信源的平均码长 lavg>=H(X) ;也就是说熵是无失真
编码的下界.
如果所有 I(xk) 都是整数,且l(xk)=I(xk),可以使平均
码长等于熵.
对非等概率分布的信源,采用不等长编码其平均码
长小于等长编码的平均码长.
如果信源中各符号的出现概率相等,信源熵值达到
最大
最新课件
29
编码的分类
根据对象的不同,可以分为静止图像编码、活动图像
8.1 基础知识
数据与信息之间的关系:数据是信息传送的手段;相同数量的信息可
以用不同数量的数据表示;
数据压缩指减少表示给定信息量所需的数据量;
图像压缩所解决的问题是尽量减少表示数字图像时所需的数据量;
n
压缩率: C R 1
n2
相对数据冗余: R D 1 1
CR
在数字图像压缩中,可以确定三种基本的数据冗余: 编码冗余、像
息间的相关性时,是无失真代码平均长度比特数的下限。
例如
x1 , x2 , x3 , x4
X 1 1 1 1
,
,
,
2 4 8 8
N
7
H
(X
)
p
i log
2p
i
4
i
1
说明该信源编码平均码长最短情况下为7/4,不能再小,
否则就会引起错误,而平均码长比此数大许多时,就表明
先被压缩而后被解压缩的输出图像的函数时,就说这个函
数是基于客观保真度准则的.
假设 f x, y 表示输入图像,fˆx, y 表示由对输入先压缩得到的
ˆ
fˆx,的
y 误
xx