k a a +++-12=1111()2k k a a +++21k a +∴1k a +-1=0又n a >0 1k a +∴∴当1n k =+时,命题也成立.由(1)(2)可知:当n N +∈时,n a 例3:已知数列{}n b 是等差数列, 1b =1,1b +2b +…10b =145 (1)求数列{}n b 的通项公式n b (2)设数列{}n a 的通项n a =1log(1)nb +(a >0且1a ≠),记n S 是数列{}n a 的前n 项和,试比较n S 与11log 3a nb +的大小并证明你的结论. 解:(1)设数列{}n b 的公差为d 由题意知:1b =1;1b +10(101)2d -=145 解得:d =3 ∴n b =3n -2(2)由n b =3n -2知:n S =log (11)a ++1log (1)4a ++ (1)log (1)32a n +- =1log [(11)(1)4a ++ (1)(1)]32n +-而11log 3a nb +=log an S 与11log 3a nb +的大小,就是要比较1(11)(1)4++ (1)(1)32n +-的大小取n =1,有(1+1)取n =2,有1(11)(1)4++推测:1(11)(1)4++ (1)(1)32n +-()* (1)当n =1时,已验证()*式成立(2)假设n k =(k >1且k N +∈)时()*式成立.即1(11)(1)4++ (1)(1)32k +-则当1n k =+时,1(11)(1)4++…1(1)32k +-1(1)3(1)2k ++-1(1)31k ++=3231k k +-33332(31k k +-+=322(32)(34)(31)(31)k k k k +-+++=294(31)k k ++>0从而1(11)(1)4++…1(1)32k +-1(1)31k ++即当n =1k +时()*式也成立由(1)(2)知:()*式对任意正整数n 都成立于是当a >1时,n S >11log 3a n b +;当0<a <1时,n S <11log 3a nb +3.2.数学归纳法在高等数学中的应用证明是高等数学的一个重要的组成部分,它的重要性,不仅表现在数学命题需要严格的推理证明,才能确定其真实性,更重要的还在于通过数学证明有助于学生弄清命题的条件与结论之间的本质联系,加强对数学问题的认识,有助于学生深刻理解数学本质,养成严谨的思考问题的习惯,从而自觉掌握数学规律,从根本上提高分析问题和解决问题的能力.例4:如果对一切实数x 和y ,等式()f x y +=()f x +()f y 成立,试证对一切有理数r ,有()f rx =()rf x证:令x =y ,则由已知条件有: (2)f x =()f x +()f x =2()f x (3)f x =()f x +(2)f x =3()f x用数学归纳法可证,对一切自然数n 有()f nx =()nf x另外,对正分数p q (,p q 互质且q >1)有:()pf x =()f px =()p f q x q =()p qf x q()p f x q ∴=()()pf x q令x =y =0,有(0)f =2(0)f ∴(0)f =0接着令y =x -,有()f x +()f x -=0 ∴()f x -=-()f x 同理,对负数p q -(,p q 互质且p >0, q >1)有:()p f x q-=pq -()f x因此,可知对一切有理数r 命题成立. 例5.证明211arctan2n n ∞=⋅∑收敛 证:令n a =21arctan2n ⋅ 求出该数列的部分和n S 1S =1arctan22S =1arctan 2+21arctan 22⋅=2211222arctan111222+⋅-⋅⋅=2arctan 3 3S =1a +2a +3a =2S +3a =2arctan 3+21arctan 23⋅=3arctan 4猜想:n S =arctan 1nn +下面用数学归纳法证明: 假设1k S -=1arctank k-,将上式两边同时加上k a ,得: k S =1k S -+k a =1arctan k k -+21arctan 2k ⋅=23(221)arctan 21k k k k k -+-+=arctan 1k k + 证出等式在n =k 时成立. 因此n S =arctan1nn + 又lim 1n n n →∞+=1,arctan1=4π,证得级数211arctan 2n n ∞=⋅∑收敛 S =4π例6:证明:n D =cos 10012cos 100012cos 012cos aa aa=cos na证:对n 施第二数学归纳法 (1)当n =2时,cos 112cos a a=22cos a -1=cos2a(2)假设<n 时结论成立,则当n 时n D =cos 1012cos 10012cos 001aa a -+21cos n aD - =2n D --+12cos n aD -=cos(2)n a --+2cos cos(1)a n a ⋅- =cos(2)n a --+2cos[(2)]cos n a a a -+⋅=cos(2)n a --+2[cos(2)cos sin(2)sin ]cos n a a n a a a -⋅--⋅ =cos(2)n a --+22cos(2)cos 2sin(2)cos sin n a a n a a a -⋅--⋅⋅=2cos(2)(2cos 1)sin(2)sin 2n a a n a -⋅---⋅ =cos(2)cos 2sin(2)sin 2n a a n a a -⋅--⋅ =cos[(2)2]n a a -+=cos na3.3.数学归纳法在离散数学中的应用随着计算机科学的发展,离散数学在计算机的研究中的作用越来越大,而离散数学中(特别是图论中)的许多命题的论证,数学归纳法不失为一种行之有效的方法.例7.设R 是集合X 上的关系,则()t R =1i i R ∞==R ⋃2R ⋃3R ⋃…证明:用第一归纳法先证明1i i R ∞=⊆()t R ;(1)当n =1时,根据传递闭包定义R ⊆()t R ; (2)假设1n ≥时,nR ⊆()t R .设(,)x y ⊆1n R+,因为1n R+⊆n R ⋃R ,故必有某个c x ∈,使(,)x c ∈n R ,(,)c y ∈R由归纳假设,有(,)x c ∈()t R ,(,)c y ∈()t R ,即(,)x y ∈()t R 1n R+∴⊆()t R故对任意的自然数n ,有nR ⊆()t R ,因而1i i R ∞=⊆()t R再证()t R ⊆1i i R ∞=设(,)x y ∈1ii R ∞=,(,)y z ∈1i i R ∞=,则必存在整数,s t ,使得(,)x y ∈s R ,(,)y z ∈t R这样(,)x z ∈s R ⋃tR ,即(,)x z ∈1i i R ∞=∴1i i R ∞=是传递的由传递闭包的定义可知:()t R =1i i R ∞=例8:设T 为任意一颗完全二元树,m 为边数,t 为树叶数,试证明m =22t -,这里2t ≥证明:对树叶数t 进行证明当t =2时,结点树为3,边数m =2,故m =22t -成立假设t =k (2)k ≥时,结论成立,下面证明t =1k +时结论也成立由于T 为二元数,因此T 中一定存在都是兄弟结点12,v v ,设v 是12,v v 的父亲,在T中删除12,v v ,得到'T ,'T 仍为二元完全树,这时结点v 成为树叶,树叶数't =21t -+=11k +-=k ,边数'm =2m -由归纳假设知:'m ='22t -所以2m -=2(21)2t -+-,故m =22t -3.4.数学归纳法在中学竞赛中的应用我们知道中学数学竞赛里有的知识解决需要用的数学归纳法,它方便了我们的解题,下面举几个例子看看它在数学竞赛里是如何运用的.例9.数列{}n a 中有1a =2a =1,1n a +=1n a -+n a (2)n ≥,请你证明:n a =]n n -(这个数列叫做斐波那契数列,它的前12项是1,1,2,3,5,8,13,21,34,55,89,144)证明:(1)当1n =时,11522--=5(1)T ∴成立当2n =时,2211(]522+-=33(544+--=5(2)T ∴成立(2)假设n k =和1n k =+时,()T k ,(1)T k +都成立即k a ]k k -且1k a +11]k k ++- 则当2n k =+时,2k a +=k a +1k a +]k k -11]k k ++-(1(1k k +-+k k=221111[(()((]52222k k ⋅-⋅=2211[()(]522k k ++- (2)T k ∴+也成立.由(1)(2)可知:对一切正整数,n a =11()]522n n--恒成立. 例10.设x +1x =2cos θ(其中x 为复数),请用θ的三角函数式表示nx +1n x(n 是正整数),并用数学归纳法证明你的结论.解:(1)当1n =时,x +1x=2cos θ 当2n =时,2x +21x=21()2x x +-=22(2cos 1)θ-∴2x +21x=2cos2θ当3n =时,3x +31x =22111()()()x x x x x x++-+=2cos 2cos22cos θθθ⋅-=2cos32cos 2cos θθθ+- =2cos3θ 猜想:nx +1n x=2cos n θ (2)假设1n k =-时,1k x -+11k x -=2cos(1)k θ-n k =时,kx +1k x=2cos (2)k k θ≥ 那么1n k =+时,1k x ++11k x+=11111()()()k k k k x x x x x x --++-+=2cos 2cos 2cos(1)k k θθθ⋅--=2cos(1)2cos(1)2cos(1)k k k θθθ++--- =2cos(1)k θ+ (1)T k ∴+成立由(1)(2)知,对一切n 恒有nx +1n x=2cos n θ(其中n 为正整数) 4、对数学归纳法的认识数学归纳法有时也叫逐次归纳法或者完全归纳法.前面两种叫法最早见于英国数学家德摩根1838年所写的《小百科全书》的引言中.因为在使用这个方法论证的时候,有一个形式上的归纳步骤,即确证命题对于第一项为真时,并由此归纳得出命题对于第n 项为真,“这个和通常的归纳程序有极其相似之处”.所以德摩根赋予它“逐次归纳法”的名称.也许是由于这种方法主要被用来数学中的证明的缘故.在《引言》的结尾处,德摩根又提出“数学归纳法”这个名称.比起逐次归纳法,人们似乎更喜欢数学归纳法,因为后者更能表明它论证的可靠性.此后,1887年,德国数学家戴德金又称此法为“完全归纳法”.有一个时期,这个叫法在德国很流行,后来由于逻辑学上完全归纳法专指“从列举对应的一切特殊的前提中,推出关于全部对象的一般结论的一种推理方法”,所以与“数学归纳法”不完全等价了.虽然数学归纳法和普通归纳法有着相似之处,但本质是完全不同的.归纳法常常是通过简单的枚举而没有碰到矛盾事实出发的.在这种方法里,它的前提只是已被考察过的部分对象的属性,而结论却是关于同类对象全体的.因此,由归纳所得出的结论并不一定是可靠的.比如,从1到40个自然数中,归纳出素数公式是“n 2-n+41”,这个公式对于n=1,2,…,40是正确的,可是当n=41时,得出的412确不是素数,看来归纳法不能用来作为严格的、科学的证明,仅能帮助我们从需要情况的考察中揭露并找出一般的规律性.然而,数学归纳法则不同,它的基础是递归推理原理,隐含着推向无穷的可能.由于数学归纳法包括着一串有穷多个三段论,每一个三段论自身都是一致的,所以从一定意义上说它又是古典演绎逻辑的一种发展了的形式,其严密性与演绎推理相同.庞加莱很彻底地指出了普通归纳法和数学归纳法的本质区别.他说:“我们必须承认,这(数学归纳法)和通常的归纳法程序有极其相似的不同,归纳法,当其应用于自然科学时,常是不确定的,因为它的基础是相信宇宙中有一种普通顺序,一种在我们之外的顺序.相反,数学归纳法,即递归证法,把自身视为一种必然,因为它不过是心灵本身的一种性质……”庞加莱十分推崇数学归纳法,称它“是数学中全部优点的根源”,“我们只能循着数学归纳法前进,只有它能交给我们新的东西.如果没有这种与自然(普通)归纳法不同但却同样极为有用的归纳法的帮助,演绎法是无法去创造出一种科学来的."应该说数学归纳法早就被明确提出并广泛应用了,它在数学中的地位已经完全确立.其实不然,仔细想来,数学归纳法的逻辑基础仍然是不明确的.数学归纳法是说“一个对1真的命题,如果它对任一数为真的,对其后继数也为真,则这个命题对于一切数都是真的.”人们不禁要问,何以断定每一个数都有后继数呢?这个问题不解决,自然也就谈不到数学归纳法的可靠性,所以归纳法的逻辑基础问题,与自然数理论密切联系.有趣的是,数的推展是由自然数向着有理数、实数、复数的方向进行的;然而,数的逻辑基础的奠定却循着一个相反的方向.自然数理论建立以后,与有理数数论一起建立起来的.1889年,意大利数学家皮亚诺发表《算数原理新方法》,他从不经定义的“集合”、“后继者”以及“属于”等概念出发,建立起关于自然数的五条公理,即:(1)1是自然数;(2)1不是任何自然数的后继者;(3)每一个自然数a 都是一个后继者;(4)若a 和b 的后继者相等,则a 和b 也相等;(5)(归纳公理)若有一个由自然数组成的集合S 含有1,又若当S 中含有一个数a 时,它一定也含有a 的后继者,则S 就含有全部自然数.这样,皮亚诺不仅以公理的形式保证了一个数的后继者的存在,而且为用数学归纳法推证的结果对全体自然数的有效性作了保证.皮亚诺把数学归纳法原理奠基在下述事实的基础上:在任一整数a 之后接着便有下一个a+1,从而从整数1出发,通过有限次这种步骤,便能达到选定的整数n.自然数理论的简历,标志着数学归纳法逻辑基础的奠定,也是严格意义下的数学归纳法的进一步明确.对于数学归纳法的深入研究,重在运用它去解决或证明一些问题,在社会生活和自然科学中有着极其广泛的应用.例如在中学数学中的许多重要定理或结论都可以用数学归纳法来证明.比如等差数列、等比数列的通项公式以及二项式定理.当然,我们在重视它的应用的同时,也不要忘记它的审美价值和哲学价值.数学是自然界中所有美的集合,也是哲学辩证思维和逻辑思维的重要组成部分.5.数学归纳法在应用中要注意的问题5.1在应用第一数学归纳法时,只有第2步而无第1步的证明可能导致错误.例11.设n =k ,等式2+4+…+2n =2n +n +1成立,即:2+4+…+2k =2k +k +1(1)两边同时加上2(1)k +,则有:2+4+…+2(1)k +=2(1)k ++(1)k ++1成立,即:如果n =k 时,等式(1)成立,则n =k +1时,等式也成立.由此得出结论:对于一切自然数n ,等式(1)是成立,这是错误的.因为n =1时,有2=3的错误. 5.2在应用第一数学归纳法时,只第1步骤而无第2步骤的归纳证明可能导致错误的结论.例12.在函数()f n =2n +n +17中,由(1)f =19,(2)f =23,(3)f =29,…,(15)f =257等都是质数,便说:“n 为任何自然数时()f n =2n +n +17的值都是质数”便是错误的.因为:(16)f =216+16+17=16(16+1)+17=17(16+1)=217=289就不是质数如果缺少了第2步,则不论对于多少个自然数来验证命题()T n 的正确性,都不能肯定命题对所有自然数都正确.例如:歌德巴赫猜想“对于不小于6的偶数都可以表示成两个质数之和”,虽然对大量偶数进行了具体验证,但因缺少第2步归纳递推,所以仍只停留在归纳的第1步,至今只是个猜想而已.第2步在证明(1)T n +为真时,一定要用到归纳假设,即要由()T n 为真,推出(1)T n +为真;或由“0()T n ,0(1)T n +,…,(1)T k -为真,推出()T k 为真”的实质蕴含真正体现出来,否则不是数学归纳法证明.5.3并不是凡与自然数相关的命题()T n 都要用数学归纳法来证明,而且也不是所有这类命题都能用数学归纳法给以证明的.结 束 语数学归纳法是一种常用的不可缺少的推理论证方法,第一数学归纳法与第二数学归纳法在数学的证明中经常用到,而反向归纳法在数学的证明中不是很常见.通过数学归纳法去证明与自然数有关的命题,可降低证明过程中的复杂性,使推理过程简单、清晰、也保证了推理的严谨性.正如华罗庚先生在《数学归纳法》一书中提到的:“数学归纳法整数体现了人的认识从有限到无限的飞跃.”参考文献[1]吉米多维奇,数学分析习题集题解[M],济南,山东科学技术出版社,1983.[2]王仁发,代数与解析几何[M],长春,东北师范大学出版社,1999年9月第一版.[3]北京大学数学系几何与代数教研室代数小组编,《高等代数》(第三版).高等教育出版社.[4]左孝凌等《离散数学》[M],上海科学技术文献出版社,1982.[5]卢开澄,卢明华,图论及其应用[M],北京,清华大学出版社1995.[6]KAWAHIGASHIY.Generalized Longo-Rehren subfactors and A-induction[J],Comm Math Phys,2002,26(2),269-287[7]苏淳《数学奥赛辅导丛书,漫谈数学归纳法》[M],中国科学技术大学出版社,2009.4Mathematical induction application in problem solvingAuthor: Guan guoce Supervisor: Zhang ShengAbstract Mathematical induction is a kind of common methods of proof.In the proof of many mathematics problems ,it has the function which cannot be replaced by other methods,it has broad prospects even in physics,biology and so on.This paper firstly state the theoretical basis of Mathematical induction and its form of expression,then mainly discuss the Mathematical induction in elementary mathematics,higher mathematics,discrete mathematics and the application of mathematical contest through some representatively typical examples.Finally give an account of the cognition to Mathematicalinduction in detail and the problem when using it.Keywords Mathematical induction sequence determinant discrete mathematics tree mathematical contest。
龙源期刊网 数学归纳法在初等数学中的应用作者:刘玮来源:《考试周刊》2013年第29期摘要:在数学教学中,在培养学生演绎推理能力的同时要重视合情推理能力的培养,与之对应的是归纳、猜想的思想和数学归纳的方法.运用数学归纳法证明,能起到化繁为简的作用,有助于培养学生的观察、猜想与归纳的合情推理能力.关键词:数学归纳法中学数学教学合情推理演绎推理数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法.运用数学归纳法处理问题,能起到化繁为简的作用,有助于培养学生的观察、猜想与归纳的合情推理能力.在实际教学中,教师对数学归纳法的讲授和应用多停留在数列、恒等式和不等式相关问题上.其实数学归纳法在中学数学中的应用远不止于此,它还可用来解答或证明整除性、三角函数和几何等方面的问题.1.数学归纳法在整除性问题上的应用3.数学归纳法在平面几何中的应用例3:平面内有n个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成n■-n+2个部分.分析:用数学归纳法证明几何问题,主要是搞清楚当n=k+1时比n=k时,分点增加了多少,区域增加了几块.本题中第k+1个圆被原来的k个圆分成2k条弧,而每一条弧把它所在的部分分成了两部分,此时共增加了2k个部分,问题得到了解决.证明:①当n=1时,平面内1个圆把平面分成2个部分.4.在函数迭代中的应用数学归纳法在中学数学中用途甚广,可是实际上学生对数学归纳法并不能做到熟练运用,通常仅限于数列和函数方面的应用.由此导致学生在真正运用数学归纳法处理问题时常出现两个比较重大的错误:一是弄不清第二步到第三步的具体变化,二是在证明时根本没有运用到第二步的假设.因此,教师要对数学归纳法在中学数学中各个方面的应用进行深入探讨,把握规律,方能做到在教学中胸有成竹,成功地引导学生掌握归纳猜想的思想和相应的数学归纳法.。
浅谈数学归纳法的应用数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。
一、用数学归纳法证明整除问题用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。
例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由.证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36.下面用数学归纳法证明:(1)当n =1时,显然成立.(2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1),由于3k -1-1是2的倍数,故18(3k -1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除.由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36.二、用数学归纳法证明恒等式问题对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性.例2、是否存在常数c b a ,,,使得等式)(12)1()1(32212222c bn an n n n n +++=+•++•+•对一切自然数n 成立?并证明你的结论.解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11,3===c b a ,于是对3,2,1=n ,下面等式成立:)10113(12)1()1(32212222+++=+•++•+•n n n n n n 令222)1(3221+•++•+•=n n S n假设k n =时上式成立,即)10113(12)1(2+++=k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12)1(++++++=k k k k k k2)2)(1()53)(2(12)1(++++++=k k k k k k )101253(12)2)(1(2+++++=k k k k k ]10)1(11)1(3[12)2)(1(2++++++=k k k k 这就是说,等式当1+=k n 时也成立.综上所述,当10,11,3===c b a 时,题设的等式对一切自然数n 都成立. 三、用数学归纳法证明不等式问题用数学归纳法证明一些与n 有关的不等式时,推导“n =k +1”时成立,有时要进行一些简单的放缩,有时还要用到一些其他的证明不等式的方法,如比较法、综合法、分析法、反证法等等.例3.已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n n n b ; (Ⅱ)证明.332<n S 证明:解:(Ⅰ)证明:当.1121)(,0≥++=≥x x f x 时 因为a 1=1,所以*).(1N n a n ∈≥下面用数学归纳法证明不等式.2)13(1--≤n nn b (1)当n=1时,b 1=13-,不等式成立,(2)假设当n=k 时,不等式成立,即.2)13(1--≤k kk b 那么 kk k k a a a b +--=-=+-1|3|)13(|3|11.2)13(2131k k k b +-≤-≤ 所以,当n=k+1时,不等也成立。
I浅谈数学归纳法的应用摘要数学归纳法是一种非常重要的数学方法,它不仅对我们中学数学的学习有着很大的帮助,而且在高等数学的学习及研究中也是一种重要的方法,数学归纳法对公式的正确性检验中也有着很大的应用。
数学归纳法是将无限化为有限的桥梁,主要探讨关于自然数集的有关命题或者恒等式,数学归纳法在中学数学中的整除问题,恒等式证明,公理证明,排列和组合,几何领域等都有着广泛的应用,这里我们主要结合初中教材来详细列举数学归纳法在中学数学以及在高等数学中的应用。
要准确的运用数学归纳法,首先必须准确的理解其原理和意义以及熟练地掌握解题步骤,而在三个步骤中运用归纳假设尤为关键,运用归纳假设推出猜想最为重要。
最后我们在通过用数学归纳法证明一些数学问题的过程中,可以更加深刻理解和掌握“归纳——猜想——证明”这一探索发现的思维方法。
关键词:归纳法,数学归纳法,证明II the Application of Mathematical InductionABSTRACTMathematical induction is a very important mathematical method, it not only of the middle school mathematics learning has the very big help to us, but in the higher mathematics study and research is also a kind of important method, mathematical induction test the correctness of the formulas is also has a lot of applications. Mathematical induction is a bridge to infinite into a limited, mainly discusses about the relevant propositions or identities of natural number set mathematical induction method in middle school mathematics problem of divisible identities are proved, axiom proves that the permutation and combination, geometric field, has a wide range of applications, here we mainly combined with junior high school textbooks to detailed mathematical induction method in middle school mathematics and application in advanced mathematics. To use mathematical induction accurate, it must first be accurately understand its principle and the significance as well as expertly grasp the problem solving steps, and in three steps, it is important to use inductive hypothesis, using the induction hypothesis launch a guess that the most important. Finally we through use mathematical induction to prove some math problems in the process of, can be more profound understanding and mastering "induction - guess - proof" theIII discovery of thinking method.KEY WORDS: induction method, mathematical induction, proof目录1 绪论 (1)1.1 引言 (2)1.2 数学归纳法的来源 (2)2 数学归纳法的概述 (4)2.1 常用数学证明方法 (4)2.1.1 演绎法 (4)2.1.2 归纳法 (4)2.2 数学归纳法基本原理及其其它形式 (5)2.2.1 数学归纳法概念 (5)2.2.2 数学归纳法的基本原理 (5)2.2.3 数学归纳法的其它形式 (7)3 数学归纳法的步骤 (9)3.1 数学归纳法的步骤 (9)3.2 三个步骤缺一不可 (10)4 数学归纳法的典型应用 (13)4.1证明恒等式 (13)4.2 证明不等式 (15)4.3 证明整除问题 (18)IV4.4 证明几何问题 (19)4.5 行列式与矩阵的证明 (19)5运用数学归纳法时容易出现的错误分析 (22)5.1 忽略了归纳奠定基础的必要性 (23)5.3 在第二步证明中没有利用归纳假设 (24)6 应用数学归纳法时的一些技巧 (25)6.1 灵活选取“起点” (25)6.2 恰当选取“跨度” (26)6.3 选取合适的假设方式 (27)6.3.1 以“假设n k=时成立” (27)£时成立”代替“假设n k6.3.2 以“假设n k=+时成立”代替“假设n k=时成立”28n k=,17 数学归纳法的地位和作用 (30)致谢 (31)参考文献 (33)浅谈数学归纳法的应用11 绪论在高中数学教科书中,我们已经学习过数学归纳法,在高中阶段,学生主要是通过了解数学归纳法的证明三步骤来模仿证明其他表达式的成立,学生也往往满足于“k时命题成立,那么1+k时命题也成立”的证明方法。
浅谈数学归纳法在中学数学教学中的应用摘要:数学归纳法是一种十分重要的数学论证方法,常用于与正整数有关命题的证明。
本文是从数学归纳法的概念、正确的应用数学归纳法、灵活的应用数学归纳法来说明数学归纳法在中学数学教学中的应用。
关键字:数学归纳法;正确、灵活的应用引言数学归纳法是一种十分重要的证明方法,在数学学习中的应用十分广泛,而首先使用数学归纳法的是意大利数学家马奥罗修勒斯,他在1575年的著作《算术》中,用数学归纳法证明了前n 个正奇数之和是2n 。
正是有了这个方法,我们在中学的数学学习中,数学归纳法被广泛用来解决一些数列、不等式、整除等问题。
一、数学归纳法的概念在介绍什么是数学归纳法的之前,我们先来看看我国著名数学家华罗庚是这样评价数学归纳法的:“把数学归纳法学好了,对进一步学好高等数学有帮助,甚至对认识数学的性质,也会有所裨益。
[1]”由此可见数学归纳法是多么重要,那么究竟什么是数学归纳法呢?数学归纳法就是数学上证明与自然数N 有关的命题的一种特殊方法,它主要是从特殊到一般的思想,它使我们能够在一些个别事例的基础上,对某个普遍规律做出判断,作为证明某些与自然数有关的命题的一种推论方法,在解数学题中有着广泛的应用。
在高中数学中常用来证明等式成立和数列通项公式成立。
那么用数学归纳法论证的一般步骤是什么呢?第一步是证明命题0n n =时成立,这是递推的基础;第二步是假设在n k =时命题成立,再证明当1n k =+时命题也成立,这是无限递推下去的理论依据。
而数学归纳法所依据的数学公理是意大利数学家皮亚诺提出的皮亚诺自然数公理的的第五条(归纳公理):任意一个自然数集合N ,1属于N ;假定N 包含n ,N 也一定包含后继数n ',则N 包含所有自然数。
[2]归纳公理用准确的逻辑术语表达了自然数的性质,这是数学归纳原理的数学依据。
从1开始,一个一个地选取可以达到任意自然数。
这样一下子把整个自然数的无穷集合引入到论证中去,从而清楚地阐明了,为什么数学归纳法只用证两步,命题就被证明了。
初等数论潘承洞答案【篇一:初等数论与中学数学】摘要:《初等数论》是数学与应用数学、数学教育专业的一门专业基础课,主要研究整数的性质,历史上遗留下来没有解决的大多数数论难题其问题本身容易搞懂,容易引起人的兴趣,但是解决它们却非常困难。
近年来,数论在中学数学中的运用越来越多,特别是在中学的数学竞赛中运用极为广泛。
本文主要介绍初等数论在中学数学中的应用以及初等数论与中学数学教学的相关问题。
关键词:初等数论中学数学数学竞赛中学数学教学正文:一、初等数论在中学数学中的应用在中学数学中,整数是最为常用的一种数之一,而初等数论是研究整数最基本的性质,与算术密切相关的一门学科,初等数论可以说是算术问题的延深。
初等数论中的整除性质,抽屉原理等一直是中学数学竞赛最热门的话题,由此可见初等数论在中学数学中的应用是极为广泛的。
(一)中学数学中与初等数论相关的几个问题1、整除问题在小学的时候我们就知道,要知道一个数能不能被令一个数整除,可以用长除法来判断,但当被除数位数较多的时候,计算量增大,问题就变得非常麻烦了。
但在学习了初等数论之后问题会得到大大的简化。
1.1整除的概念及其性质定义1(整除)设a、b是整数,b≠0,如果存在整数q,使得a=bq 成立,则称b整除a,或a能被b整除,记作:b∣a。
定理1 (传递性)b∣a,c∣b =〉c∣a定理3 m∣a1,……,m∣an,q1,q2,……qn∈z=〉m∣(a1q1+a1q2+……+anqn)定理4 设a与b是两个整数,b0,则存在唯一的两个整数q和r,使得a=bq+r,0≤rb (1)并称q为a被b除所得的不完全商;r叫做a被b除所得的余数;(2)式称为带余数除法。
1.2下面举几个例子:例1 证明3∣n(n+1)(2n+1),这里的n是任意整数。
证法一:根据题意,n可以写成n=3q+r,这里r=0,1,2,q为整数,对取不同的值进行讨论,得出结论。
证法二:根据整数定义,任何连续三个整数的乘积必是3的倍数。
摘要数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,同时也是数学命题证明的一种数学思想.针对与自然数有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等的证明,在中学数学课堂教学及证明中具有广泛的运用,本文对它在中学数学不同类型证明中作简要分析,目的在于培养学生观察能力、逻辑思维能力、形象思维以及解决整体性问题的能力.数学归纳法作为由特殊概括出一般的一种思维方法,具有两种基本意义,首先数学归纳法是一种推理方法,称为归纳推理,它可以为我们提出猜想,为论证提供基础和依据.其次归纳是一种研究方法,归纳是一种又创造性的探索式思维方法,能开发智力,拓宽思路,引出猜想,它在发现问题和探索解题途径的过程中起着重要作用.数学归纳法可按照它的概括事物是否完全分为两种基本形式??不完全归纳和完全归纳.本文还介绍了在数学解题过程中归纳发现的思考方法:利用归纳法发现和提出数学猜想,利用归纳法发现问题的结论,运用归纳法发现解题途径等.关键词:数学归纳法;不完全归纳法;完全归纳法;中学数学;应用AbstractMathematical induction is a kind of reasoning methods, which is used to prove some propositions related mathematical natural number, it is also a kind of mathematical proposition proof mathematical thoughts. According to the concerned with natural number , algebraic inequalities identities, triangular, inequality series problem, geometry problems, division of sexual problems ,it has widely applied to the classroom teaching and proof in high school. As different mathematical inductions have different types of proof in middle school, this paper makes a brief analysis aims to cultivate the students' observation, logical thinking ability, visual thinking and solving integrity question ability. Mathematical induction, as summarized by the general as a special way of thinking, has two basic meanings, the first mathematical induction is a kind of reasoning, known as inductive reasoning, it can bring up us suppose ,Provide the basis and foundation for the argument. Second, induction is a research method, induction is a creative exploration of another type of thinking, can develop intelligence, broaden thinking,leads to speculation, it plays an important role in finding the problem and ways to explore the process of problem solving. Mathematical induction, in accordance with its general matter is completely divided into two basic forms - incomplete induction and complete induction. This article also describes the process of mathematics problem solving way of inductive methods of discovery: using mathematical induction to find and put forward mathematical suppose, using induction to find conclusions of the problems, using induction to find problem-solving approach.Keywords: mathematical induction;mathematics of middle school;application目录第1章绪论 1第2章数学归纳法的概述 12.1 数学归纳法的来源12.2 数学归纳法原理 22.3 数学归纳思想??从特殊到一般 22.4 数学归纳思想??递推思想 22.4.1 什么叫推理? 22.4.2 推理的形成 32.4.3 数学归纳法的形式 3第3章数学归纳法应注意的几个问题33.1 应认真领会数学归纳法的实质 43.2 与自然数有关的具体命题内容的理解 43.3 对数学归纳法原理的理解 4第4章数学归纳法在几种命题中的应用举例 54.1 运用数学归纳法证明数列问题 54.2 运用数学归纳法证明不等式问题 54.3运用数学归纳法证明几何问题 64.4运用数学归纳法证明整除性问题74.5运用数学归纳法证明三角恒等式问题8第5章数学归纳法在中学数学中的地位和作用8第6章结束语9致谢9参考文献9第1章绪论数学归纳法是数学中一种重要的证明方法,用于证明与自然数有关的命题.一旦涉及无穷,总会花费人们大量的时间与精力,去研究它的真正意义.数学归纳法这个涉及“无穷”而无法直观感觉的概念,自然也需要一个漫长的认识过程.一般认为,归纳推理可以追溯到公元前6世纪的毕达哥拉斯时代.毕达哥拉斯对点子数的讨论是相当精彩的.他由有限个特殊情况而作出一般结论,具有明显的推理过程,但这些推理只是简单的列举,没有涉及归纳结果,因此是不完全的归纳推理.完整的归纳推理,即数学归纳法的早期例证是公元前3世纪欧几里得《几何原本》中对素数无限的证明.其中已经蕴含着归纳步骤和传递步骤的推理.16世纪中叶,意大利数学家莫罗利科F?Maurolycus对与自然数有关命题的证明进行了深入的研究.莫罗利科认识到,对于一个与自然数有关的命题,为了检验其正确与否,若采取逐一代入数进行检验的方法,那不是严格意义上的数学证明,要把所有的自然数都检验一遍是不可能做得到的[1],因为自然数有无穷多个.那么对于这类问题该如何解决呢?1575年,莫罗利科在他的《算术》一书中,明确地提出了“递归推理”这个思想方法.法国数学家B?帕斯卡Pascal对莫罗利科提出的递归推理思想进行了提炼和发扬.在他的《论算术三角形》中首次使用数学归纳法,并用其证明了“帕斯卡三角形”--项展开式系数表,中国称为“贾宪i角性”或“杨辉三角形”等命题.“数学归纳法”这一名称最早见于英国数学家A.德?摩根1838年所著的《小百科全书》的引言中.德?摩根指出“这和通常的归纳程序有极其相似之处”,故赋予它“逐次归纳法”的名称.由于这种方法主要应用于数学命题的证明,德?摩根又提出了“数学归纳法”这个名称.虽然数学归纳法早就被提出并广泛应用了,一直以来它的逻辑基础都是不明确的.1889年意大利数学家皮亚诺G.Peano 建立了自然数的序数理论,将“后继”作为一种不加定义的基本关系,列举了自然数不加证明的五条基本性质,其中归纳公理便为数学归纳法的逻辑基础.至此,数学归纳法有了严格的逻辑基础,并逐渐演变为一种常用的数学方法.我国著名的数学家华罗庚曾说:“把数学归纳法学好了,对进一步学好高等数学有帮助,甚至对认识数学的性质,也会有所裨益.”数学归纳法是数学中一种证明与自然数有关的数学命题的重要方法,已知最早的使用数学归纳法的证明出现于Francesco Maurolico 的Arithmeticorum libri duo 1575年[2].Maurolico 证明了前个奇数的总和是,最简单和常见的数学归纳法证明方法是证明当属于所有自然数时一个表达式成立.它是一个递推的数学论证方法,论证的第一步是证明命题在或时成立,这是递推的基础;第二步是假设在时命题成立,再证明时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限.这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或且)结论都正确[2].宏观来看,数学归纳法看似单一,可看作一个公式来证明命题,实则不然,它要求学生掌握必备的知识与技能,同时还要有一定的逻辑思维能力等.最后我们通过运用数学归纳法的了解和运用数学归纳法解决一些与自然数有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等的证明,最终熟练掌握“归纳??猜想??证明[2]”这一思维方法,这也是中学数学课堂教学的一项重要内容.第2章数学归纳法的概述数学归纳法作为数学命题证明中的一种重要方法,有其独特的历史来源、基本原理、推理思想以及固定模式.2.1 数学归纳法的来源数学归纳法来源于皮亚诺(peano)自然公理[4],其用非形式化的方法叙述如下:(1)1是自然数;(2)每一个确定的自然数都有一个确定的后继数,记作或,也是自然数;(3)如果、都是自然数,那么 ;(4)1不是任何自然数的后继数;(5)如果一些自然数的集合S具有性质:11在中;2若在中,则也在中.那么公理中(5)就为数学归纳法提供了依据,保证了数学归纳法的正确性,从而被称为归纳法原理.2.2 数学归纳法原理不同的领域数学归纳法有不同的形式,在中学数学中,数学归纳法原理有以下两种基本形式[4]:1)第一数学归纳法设是一个关于正整数的命题,如果(1)成立奠基;(2)假设成立,可以推出成立归纳;那么,对一切大于等于的自然数都成立.2)第二数学归纳法设是关于自然数的命题,若(1),()成立奠基;(2)假设 ,成立,则成立归纳;那么,,成立.两种数学归纳法都是分两步完成,第一步是推理的过程,第二步是递推的依据.也就相当于是对一切自然数,命题成立的话,那么后面的一个自然数都满足命题成立[4].即在前一个命题成立的前提下,后一个命题就一定成立.这样依次递推下去就有了命题对任意(,成立.这也就将有限的问题转化为无限次的验证过程了,体现了数学归纳法由无限到有限的转化.2.3 数学归纳思想??从特殊到一般“从特殊到一般”与“由一般到特殊”乃是人类认识客观世界的一个普遍规律,而在人类探索世界奥秘的奋斗中诞生和发展起来的任何一门学科,都将受到这一规律的制约.数学当然也不例外,同样要被纳入这一规律的模式之中.由于事物的特殊性中包括着普遍性,即所谓共性存在于个性之中,而相对于“一般”而言,特殊的事物往往显得简单、直观和具体,并为人们所熟知.另一方面,由于“一般”概括了“特殊”,“普遍”比“特殊”更能反映事物的本质,因而当我们在处理问题的时候,若能置待解决的问题于更为普遍的情形中,进而通过对一般情形的研究去处理特殊情形的思考方式,不仅是可行的,而且是必要的.正因为如此,实践和归纳成了数学家寻找真理和发现真理的主要手段.如勾股定理,多面体的面顶棱公式,前个自然数的立方和公式,二项展开式和杨辉三角形等,无一不是观察、实验和归纳的结果.伟大的数学家欧拉曾说“数学这门科学,同样需要观察、实验”.无独有偶,大数学家高斯也曾说过,他的许多定理都是靠归纳法发现的,证明只是一个补行的手续.纵观古今,科学的发展史其实也是一部观察史、一部猜想史,更是一部论证史.数学的发展更是这样的.科学结论的得到大致包含以下几个阶段:观察、实践→推广→猜测一般性结论→论证结论.而数学归纳法恰恰是论证结论的最佳方法.这与数学大师所说的“先从少数的事例中摸索出规律来,再从理论上论证这一规律的一般性,这是人们认识自然的客观法则之一”的观点大致相同.2.4 数学归纳思想??递推思想[5]数学归纳法独到之处便是解决了有限与无限这一矛盾,即运用了有限个步骤解决无限多种数学情况,实现这一目的的工具就是递推思想.递推也就存在推理,既然是推理的过程,那就为数学归纳法奠定了基础,那推理是如何体现数学归纳法的呢?2.3.1 什么叫推理?由旧知识通过实践、推理、验证,得出新知识的过程就叫推理[5].2.3.2 推理的形成:1°大前提:认可一些事理2°小前提:和大前提相关的一些特殊事实3°结论:依据大小前提做出判断以上就是我们所说的三段论法,就推理思维方式的不同得出归纳法的定义,也就是有特殊到一般的推理就是数学归纳法.2.3.3 数学归纳法的形式对可数的事物要证其具有某种共有的性质,不可能一一加以证明,这时就需要用数学归纳法.原理[5]:将可数事物按自然数的系列排列为:,,若 1°具有性质;2°在该系列中有遗传性,即:当有性质时,必有性质,则自以后的都具有性质.步骤[6]:1°将研究对象按自然数系列对应的顺序排列;2°证明命题对系列的首项来说为真;3°假定命题对系列中任意指定项都为真;4°证明其后一项也为真;5°作出判断,得出结论.数学归纳法就推理证明的过程是很简单明了的,只要涉及与自然数有关的命题证明,很容易反应到数学归纳法的思想,可推理和证明的三段式理论真正掌握,还得有其独特的推理过程及逻辑结构.它要求学生掌握必备的知识与技能,在利用数学归纳法证题时,就存在各种技巧上的应用,同时数学归纳法的难点还是在于运用这种整体思想来穿插于其他不同类型的证明方法上[7].因此我们对于数学归纳法的理解和应用上还得给予足够的重视,证法单一,运用却十分广泛.第3章数学归纳法应注意的几个问题数学归纳法是中学数学中的一种重要的证明方法,它在中学数学中占有很重要的地位.对于初学者来说这部分内容学起来虽困难不大,它呈现出固定的程式,人们一般容易简单模仿,而在具体问题的运用中就会出现力不从心,错误百出,在应用数学归纳法证明题目时,就容易出现许多问题,值得注意.3.1 应认真领会数学归纳法的实质数学归纳法由“奠基”和“归纳”两步组成,在归纳过程中必须用到“归纳假设”.对数学归纳法递推思想证明与自然数有关的数学问题时,不仅要掌握一定的知识背景,同时还应具备一定的转化和技巧性[8],比如常用到得数学思想:放缩法、解析法等.现概括出数学归纳法推证步骤程序图[8]如图3-1:3.2 与自然数有关的具体命题内容的理解利用数学归纳法可以证明一类与自然数有关的数学命题,但不是只要与自然数有关的命题都可用数学归纳法求证,有时就具有可靠性的,“哥德巴赫猜想”的证明除我国数学家陈景润得以证明外,至今就没有哪位能用数学归纳法加以证明.同时,不是一切与自然数有关的命题用数学归纳法证就是最简捷,同样存在一定的局限性.图3-1 数学归纳法推证步骤程序图3.3 对数学归纳法原理的理解数学归纳法证明的第一步中的取值应该和题目条件确定的第一个自然数取值开始,有时不一定就是自然数1,还有情况下可能不只取一个,在一般的情况下,只要建立起递推的关系即可[11].在第二步中由归纳假设到推理的下一步是关键,这里我们需要注意的地方有两点:1°必须要用到归纳假设;2°在已有的归纳假设结论的基础上,根据具体问题和已有的知识链合理选取与问题相关的定理、公理、性质等加以论证.利用数学归纳法证明时,两个步骤缺一不可,即有第一步没有第二步或是只有第二步没有第一步的过程,对要验证的结论都不一定可靠,递推思想,先从一般开始入手,然后对有限的结论作假设,再推广到无限的假设进行验证,得出结论[6].形成以验证、假设、证明的过程,这样的推理验证才具有一定的可靠性.第4章数学归纳法在几种命题中的应用举例4.1 运用数学归纳法证明数列问题中学我们在学习数列时就与自然数有直接的关系,因此在求解数列问题的证明中就常常用到数学归纳法来证明.例1[9] 已知数列的通项公式,数列的通项满足,用数学归纳法证明.证明(1)当时,成立;(2)假设,则.即时命题成立.由(1)(2)得得证.例2 试证明:等差数列的前项和由下列公式表示:=+.证明:1、当时,公式是正确的,=.2、假设当时公式正确,即=+,当时,= .因此,对一切自然数的值,前项和公式都是成立的.点评在做此类型的题时容易出错的是:既然是任意的自然数,就是正确的,那么也是正确的,这很容易理解.可是一旦第二步假定出来,它就是一个固定的自然数了,所以说由的假设后,必须验证时命题也正确才可作出结论,这也就出现了数学归纳法问题的跨越,发生质的转变,也正是数学归纳法的精髓所在.4.2 运用数学归纳法证明不等式问题利用数学归纳法证明一些不等式的情形,常常需要我们利用一些等量转化或放大(缩小)不等式的方法来解决.例3 设=++…+ ,证明:.分析与自然数有关,考虑用数学归纳法证明.时容易证得,时,因为,所以在假设成立得到的不等式中同时加上,再与目标比较而进行适当的放缩求解.证明 (1)当时,=,+1=,=2 ,∴时不等式成立.(2)假设当时不等式成立,即:,当时,++,++= ,+=+++=.所以,即时不等式也成立.由(1)(2)得对所有的,不等式恒成立.例4[10] 设和.(n1)求证:证明:1、当时,因,,所以,即 ,命题显然成立.当时,由.可知命题也成立.2、假设当的时候命题成立,则当时, ,即,可以推出,故当时,命题成立,于是对于任意大于1的自然数,原不等式成立.点评用数学归纳法解决与自然数有关的不等式问题,注意适当选用放缩法.本题中分别将缩小成k+1、将放大成+的两步放缩是证时不等式成立的关键.为什么这样放缩,而不放大成+2,这是与目标比较后的要求,也是遵循放缩要适当的原则.4.3运用数学归纳法证明几何问题例 4[11] 平面内有条直线,其中任何两条不平行,任何三条不共点,求证:这条直线把平面分成个部分.证明 (1当=1时,一条直线将平面分成两个部分,而,∴命题成立.2假设当时,命题成立,即条直线把平面分成个部分,当时,即增加一条直线,因为任何两条直线不平行∴与条直线都相交有个交点;又因为任何三条不共点,所以这个交点不同于条直线的交点,且个交点也互不相同.如此这个交点把直线分成段,每一段把它所在的平面区域分为两部分,故新增加的平面分为.∴时命题成立.由(1),2)可知,当时,命题成立.4.4运用数学归纳法证明整除性问题例5[12] 当,求证:能被整除证明 1当时,能被整除,命题成立2假设时,命题成立,即能被整除当时,根据归纳假设,能被整除,又能被整除.∴ 11k+1+122k+1-1能被整除,即时,命题成立.由1,2命题时都成立.点评用数学归纳法证明有关数或式的整除问题时,要充分利用整除的性质,若干个数(或整式)都能被某一个数(或整式)整除,则其和、差、积也能被这个数(或整式)整除.在由时命题成立,证明命题也成立时.要注意设法化去增加的项,通常要用到拆项、结合、添项、减项、分解、化简等技巧4.5运用数学归纳法证明三角恒等式问题例6[13] 用数学归纳法证明:,分析本题第一步的验证要取,在第二步的证明中应在归纳假设的基础上正确地使用正切的和角公式证明 1当时,右边左边,等式成立2假设当时,等式成立,就是.点评本题在第2步的证明过程中使用了正切和差角的变形形式,即1,因此在用数学归纳法证明三角命题时,应针对时命题的特征,合理地选择和使用三角公式.证明三角恒等式时,常动用有关三角知识、三角公式及三角的变换法.4.6运用数学归纳法证明函数迭代问题一些比较简单的函数,它的n次迭代表达式,可以根据定义直接代入计算,归纳出一般规律后,再用数学归纳法予以证明.所以,直接求法的本质,就是数学归纳法.其中,关键是通过不完全归纳法,找出的一般表达式.例7 ,求.解:由定义,.,.一般地,由不完全归纳可猜测, .事实上,因为假定上式成立,则有,.所以,由数学归纳法知,对所有的自然数n都成立.例8 ,求.解:由定义,,,,一般地,可猜得,.假定上式成立,则有.由数学归纳法知,对所有自然数n都成立.第5章数学归纳法在中学数学中的地位和作用数学归纳法作为一种证明与自然数相关的论证方法,通常用来证明数学上的一些猜想,而这些猜想正式我们通过某种归纳方法所获得的.在中学数学证明中,它的地位和作用可从以下四个方面体现:1°从数学归纳法在教材中地位来看,教科书中多结论、公式、定理都可用数学归纳法来得到验证,如等比数列、等差数列以及求和公式,二项式定理的证明.一般与自然数有关的数学命题大多都可用数学归纳法来证.2°从给学生开阔视野的角度,在中学数学,数学归纳法主要用于证明题,给学生提供一个新的解题思路.3°从应试角度,数学归纳法是中学数学的必修课,也是考试必考的知识点,也是比较好拿分的知识点,还可以运用数学归纳法证明许多数学问题.4°从未来应用的角度,将来会涉及到计算机编程,数学归纳法是递归循环的简单形式,有利于学生今后理工科知识的理解和学习,为以后的高等代数等的学习打下良好基础.第6章结束语数学归纳法主要是针对一些与自然数的相关命题,所以在证明和自然数有关的命题中有着不可替代的作用,对于一些和自然数有关的长式子、繁式子都有化长为短、化繁为简的功效.用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合,同时,数学归纳法的证明步骤与格式的规范是数学归纳法的特征,如时的假设是第二步证明的“已知”步,证明时一定要用到它,否则就不是数学归纳法,证三角恒等式时,常动用有关三角知识、三角公式以及三角的变换法.通过这些变换可以更容易的让命题得证.在证明时命题成立,要用到一些技巧,如:一凑假设,二凑结论,加减项、拆项、不等式的放缩、等价转化等,这些解题的技巧要在实践中不断总结和积累,总之要记住:“递推基础不可少,归纳假设要用到,结论写时莫忘掉”,这样我们才可以更好的运用数学归纳法.数学归纳法是一种重要的数学方法,也是中学数学的重难点之一,它在对于开阔眼界,训练推理能力等方面都有很大的帮助.在中学数学中,数学归纳法对于许多重要的结论,如等差数列、等比数列的通项公式与前项和公式,二项公式定理等都可以用数学归纳法进行证明,进而可以加深对教材以及知识的理解.当然不仅在中学数学中,在进一步学习高等数学的过程中,数学归纳法也是一种不可或缺的方法.致谢首先,要感谢我的指导老师何方国.在毕业论文和设计的完成过程中,何老师在百忙之中查阅和修改本论文,给予了很多悉心的指导,对论文的修改建议很细致,给予了很多完善论文的启发.通过与何老师问题的交流和整个论文的完成实现的过程,我在各个方面都得到了很大的提高,在这里,学生真诚地对何老师表示深深的感激与谢意.其次,还要感谢我的那帮可爱的同学们,在设计过程他们也给予了很多帮助,给予了我很多新奇的创意和开阔的思路,在此向她们表示感谢.参考文献[1]CajoriF.Orionof the Name“MathematicalInduction”[J].American Mathematical Monthly,1918,255:197,200.[2]史久一,朱梧?著.化归与归纳?类比?猜想.大连理工大学出版社,2008.[3]BusseyWH.The Ofin of Mathematical Induction[J].AmericanMathematicalMonthly,1917,245:200?202.[4] 蒋文蔚.数学归纳法[M].北京:科学出版社,2002:12-25.[5] 张奠宙.中国数学双基教学[M].上海:教育出版社,2006:15-36.[6] 吴谦.中学数学中常用的思想方法[J].内蒙古电大学刊,2008,34: 94-95.[7] 张黎明.数学归纳法的应用与技巧[J].民族师范学院学报,2001,51:44-46.[8] 吴厚荣.中学阶段《数学归纳法》的理解[J].文化与教育技术,2010,96:247-249.[9] 张玉芹.数学归纳法教学的几点思考[J].中学理科教学,1999,33:36-36[10]吴志翔著.证明不等式.河北人民出版社,1982[11] 郭兆高.数学归纳法在中学数学解题中的妙用[J].科技信息,2009,84:219-219.[12] 夏兴国.数学归纳法纵横法[J].科学技术出版社,2004,62:3-13.[13] 刘金山.数学归纳法证题时应注意的几个问题[J].数学教学研,1999,71:8-10。