实验二 静电场的模拟测绘
- 格式:doc
- 大小:63.00 KB
- 文档页数:4
一、实验目的1. 理解模拟实验法的适用条件。
2. 掌握用模拟法测绘静电场的原理和方法。
3. 加深对电场强度和电位概念的理解。
4. 通过实验,提高实验操作技能和数据分析能力。
二、实验原理静电场是由静止电荷产生的电场,其电场强度E与电荷量Q和距离r的关系为E=kQ/r^2,其中k为库仑常数。
静电场的电位U与电荷量Q和距离r的关系为U=kQ/r。
由于静电场中的电荷不运动,因此静电场是稳恒的。
在实验中,由于静电场中电荷不运动,直接测量静电场的电场强度和电位比较困难。
因此,我们采用模拟法,利用稳恒电流场来模拟静电场,从而间接测量静电场的分布。
稳恒电流场中,电流密度J与电场强度E的关系为J=σE,其中σ为电导率。
稳恒电流场的电位U与电流密度J和距离r的关系为U=-∫J·dr。
在模拟实验中,我们通过改变电流强度,调整模拟装置,使得模拟电流场的分布与静电场相似,从而间接测量静电场的分布。
三、实验仪器1. 模拟装置:同轴电缆和电子枪聚焦电极。
2. 静电场描绘仪。
3. 静电场描绘仪信号源。
4. 导线。
5. 数字电压表。
6. 电极。
7. 同步探针。
8. 坐标纸。
四、实验步骤1. 将同轴电缆的一端与静电场描绘仪连接,另一端与电子枪聚焦电极连接。
2. 调节静电场描绘仪信号源,输出一定电压。
3. 将电子枪聚焦电极放置在坐标纸上,调节电子枪的聚焦,使得电子束在坐标纸上形成一个清晰的光点。
4. 移动电子枪聚焦电极,在坐标纸上描绘出模拟电流场的等位线。
5. 根据等位线的分布,分析模拟电流场的电场强度和电位分布。
6. 通过比较模拟电流场和静电场的相似性,间接测量静电场的分布。
五、实验结果与分析1. 通过实验,我们成功描绘出模拟电流场的等位线,等位线呈同心圆分布,符合稳恒电流场的特性。
2. 通过分析等位线的分布,我们得出模拟电流场的电场强度和电位分布,与静电场的理论分布相似。
3. 实验结果表明,模拟法可以有效地测绘静电场的分布,为静电场的研究提供了方便。
实验二 静电场的描绘一、实验目的1. 掌握用模拟法测绘静电场的设计思路,实验方法。
2. 学会用模拟法测绘等势线。
3. 重点培养学生理论联系实际的能力。
二、实验器材:双层式静电场测绘仪(包括导电纸和记录纸)、1750Ω、0.3A 滑线变阻器、10V 电压表、灵敏检流计、HY1711---3SD 多路直流稳压电源、导线若干。
三、实验原理: (一)理论结果本实验要描绘无限长同轴柱体间的电场分布,(见图4-1,只画出部分),因为是无限长,由高斯定理可得任一点P 的场强为:02E rλπε=(1)式中λ为单位长度所带电荷量,r 为点p 到轴线之半径。
因已有理论结论,故本实验为验证性实验(但目的不在验证,而在验证所采用的思想方法,即如何将理论与实际联系起来)。
由于场强是矢量,用电势标量描述较为方便。
场强与电势的关系为:duE dr=-(2) 将(2)式分离变量并将(1)式代入积分有:02r dru Edr rλπε=-=-⎰⎰ ,∵外柱面接地(r U =0),内柱体为等势体(r U =0U ),∴当=B r r =0r u ⇒;当0A r r r u u =⇒=,故有:)ln()ln(0AB B r R R r R u u = (3) (3)式为两柱体间任一点电势的理论公式,本实验测静电场电势将依据这一公式。
图4-1(二)设计思想及方法但静电场电势是不便直接测量的,因任何仪器均含金属(导体),放入静电场中将会在导体表面产生感应电荷,该感应电荷产生的场叠加在原静电场上,造成原静电场发生强烈畸变,而无法测出。
因此需采用一种间接测量的方法——模拟法,即在条件相同的情况下,仿照另外一个场(模拟场)来代替原静电场的测量的方法称为模拟法。
模拟场需满足的条件为:①与原静电场具有相似性;②便于测量。
稳恒电流场作为模拟场可满足上述条件,定性说明: 1、两场都可用同一个量电势u 来描述(由稳恒电流场的欧姆定律:RuI = 说 明,式中u 即为相对零电势点的电势差);2、两场的方向一致(由欧姆定律微分形式:E Jσ=说明);3、条件相同情况下,对应于两极间的任意一点的电势数值相等(不证,说明(3)式可由RuI =对R 积分推出)。
用【2 】模仿法测绘静电场试验示范报告【试验目标】1.懂得模仿试验法的实用前提.2.对于给定的电极,能用模仿法求出其电场散布.3.加深对电场强度和电势概念的懂得【试验仪器】双层静电场测试仪.模仿装配(同轴电缆和电子枪聚焦电极).JDY型静电场描写电源.[试验道理]【试验道理】1.静电场的描写电场强度E是一个矢量.是以,在电场的盘算或测试中往往是先研讨电位的散布情形,因为电位是标量.我们可以先测得等位面,再依据电力线与等位面处处正交的特色,作出电力线,全部电场的散布就可以用几何图形清晰地表示出来了.有了电位U值的散布,由=UE-∇便可求出E的大小和偏向,全部电场就算肯定了.2.试验中的艰苦试验上想应用磁电式电压表直接测定静电场的电位,是不可能的,因为任何磁电式电表都须要有电流畅过才能偏转,而静电场是无电流的.再则任何磁电式电表的内阻都远小于空气或真空的电阻,若在静电场中引入电表,势必使电场产生轻微畸变;同时,电表或其它探测器置于电场中,要引起静电感应,使原场源电荷的散布产生变化.人们在实践中发明,有些测量在现实情形下难于进行时,可以经由过程必定的办法,模仿现实情形而进行测量,这种办法称为“模仿法”.3.模仿法来由两场屈服的纪律的数学情势雷同,如又知足雷同的边界前提,则电场.电位散布完全相相似,所以可用电流场模仿静电场.这种模仿属于数学模仿.静电场(无电荷区) 稳恒电流场(无电流区)⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅==⋅=⋅=⎰⎰⎰b a ab l d E U 0l d E 0S d D E D ε⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅==⋅=⋅=⎰⎰⎰b aab l d E U 0l d E 0S d j E j σ4.评论辩论同轴圆柱面的电场.电势散布 (1)静电场依据理论盘算,A.B 两电极间半径为r 处的电场强度大小为r E 02πετ=A.B 两电极间任一半径为r 的柱面的电势为a b rbV V A ln ln=(2)稳恒电流场在电极A.B 间用平均的不良导体(如导电纸.稀硫酸铜溶液或自来水等)衔接或填充时,接上电源(设输出电压为V A )后,不良导体中就产生了从电极A 平均辐射状地流向电极B 的电流.电流密度为ρE j '=式中E ′为不良导体内的电场强度,ρ为不良导体的电阻率. 半径为r 的圆柱面的电势为a b rbV V A ln ln=图1.同轴圆柱面的电场散布 图2.不良导体圆柱面电势散布结论:稳恒电流场与静电场的电势散布是雷同的.因为稳恒电流场和静电场具有这种等效性,是以要测绘静电场的散布,只要测绘响应的稳恒电流场的散布就行了.[试验内容与步骤]1、测量无穷长同轴圆柱间的电势散布.(1)在测试仪上层板上放定一张坐标记载纸,基层板上放置水槽式无穷长同轴圆柱面电场模仿电极.加自来水填充在电极间.(2)接好电路.调节探针,使下探针浸入自来水中,触及水槽底部,上探针与坐标纸有1-2mm的距离.(3)接通电源,K2扳向“电压输出”地位.调节交换输出电压,使AB两电极间的电压为交换12V,保持不变.(4)移动探针,在A电极邻近找出电势为10V的点,用上探针在坐标纸上扎孔为记.同理再在A四周找出电势为10V的等势点7个,扎孔为记.(5)移动探针,在A电极四周找出电势分离为8V,6V,4V,2V的各8个等势点(圆越大,应多找几点),办法如步骤(4).(6)分离用8个等势点连成等势线(应是圆),肯定圆心O的地位.量出各条等势线的坐标r(不一建都相等),并分离求其平均值.(7)用游标卡尺分离测出电极A和B的直径2a和2b .(8)盘算各响应坐标r处的电势的理论值V理,并与试验值比较,盘算百分差.(9)依据等势线与电力线互相正交的特色,在等势线图上添置电力线,成为一张完全的两无穷长带等量异号电荷同轴圆柱面的静电场散布图.(10)以lnr为横坐标,V实为纵坐标,做V实-lnr曲线,并与V理-lnr曲线比较2.测量聚焦电极的电势散布(选做)分离测10.00V.9.00V.8.00V.7.00V.6.00V.5.00V.4.00V.3.00V.2 .00V.1.00V.0.00V等,一般先测5 .00V的等位点,因为这是电极的对称轴.步骤同上 [数据记载]模仿电场散布测试数据V A =10.00±0.01V 2a=1.624±0.002cm 2b=8.580±0.002cmV 理(V) 8.00 6.00 4.00 3.00 2.00 1.00 r(cm) 1.10 1.50 2.15 2.55 ? 3.58 V 理8.17 6.31 4.14 3.12 ? 1.07 (%)理理实V V V2.1%4.9%3.4%3.8%?6.5%处理:1.用圆规和曲线板绘出园柱形同轴电缆电场等位线(留意电极的地位).2.依据电力线垂直等位面,绘出电力线. 贴图1:同轴圆柱体贴图2:聚焦电极电力线实线等势线虚线3.在圆柱形电缆电场散布图上量出各等位线的半径,盘算V 并与理论值比较,求出其相对误差.(1)1 1.10r cm =;则11ln()8.17()ln()Ar b V V V a b ==;100% 2.2%v V V E V -=⨯=-理实理(2)2 1.50r cm =;则12ln()6.31()ln()Ar b V V V a b ==;100% 5.0%v V V E V -=⨯=-理实理(3)要具体盘算 (4)要具体盘算 (5)要具体盘算012345678900.511.5lnr(cm)U (V )理论值实际值线性 (实际值)线性 (理论值)成果剖析:(1)由图中可以看出现实测量值都在理论值的下方,解释试验的误差重要来自体系误差.本次测量中误差最小为2.1%,最大为6.5%,超出了仪器的精度1%,以为体系误差在操作中某试验前提未相符时引入的,并且半径越小的地方误差越大.这充分辩明试验中要保证水槽的水介质要平均散布,并且描写的等势点不能太少,不然半径会引入较大的误差.(2)等势面由人工拟合,是以半径的盘算较光滑,估量至少0.2r cm∆=,剖析对第一组的影响,由lnlnArbV Vab=知,8.00.21.090.406 1.1ln ln2.145AVV rV r Var rb∂∆∆=∆=⋅=⋅=∂1.09100%12%8Ev=⨯≈解释在肯定命据点时,必定要保证装配以及操作的稳固性,别的数据尽量多,以削减试验值的波动性.。
用模拟法测绘静电场实验报告一、实验目的1、学习用模拟法测绘静电场的原理和方法。
2、加深对静电场概念的理解,了解静电场的分布特点。
3、掌握静电场测试仪的使用方法。
二、实验原理静电场是由静止电荷产生的一种特殊物质形态,其分布情况通常难以直接测量。
但我们可以利用相似的电流场来模拟静电场,因为在一定条件下,电流场和静电场的物理规律具有相似性,这种方法称为模拟法。
根据静电场的高斯定理,在真空中,静电场的电场强度 E 沿任意闭合曲面的通量等于该闭合曲面所包围的电荷的代数和除以真空介电常数ε₀。
对于具有一定几何形状和边界条件的带电体所产生的静电场,其场强分布是唯一确定的。
如果我们构造一个与静电场具有相似几何形状和边界条件的电流场,使电流场中的电流密度分布与静电场中的电场强度分布相似,那么就可以通过测量电流场中的电位分布来间接得到静电场的电位分布。
在电流场中,电流密度 J 与电场强度 E 成正比,比例系数为电导率σ。
在均匀介质中,电流密度 J 与电位梯度成正比,即 J =σ∇V,其中V 为电位。
通过测量电流场中的电位分布,利用等位线和电力线的关系,就可以描绘出静电场的电场线分布。
三、实验仪器1、静电场描绘仪2、直流稳压电源3、电压表4、探针5、坐标纸四、实验步骤1、连接电路将直流稳压电源的正、负极分别与静电场描绘仪的正、负极相连,确保连接牢固,无短路现象。
2、选择实验模型本实验采用同轴圆柱面电极模型,内圆柱电极接电源正极,外圆柱电极接电源负极。
3、测量电位将探针与电压表相连,移动探针在电极间的不同位置,测量相应点的电位值,并记录在坐标纸上。
测量时应注意保持探针与电极表面垂直,且接触良好。
4、绘制等位线根据测量得到的电位值,在坐标纸上绘制出等位线。
等位线是指电位相等的点所连成的曲线。
5、绘制电场线根据等位线与电场线的垂直关系,绘制出电场线。
电场线的方向是从高电位指向低电位。
五、实验数据记录与处理|测量点坐标|电位值(V)||::|::||(x₁, y₁) | V₁||(x₂, y₂) | V₂||(x₃, y₃) | V₃||||以坐标原点为中心,根据测量数据绘制等位线和电场线。
用模拟法测绘静电场实验报告实验目的,通过模拟法测绘静电场,探究静电场的分布规律。
实验仪器,静电场模拟装置、静电场测量仪、导线、电荷点源等。
实验原理,静电场是由电荷引起的,电荷周围存在静电场。
在电场中,电荷会受到电场力的作用,这种力的大小和方向与电荷的大小和位置有关。
通过模拟法可以模拟出静电场的分布情况,进而研究静电场的性质。
实验步骤:1. 将静电场模拟装置放置在实验台上,并连接好静电场测量仪。
2. 调节模拟装置中的电荷点源位置,使其在不同位置放置电荷点源。
3. 通过测量仪器记录下不同位置的电场强度,并绘制出电场线分布图。
4. 根据实验数据,分析电场的分布规律,探究电场强度与电荷点源位置的关系。
实验结果与分析:通过实验数据和电场线分布图的分析,我们发现电场强度与电荷点源的位置呈现出明显的规律性。
当电荷点源靠近时,电场强度较大,随着距离的增加,电场强度逐渐减小。
这与静电场的理论分布规律相符合。
同时,我们还发现了电场线的分布形态,可以清晰地展现出电场的方向和强度分布情况。
结论:通过模拟法测绘静电场实验,我们成功地探究了静电场的分布规律。
实验结果表明,电场强度与电荷点源位置呈现出一定的关系,这为我们进一步研究静电场的性质提供了重要的实验基础。
同时,通过实验还可以直观地观察到电场线的分布形态,从而更加深入地理解了静电场的特性。
总结:静电场是物理学中重要的研究对象,通过模拟法测绘静电场实验,我们可以直观地了解电场的分布规律。
本实验的成功进行,为我们进一步深入研究静电场的特性提供了重要的实验基础。
希望通过这次实验,能够增进我们对静电场的认识,为今后的学习和研究打下坚实的基础。
用模拟法测绘静电场〔实验目的〕1.学习用模拟法描绘和研究静电场分布;2.加深对电场强度和电势概念的理解。
〔实验原理〕静电场用电场线形象描绘静电场的分布。
r E 02πελ= a ln(/)ln(/)b r a b r r U U r r = 模拟场用不良导体内的电场模拟静电场。
图1 同轴电缆的模拟模型(a) 同轴电缆模拟电场装置; (b) 横向剖面 d d ln 22b r b r rr b r r r R t r r t r ρρππ==⎰ ln 2a b b r r a r R t r ρπ= 2ln a b a a b r r a U tU I r R r πρ== a ln(/)ln(/)ab r rr a b r r U IR U r r '==[实验内容及步骤]图2 GVZ - 4型导电微晶静电场描绘仪1.将导电微晶上内、外两电极分别与直流稳压电源的正、负极相连接,电压表正、负极分别与测试笔及电源负极相连接,移动测试笔测绘同轴电缆的等位线簇。
要求相邻两等位线间的电位差为1V,以每条等位线上各点到原点的平均距离r为半径画出等位线的同心圆簇。
2.根据电场线与等位线的正交原理,画出电场线,并指出电场强度方向,得到一张完整的电场分布图。
3.在坐标纸上作出相对电位和lnr的关系曲线,并与理论结果比较, 根据曲线的性质说明等位线是以内电极中心为圆心的同心圆。
[注意事项]1.找等位点时尽量让同等位线上的点均匀分布分布在360度上;2、不同等位线上的点尽量在同一直线上, 以方便确定等位线;3、由于导电微晶边缘处的电流沿边流动, 因此等位线必然与边缘垂直, 使该处的等位线和电力线严重畸变。
为减小“边缘效应”的影响, 将导电微晶的边缘切割成电力线的形状。
⽤模拟法测绘静电场实验报告⽤模拟法测绘静电场实验报告【⼀】实验⽬的及实验仪器实验⽬的: 1.学习⽤模拟法测绘静电场的分布;2.加深对电场强度及电位概念的理解。
实验仪器:电源、毫⽶⽅格纸、导线、静电场测绘仪、万⽤表【⼆】实验原理及过程简述⼀.实验原理:1.模拟的依据:由电磁理论知道,稳恒电流的电场和相应的静电场空间形式是⼀致的。
只要电极形状⼀定,空间介质均匀,在任何⼀个考察点均有U稳恒=U静电,或E稳恒=E静电。
稳恒电流场与静电场的分布也是相同的,因此欲测绘静电场的分布,只要测绘相应的稳恒电流的电场。
2.电压表法:以平⾏输电线的电极A、B模拟等值异号电荷,测绘电场分布情况。
将电报A、B与导电勿紧密接触,接通电源E,则在导电纸上形成平⾯电流场,电流由A向B辐向传导,导电物质上任⼀点具有确定的电位U c,可由电压表指⽰,将具有相同U c的点相连即为等位线。
3.检流记法:检流计追G跨接在C、D两端,D点的电位由分压器预先测量,当U c=U时,电流计中⽆电流通过,指针不偏转,移动测笔C,找到这些使G不偏转的点,然后连接起来,即为U D的等位线。
4.⽅法依据:场强E在数值上等于电位梯度,⽅向指向电位降落的⽅向。
⼆.过程简述:1.记录电极尺⼨a和b。
接通电路,将开关拨到"校准",得出U a。
2.将开关拨到"读数",固定毫⽶⽅格纸,测绘平⾏输电线(模拟等值异号点电荷)的等位线簇。
取U r=2,4,6,8,10v共五组,每组穿⼤约10个点数,取下⽅格纸,连接电位相等的点得等位线,根据电场线与等位线垂直,作出电场线。
3.固定另⼀张毫⽶⽅格纸,测绘同轴电缆(模拟同轴圆柱带电体)的等位线簇。
取U r=2,4,6,8,10v共五组,每组穿⼤约10个点数,取下⽅格纸,连接电位相等的点得等位线,根据电场线与等位线垂直,作出电场线,量取五个等位线圈的等位半径R P。
根据公式计算相应理论电位半径R T=b/[b/a∧(U r/U a)],并计算绝对误差和⽬标误差E(%)=(R T-R P)/R T×100%。
用模拟法描绘静电场实验报告用模拟法描绘静电场实验报告静电场是物理学中非常重要的一个概念,它描述了电荷之间相互作用的力场。
为了更好地理解和研究静电场,我们进行了一系列的实验,通过模拟法描绘了静电场的特性和行为。
本实验旨在通过模拟法的手段,以一种直观的方式展示静电场的形态和性质。
实验材料和仪器包括:一块平面金属板、一根绝缘杆、一些带电体(如塑料棒或橡皮棒)、一台静电电源、一些细线和一些小球。
实验一:带电体的静电场首先,我们将一个带正电的塑料棒放置在金属板上。
观察到,金属板上的自由电子受到塑料棒的吸引,聚集在棒的附近,形成了一个电子云。
而金属板上的正电离子则被塑料棒排斥,聚集在金属板的远离塑料棒的一侧。
这样,我们可以看到在金属板上形成了一个静电场,其中电子云的密度较高,而正电离子的密度较低。
接下来,我们用一根绝缘杆将带正电的塑料棒移开。
观察到,金属板上的电子云和正电离子重新平均分布,消除了静电场。
这说明,静电场的形成和存在是由于带电体的存在和作用。
实验二:静电场的力线为了更直观地观察静电场,我们将一些细线固定在金属板上,然后将小球用细线悬挂在细线的末端。
将带正电的塑料棒靠近小球,观察到小球受到塑料棒的吸引,偏离了竖直方向。
这表明,静电场中存在着电场力,它使得带电体和带电粒子之间发生相互作用。
我们可以通过将小球在静电场中的运动轨迹连接起来,得到一系列的力线。
这些力线从带正电的塑料棒开始,向外辐射,形成了一个以塑料棒为中心的电场。
力线越靠近塑料棒,表示电场的强度越大;力线越稀疏,表示电场的强度越弱。
实验三:静电场的电势为了进一步了解静电场的性质,我们使用了一台静电电源。
首先,我们将金属板接地,然后将带正电的塑料棒靠近金属板。
观察到,金属板上的电子云和正电离子重新分布,形成了一个静电场。
接下来,我们用一个带有指示器的电势计测量了不同位置的电势。
实验结果显示,距离塑料棒越远的位置,电势越低;而距离塑料棒越近的位置,电势越高。
实验二 静电场的模拟测绘
实验目的
1.学会用模拟法测绘静电场。
2.加深对电场强度和电位概念的理解。
实验仪器
静电场描绘仪,静电场描绘仪信号源,滑线变阻器,万用电表等。
实验原理
带电体的周围存在静电场,场的分布是由电荷的分布。
带电体的几何形状及周围介质所决定的。
由于带电体的形状复杂,大多数情况求不出电场分布的解析解,因此只能靠数值解法求出或用实验方法测出电场分布。
直接用电压表法去测量静电场的电位分布往往是困难的,因为静电场中没有电流,磁电式电表不会偏转;另外由于与仪器相接的探测头本身总是导体或电介质,若将其放入静电场中,探测头上会产生感应电荷或束缚电荷。
由于这些电荷又产生电场,与被测静电场迭加起来,使被测电场产生显著的畸变。
因此,实验时一般采用间接的测量方法(即模拟法)来解决。
1.用稳恒电流场模拟静电场
模拟法本质上是用一种易于实现、便于测量的物理状态或过程模拟不易实现、不便测量的物理状态或过程,它要求这两种状态或过程有一一对应的两组物理量,而且这些物理量在两种状态或过程中满足数学形式基本相同的方程及边界条件。
本实验是用便于测量的稳恒电流场来模拟不便测量的静电场,这是因为这两种场可以用两组对应的物理量来描述,并且这两组物理量在一定条件下遵循着数学形式相同的物理规律。
例如对于静电场,电场强度E 在无源区域内满足以下积分关系
⎰⎰=⋅S
d 0S E (4-4-1)
⎰=⋅l
d 0l E (4-4-2)
对于稳恒电流场,电流密度矢量j 在无源区域中也满足类似的积分关系
⎰⎰=⋅S
d 0S j (4-4-3)
⎰
=⋅l
d 0l j (4-4-4)
在边界条件相同时,二者的解是相同的。
当采用稳恒电流场来模拟研究静电场时,还必须注意以下使用条件。
(1)稳恒电流场中的导电质分布必须相应于静电场中的介质分布。
具体地说,如果被模拟的是真空或空气中的静电场,则要求电流场中的导电质应是均匀分布的,即导电质中各处的电阻率ρ必须相等;如果被模拟的静电场中的介质不是均匀分布的,则电流场中的导电质应有相应的电阻分布。
(2)如果产生静电场的带电体表面是等位面,则产生电流场的电极表面也应是等位面。
为此,可采用良导体做成电流场的电极,而用电阻率远大于电极电阻率的不良导体(如石墨粉、自来水或稀硫酸铜溶液等)充当导电质。
(3)电流场中的电极形状及分布,要与静电场中的带电导体形状及分布相似。
2.长直同轴圆柱面电极间的电场分布
如图4-4-1所示是长直同轴圆柱形电极的横截面图。
设内圆柱的半径为a ,电位为V a ,外圆环的内半径为b ,电位为
V b ,则两极间电场中距离轴心为r 处的电位V r 可表示为 ⎰-=r
a a r Edr V V (4-4-5)
又根据高斯定理,则圆柱内r 点的场强
E =K /r (当a <r <b 时) (4-4-6) 式中K 由圆柱体上线电荷密度决定。
将(4-4-6)代入(4-4-5)式
a
r K V dr r K V V a r a
a r ln -=-=⎰
(4-4-7)
在r =b 处应有
a
b K V V a b ln -=
所以
)ln(a b V V K b a -= (4-4-8)
如果取V a =V 0,V b =0,将(4-4-8)式代入(4-4-7)式,得到
)
ln()(ln 0a b r b V V r = (4-4-9)
式(4-4-9)表明,两圆柱面间的等位面是同轴的圆柱面。
用模拟法可以验证这一理论计算的结果。
当电极接上交流电时,产生交流电场的瞬时值是随时间变化的,但交流电压的有效值与直流电压是等效的,所以在交流电场中用交流毫伏表测量有效值的等位线与在直流电场中测量同值的等位线,其效果和位置完全相同。
实验内容
图4-4-2为实验电路,电源可取静电场描绘仪信号源、其它交流电源或直流电源,经滑线变阻器R 分压为实验所需要的两电极之间的电压值。
V 表可用交流毫伏表(晶体管毫伏表)、万用表或数字万用表。
下面分别测绘各电极电场中的等电位点。
1.长直同轴圆柱面电极间的电场分布
(1)水槽中倒入适量的水,然后把它放在双层静电场测绘仪的下层。
(2)按图4-4-2接好电路,V 表及探针联合使用。
(3)把坐标纸放在静电场测绘仪的上层夹好,旋紧四个压片螺钉旋钮。
在坐标纸上确定电极的位置,测量并记录内电极的外径及外电极的内径。
(4)调节静电场描绘仪信号源输出电压,使两电极间的电位差V 0为10.00V 。
(5)测量电位差为8V 、6V 、4V 和2V 的四条等位线,每条等位线测等位点不得少于9个。
(6)移动探针座使探针在水中缓慢移动,找到等位点时按一下坐标纸上的探针,便在坐标纸上记下了其电位值与电压表的示值相等的点的位置。
2.两平行长直圆柱体电极间的电场分布
如图4-4-3所示是两平行长直圆柱体模拟电极间的电场分布示意图,由于对称性,等电位面也是对称分布的。
更换同轴圆柱面的水槽电极,参照实验内容1按实验室要求测出若干条等位线。
3.聚焦电极间的电场分布
阴极射线示波管的聚焦电场是由第一聚焦电极A 1和第二加速电极A 2组成。
A 2的电位比A 1的电位高。
电子经过此电场时,由于受到电场力的作用,使电子聚焦和加速。
图4-4-4所示的就是其电场分布。
能过此实验,可了解静电透镜的聚焦作用,加深对阴极射线示波管的理解。
参照实验内容1按实验室要求测出若干条等位线。
数据处理
1.将等位点连成等位线。
2.根据电力线与等位线垂直的特点,画出被模拟空间的电力线。
3.测量出内容1长直同轴圆柱面电极间的电场分布图中每条等位线的直径,按(4-4-9)式计算出每条等位线的电位值,然后与测量电位值比较,计算相对误差并列出表格。
注意事项
1.水槽由有机玻璃制成,实验时应轻拿轻放,以免摔裂。
2.电极、探针应与导线保持良好的接触。
3.实验完毕后,将水槽内的水倒净空干。
思考题
1.用模拟法测的电位分布是否与静电场的电位分布一样。
2.如果实验时电源的输出电压不够稳定,那么是否会改变电力线和等位线的分布?为什么?
3.试从你测绘的等位线和电力线分布图,分析何处的电场强度较强?何处的电场强度较弱?
4.试从长直同轴圆柱面电极间导电介质的电阻分布规律和从欧姆定律出发,证明它的电位分布有与(4-4-9)式相同的形式。