数据的统计描述
- 格式:pptx
- 大小:829.49 KB
- 文档页数:9
数据分布特征的三个统计描述维度现如今生活处处有数据,而我们接触到的数据可以分为连续型数据或者离散型数据。
连续数据的取值范围是可以取连续值的区间,即连续值可以是区间内的任意值,一般都有度量单位。
离散数据的范围由有限数量的值或序列组成。
对数据集使用合适的描述性指标,可以帮助我们探索庞大无序的数据背后隐藏的事实。
描述数据集的三个维度是指对数据集中趋势的描述、对数据分散程度的描述和对数据分布形式的描述。
一、集中趋势描述1.算术平均数 Arithmetic Mean:所有数值的和除以数值的个数。
用于描述一组数据在数量上的平均水平。
计算公式:优缺点:算术平均数是能够充分运用已有信息的代表性数值,每个数值大小的改变都会引起其变化。
也因此容易受极值的影响,并且会掩盖数据的差异性。
示例:最近更新了2018年度深圳在岗职工的月平均工资,达到了9309元。
这就是一个算术平均值的实际应用。
还是要保持进步,争当排头兵而非吊车尾呀。
2.几何平均数 Geometric Mean:对各数值的连乘积开项数次方根。
一般用于当总成果为各个阶段(环节)的连乘积时,求各个阶段(环节)的一般成果。
计算公式:优缺点:几何平均数受极端值的影响比均值小。
但仅适用于具有等比或近似等比关系的数据。
示例:连续作业的车间求产品的平均次品率。
一个产品的生产由三个环节组成。
每个环节都会产生一定的次品。
次品率依次为5%、2%、6%,求这个产品的平均次品率。
因为每个环节都是依次发生的,需要完成上一个环节的合格产品才能进入下一个环节,所以每个环节的不良率是一个产品关系。
依照上式结果可知,该产品整个生产环节的平均次品率为3.91%。
3.中位数 Median:将数值从小到大依次排列,最中间的数值为中位数。
若数值个数为奇数个时,为中间位置的数值;若数值个数为偶数个时,为中间两个数的算术平均数。
优缺点:不受极值影响,通过丢失一些信息来换取指数的稳定性。
但对极值缺乏敏感性,样本量较小时中位数不稳定。
第四章数值数据的描述重点:有关数值数据的性质和特征:如集中趋势、变异(离散)程度、分布形状1、集中趋势度量(MeaSureSofCentralTendency)1)均值或平均数(Mean)、算术平均数(arithmeticmean)又称为期望样本均值T=(X l+X2+∙∙→‰)/n=(∑X i)/n这是最常用的度量统计量它通过以观察值中较小数据补足较大的数据来得到平衡点易受数据的极端值的影响(如体育比赛中最高分和最低分往往被去掉)2)中位数:有序数列中处在中间位置的数值(Median)确定中位数的方法:首先,按序排列数据其次,运用定位公式:(n+l)∕2确定中间的观察值如果样本容量为奇数,中位数为中间的观察值数值如果样本容量为偶数,中位数为中间两个观察值的平均中位数与平均数相比对偏态不敏感。
不易受数据极端值的影响3)众数:数据集合中出现频数最高的数值(Mode)众数可从有序数组中观得到可能会出现没有众数或一个以上众数的情况4)值域中点=(X Ai大值+X44小值)/2(Midrange)所有观察值中最大值和最小值的平均值,应用于金融分析和气象预报对数据的极端值非常敏感5)中轴数=(Q1+Q3)/2 (Midhinge)第一四分位数和第三四分位数的平均值,中轴数不受极端值的影响四分位数的度量Q1.第一四分位数是(n+l)∕4位置上的数据(first quartile,QI)25%的数据比第一四分位数小。
Q?.第二四分位数就是中位数(secondquartile,Q2)处在2(n+l)∕4=(n+D∕2的位置上,50%的观察值比中位数小。
Qs.第三四分位数是处在3(n+l)∕4位置上的数据(thirdquartile,Q3)75%的观察值比第三四分位数小。
2、变异程度的度量MeasureofVariation1)全距X奴小值(Range)又称级差,由数据的极端值所决定。
对数组排序,很容易的找出最大值和最小值,从而计算出全距。
描述性统计与推断性统计统计学是一门研究数据收集、分析和解释的学科。
在统计学中,描述性统计和推断性统计是两个重要的概念。
描述性统计是对数据进行总结和描述的过程,而推断性统计则是通过对样本数据进行分析来推断总体特征的过程。
一、描述性统计描述性统计是对数据进行总结和描述的过程。
它主要通过计算和图表来展示数据的特征,包括中心趋势、离散程度和数据分布等。
常用的描述性统计方法包括平均数、中位数、众数、标准差、方差和百分位数等。
1. 中心趋势中心趋势是描述数据集中程度的统计指标。
常用的中心趋势指标有平均数、中位数和众数。
平均数是将所有数据相加后除以数据个数得到的结果,它可以反映数据的总体水平。
中位数是将数据按照大小排序后,位于中间位置的数值,它可以反映数据的中间位置。
众数是数据集中出现次数最多的数值,它可以反映数据的集中程度。
2. 离散程度离散程度是描述数据分散程度的统计指标。
常用的离散程度指标有标准差和方差。
标准差是数据偏离平均数的平均程度,它可以反映数据的离散程度。
方差是标准差的平方,它可以反映数据的离散程度。
3. 数据分布数据分布是描述数据在不同取值上的分布情况。
常用的数据分布指标有百分位数和频数分布表。
百分位数是将数据按照大小排序后,位于某个百分比位置的数值,它可以反映数据的分布情况。
频数分布表是将数据按照不同取值进行分类,并统计每个取值的频数,它可以反映数据的分布情况。
二、推断性统计推断性统计是通过对样本数据进行分析来推断总体特征的过程。
它主要通过假设检验和置信区间来进行推断。
假设检验是通过对样本数据进行统计推断,判断总体参数是否满足某个假设。
置信区间是通过对样本数据进行统计推断,估计总体参数的范围。
1. 假设检验假设检验是通过对样本数据进行统计推断,判断总体参数是否满足某个假设。
它包括设置原假设和备择假设、选择适当的检验统计量、计算检验统计量的值、确定拒绝域和做出推断等步骤。
常用的假设检验方法有单样本检验、双样本检验和方差分析等。
统计学中常用的数据分析方法描述统计描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。
描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。
集中趋势分析:集中趋势分析主要靠平均数、中数、众数等统计指标来表示数据的集中趋势。
例如被试的平均成绩多少?是正偏分布还是负偏分布?离中趋势分析:离中趋势分析主要靠全距、四分差、平均差、方差(协方差:用来度量两个随机变量关系的统计量)、标准差等统计指标来研究数据的离中趋势。
例如,我们想知道两个教学班的语文成绩中,哪个班级内的成绩分布更分散,就可以用两个班级的四分差或百分点来比较。
相关分析:相关分析探讨数据之间是否具有统计学上的关联性。
这种关系既包括两个数据之间的单一相关关系——如年龄与个人领域空间之间的关系,也包括多个数据之间的多重相关关系——如年龄、抑郁症发生率、个人领域空间之间的关系;既包括A大B就大(小),A 小B就小(大)的直线相关关系,也可以是复杂相关关系(A=Y-B*X);既可以是A、B变量同时增大这种正相关关系,也可以是A变量增大时B变量减小这种负相关,还包括两变量共同变化的紧密程度——即相关系数。
实际上,相关关系唯一不研究的数据关系,就是数据协同变化的内在根据——即因果关系。
获得相关系数有什么用呢?简而言之,有了相关系数,就可以根据回归方程,进行A变量到B变量的估算,这就是所谓的回归分析,因此,相关分析是一种完整的统计研究方法,它贯穿于提出假设,数据研究,数据分析,数据研究的始终。
例如,我们想知道对监狱情景进行什么改造,可以降低囚徒的暴力倾向。
我们就需要将不同的囚舍颜色基调、囚舍绿化程度、囚室人口密度、放风时间、探视时间进行排列组合,然后让每个囚室一种实验处理,然后用因素分析法找出与囚徒暴力倾向的相关系数最高的因素。
假定这一因素为囚室人口密度,我们又要将被试随机分入不同人口密度的十几个囚室中生活,继而得到人口密度和暴力倾向两组变量(即我们讨论过的A、B两列变量)。
统计学案例数据分析—描述统计描述统计是统计学中的一个重要分支,主要研究如何对数据进行整理、总结、描述和展示。
它通过汇总和描述数据来揭示数据的特征和规律,从而从整体上了解数据集的信息。
下面将给出一个描述统计学案例,用于展示描述统计在实际问题中的应用。
假设我们收集到公司过去一年来的销售数据,该公司主要销售电器产品。
数据集包括每个月的销售额、销售量、销售地区和销售渠道等信息。
我们想要通过描述统计方法对这个数据集进行分析,以了解销售状况和销售趋势。
首先,我们可以对销售额进行描述统计分析。
我们可以计算销售额的平均值、中位数、最大值和最小值等,来描述销售额的整体水平和分布情况。
比如,平均销售额可以反映公司的整体销售水平,最大值和最小值可以告诉我们销售的波动范围,中位数可以反映销售额的中部位置。
接下来,我们可以对销售量进行描述统计分析。
类似地,我们可以计算销售量的平均值、中位数、最大值和最小值,来描述销售量的整体水平和分布情况。
这可以帮助我们了解公司的销售产品的数量和规模。
然后,我们可以对销售地区进行描述统计分析。
我们可以计算每个地区的销售额和销售量的总和,来了解各个地区的销售情况。
这可以帮助我们判断哪些地区是公司的主要销售市场,以及哪些地区的销售情况较差,可能需要加大市场开发力度。
最后,我们可以对销售渠道进行描述统计分析。
我们可以计算每个渠道的销售额和销售量的比例,来了解各个渠道的销售贡献程度。
这可以帮助我们判断哪些渠道是公司的主要销售渠道,以及哪些渠道可能需要调整或者优化。
除了上述的描述统计指标,我们还可以使用图表来展示数据的分布和趋势。
比如,我们可以使用直方图、饼图、折线图等来直观地呈现销售额和销售量的分布情况,以及不同地区和渠道的销售情况。
通过以上的描述统计分析,我们可以得到关于销售状况和销售趋势的详细信息。
这些信息可以帮助公司做出相应的决策和战略调整,以进一步提升销售业绩。
总之,描述统计是统计学中的一个重要工具,可以帮助我们对数据进行整理、总结、描述和展示。
调查报告中的数据统计和分析方法在调查研究中,数据统计和分析是非常重要的环节,它们能够帮助我们理解数据背后的规律和趋势,为决策提供科学依据。
本文将介绍调查报告中常用的数据统计和分析方法,以及它们的应用场景和注意事项。
一、数据统计方法1. 描述性统计:描述性统计是对数据进行整理、概括和描述的方法。
常用的描述性统计指标包括均值、中位数、众数、标准差、方差等。
通过这些指标,我们可以了解数据的集中趋势、离散程度和分布形态。
2. 频数分析:频数分析是对数据进行分类和计数的方法。
通过频数分析,我们可以了解不同类别的数据出现的频率和比例。
例如,在一项市场调查中,我们可以统计不同年龄段的受访者人数,以及各年龄段的比例。
3. 相关分析:相关分析用来研究两个或多个变量之间的关系。
常用的相关分析方法有皮尔逊相关系数和斯皮尔曼等级相关系数。
通过相关分析,我们可以了解变量之间的相关程度和相关方向,从而判断它们是否存在某种关联。
二、数据分析方法1. 统计推断:统计推断是通过对样本数据进行分析,得出对总体的推断结论的方法。
常用的统计推断方法包括参数估计和假设检验。
参数估计用来估计总体参数的取值,假设检验用来检验总体参数的假设。
2. 方差分析:方差分析是一种用于比较两个或多个样本均值是否有显著差异的方法。
方差分析将总体方差分解为组内方差和组间方差,通过比较组间方差与组内方差的大小,来判断样本均值是否存在显著差异。
3. 回归分析:回归分析用来研究自变量和因变量之间的关系,并建立预测模型。
常用的回归分析方法有线性回归分析、逻辑回归分析等。
通过回归分析,我们可以了解自变量对因变量的影响程度和方向,并进行预测和解释。
三、应用场景和注意事项1. 应用场景:数据统计和分析方法广泛应用于各个领域的调查研究中。
例如,在市场调研中,我们可以通过数据统计和分析方法了解消费者的购买行为和偏好;在医学研究中,我们可以通过数据统计和分析方法了解疾病的发病率和风险因素。